On the (di)graphs with (directed) proper connection number two

Guillaume Ducoffe ¹,³, Ruxandra Marinescu-Ghemeci ²,⁴, Alexandru Popa ²,³

¹Université Côte d’Azur, Inria, CNRS, I3S, France
²University of Bucharest, Romania
³National Institute for Research and Development in Informatics, Romania
⁴ICUB Research Institute of the University of Bucharest, Romania

LAGOS 2017
Proper colorings

Well known...

- four color map problem [Appel and Haken (1989)]
- chromatic number problem - NP-complete
- for vertices / edges
- many applications - avoid conflicts
 - register allocation
 - scheduling problems
 - interference, security in communication networks
Proper path colorings

Relaxed constrains

- Not necessary to impose constrains on the colors for all pairs of adjacent edges/vertices in order avoid conflicts, but:
 - assure paths between any pair of vertices on which communication is safe
 - Possible advantages: less colors, algorithms
Proper path colorings

Relaxed constrains

- Not necessary to impose constrains on the colors for all pairs of adjacent edges/vertices in order avoid conflicts, but:
 - assure paths between any pair of vertices on which communication is safe
 - Possible advantages: less colors, algorithms
- **Proper path coloring** - proper connection number
 - Borozan et al. (2012)
Proper path colorings

Definition (Borozan et al. (2012); Andrews et al. (2016))

\[c : E(G) \rightarrow \{1, 2, \ldots, k\} \]

- **proper path** \(P \): \(c|_{E(P)} \) proper edge-coloring
- **proper connection number** of \(G \): \(pc_e(G) \)
- similar - **proper vertex-connection number** of \(G \): \(pc_v(G) \)
- **proper connection for strong digraphs**: for every ordered pair \(u,v \) of vertices exists a proper (di)path from \(u \) to \(v \).

Related to rainbow coloring - [Chartrand et al. (2008)] computing the rainbow connection number is NP-hard and not FPT for any fixed \(k \geq 2 \) [Chakraborty et al. (2011)]

(Di)graphs with proper connection 2
Proper path colorings

Definition (Borozan et al. (2012); Andrews et al. (2016))

\[c : E(G) \rightarrow \{1, 2, \ldots, k\} \]

- **proper path** \(P \): \(c|_{E(P)} \) proper edge-coloring
- **proper connection number** of \(G \): \(pc_e(G) \)
- similar - **proper vertex-connection number** of \(G \): \(pc_v(G) \)
- **proper connection for strong digraphs**: for every ordered pair \(u, v \) of vertices exists a proper (di)path from \(u \) to \(v \).

Related to rainbow coloring - [Chartrand et al. (2008)]
Computing the rainbow connection number is NP-hard and not FPT for any fixed \(k \geq 2 \) [Chakraborty et al. (2011)].
Proper path colorings

Definition (Borozan et al. (2012); Andrews et al. (2016))

$c : E(G) \longrightarrow \{1, 2, \ldots, k\}$

- **proper path** P: $c|_{E(P)}$ proper edge-coloring
- **proper connection number** of G: $pc_e(G)$
- similar - **proper vertex-connection number** of G: $pc_v(G)$
- **proper connection for strong digraphs**: for every ordered pair u, v of vertices exists a proper (di)path from u to v.

Related to **rainbow coloring** - [Chartrand et al. (2008)]

- computing the rainbow connection number is NP-hard and not FPT for any fixed $k \geq 2$ [Chakraborty et al. (2011)]
Known results

Survey - [Li and Magnant (2015)]

Combinatorial results:
- Existence problems [Andrews et al. (2016)]
 - difference between chromatic number and pc can be arbitrary large

- Connection to structure properties of graph
 - minimum degree, domination, connectivity [Li et al. (2015)]
Known results

Combinatorial results:

- Extremal graphs [Laforge et al. (2016)]
 - graphs with $pc(G) = m - 1, m - 2$
 - graphs with $pc = 2$ - no complete characterization or algorithmic results
 - 3-connected, 2-connected with diameter 2, bipartite bridgeless
Known results

Combinatorial results:
- Extremal graphs [Laforge et al. (2016)]
 - graphs with $pc(G) = m - 1, m - 2$
 - graphs with $pc = 2$ - no complete characterization or algorithmic results
 - 3-connected, 2-connected with diameter 2, bipartite bridgeless

- Classes of graphs
 - random graphs [Gu et al. (2016)]
 - Almost all graphs have proper connection number 2
 - bipartite graphs [Borozan et al. (2012); Huang et al. (2015, 2016)]
 - sufficient conditions to have proper connection number 2
Known results

Combinatorial results:
- **Extremal graphs** [Laforge et al. (2016)]
 - graphs with $pc(G) = m - 1, m - 2$
 - graphs with $pc = 2$ - no complete characterization or algorithmic results
 - 3-connected, 2-connected with diameter 2, bipartite bridgeless

- **Classes of graphs**
 - random graphs [Gu et al. (2016)]
 - Almost all graphs have proper connection number 2
 - **bipartite graphs** [Borozan et al. (2012); Huang et al. (2015, 2016)]
 - sufficient conditions to have proper connection number 2

- **Digraphs** [Magnant et al. (2016)]
 - $\overrightarrow{pc_e}(D) \leq 3$
 - **Conjecture**: A strong digraph with no even dicycle has $\overrightarrow{pc_e}(D) = 3$.
Known results

Combinatorial results:
- Extremal graphs [Laforge et al. (2016)]
 - graphs with $pc(G) = m - 1$, $m - 2$
 - graphs with $pc = 2$ - no complete characterization or algorithmic results
 - 3-connected, 2-connected with diameter 2, bipartite bridgeless
- Classes of graphs
 - random graphs [Gu et al. (2016)]
 - Almost all graphs have proper connection number 2
 - bipartite graphs [Borozan et al. (2012); Huang et al. (2015, 2016)]
 - sufficient conditions to have proper connection number 2
- Digraphs [Magnant et al. (2016)]
 - $\overrightarrow{pc_e}(D) \leq 3$
 - Conjecture: A strong digraph with no even dicycle has $\overrightarrow{pc_e}(D) = 3$.
- Proper vertex-connection for undirected graphs - trivial
Our results

- No algorithmic results
- Bipartite graphs with $pc = 2$ - no complete characterization or algorithms

Polynomial-time recognition algorithms for bounded-treewidth graphs and bipartite graphs with $pc = 2$

Characterization of bipartite graphs with $pc = 2$
Our results

- **Digraphs**
 - \(\overrightarrow{pc_e}(D) \leq 3\)

 Deciding whether \(\overrightarrow{pc_e}(D) \leq 2\) is NP-complete.
 - Reduction from Positive NAE-SAT

- **Conjecture**: A strong digraph with no even dicycle has \(\overrightarrow{pc_e}(D) = 3\)

 There exists an infinite family of digraphs with no even dicycles that also have properly connected 2-colorings.
Our results

- **Digraphs**
 - $\overrightarrow{pc_e}(D) \leq 3$

 Deciding whether $\overrightarrow{pc_e}(D) \leq 2$ is NP-complete.
 - Reduction from Positive NAE-SAT

- **Conjecture**: A strong digraph with no even dicycle has $\overrightarrow{pc_e}(D) = 3$

 There exists an infinite family of digraphs with no even dicycles that also have properly connected 2-colorings.

- **Proper vertex-connection** for undirected graphs - trivial

 - Initiate study of proper vertex-connection for digraphs
 - $\overrightarrow{pc_v}(D) \leq 3$
 - Deciding whether $\overrightarrow{pc_v}(D) \leq 2$ is NP-complete
 - Reduction from 3-SAT
Bipartite graphs

Lemma (Huang et al. (2015))

If G is a connected bipartite bridgeless graph, then $pc_e(G) \leq 2$. Furthermore, such a coloring can be produced with the strong property.

Coloring with strong property - ear decomposition
Bipartite graphs

Lemma (Huang et al. (2015))

If G is a connected bipartite bridgeless graph, then $pc_e(G) \leq 2$. Furthermore, such a coloring can be produced with the strong property.

Remark

- $pc_e(G) \geq b(G) = \text{maximum number of bridges incident in a vertex}$

 [Andrews et al. (2016)]

- $pc_e(G) \leq 2 \implies b(G) \leq 2$
Bipartite graphs

Any bipartite graph with \(b(G) \leq 2 \) has \(pc_e(G) \leq 2 \)?
Bipartite graphs

Any bipartite graph with $b(G) \leq 2$ has $pce(G) \leq 2$?

No

Lemma

Let $G = (V, E)$ be a connected graph, B be a bridge-block of G that is bipartite. If B is incident to at least three bridges then $pce(G) \geq 3$.

![Diagram of a bipartite graph with $pce(G) = 3$]
Bipartite graphs
Bipartite graphs

paths of same parity

(Di)graphs with proper connection 2
Bipartite graphs

paths of same parity

(Di)graphs with proper connection 2
Bipartite graphs

paths of same parity

even length
Bipartite graphs

Theorem

Let $G = (V, E)$ be a connected bipartite graph. We have $pc_e(G) \leq 2$ if and only if the bridge-block tree of G is a path. Furthermore, if $pc_e(G) \leq 2$, then such a coloring can be computed in linear-time.
Bipartite graphs

If bridge-block tree of G is a path \Rightarrow linear ordering B_0, B_1, \ldots, B_l over the bridge-blocks.

- Color blocks in this order (with strong property)

![Diagram showing bridge-blocks B_0, B_1, B_2, B_3, B_4.](image)
Bipartite graphs

If bridge-block tree of G is a path \implies linear ordering B_0, B_1, \ldots, B_l over the bridge-blocks.

- Color B_0 (with strong property)
Bipartite graphs

If bridge-block tree of G is a path \implies linear ordering B_0, B_1, \ldots, B_l over the bridge-blocks.

- Color bridge between B_0 and B_1 arbitrary
Bipartite graphs

If bridge-block tree of G is a path \implies linear ordering B_0, B_1, \ldots, B_l over the bridge-blocks.

- Color B_1 (with strong property)
Bipartite graphs

If bridge-block tree of G is a path \implies linear ordering B_0, B_1, \ldots, B_l over the bridge-blocks.

- Color bridge between B_i and B_{i+1} according to color of bridge between B_{i-1} and B_i and parity of paths length

![Diagram of Bipartite Graphs]

B_0 B_1 B_2 B_3 B_4
Bipartite graphs

If bridge-block tree of G is a path \Rightarrow linear ordering B_0, B_1, \ldots, B_l over the bridge-blocks.

- Color bridge between B_i and B_{i+1} according to color of bridge between B_{i-1} and B_i and parity of paths length
Bipartite graphs

If bridge-block tree of G is a path \Rightarrow linear ordering B_0, B_1, \ldots, B_l over the bridge-blocks.

- Color bridge between B_i and B_{i+1} according to color of bridge between B_{i-1} and B_i and parity of paths length

\begin{figure}
\centering
\includegraphics[width=\textwidth]{bipartite_graph.png}
\end{figure}
Bipartite graphs

If bridge-block tree of G is a path \implies linear ordering B_0, B_1, \ldots, B_l over the bridge-blocks.

- Color bridge between B_i and B_{i+1} according to color of bridge between B_{i-1} and B_i and parity of paths length.
Bipartite graphs

If bridge-block tree of G is a path \implies linear ordering B_0, B_1, \ldots, B_l over the bridge-blocks.

- Color bridge between B_i and B_{i+1} according to color of bridge between B_{i-1} and B_i and parity of paths length
Conclusions

- Complete characterization of bipartite graphs with $pc = 2$
- First algorithmic and complexity results on proper connection

Open problems
- NP-completeness results and algorithms for undirected case and related type of colorings
 - characterize graphs with $pc \leq 2$
 - proper connection number of bipartite graphs
- Conditions for strong digraphs to have proper edge/vertex connection number 2 or 3.

Thank You!
Proposition (McCuaig (2015))

There is only one strongly 2-connected digraph with no even dicycle (up to an isomorphism), digraph D_7.

Figure: D_7.
Strongly 2-connected digraphs with no even dicycle

Lemma

\[\overrightarrow{pc}(D_7) = 2. \]
Theorem

There is an infinite family of strongly connected digraphs with no even dicycle having proper connection number equal to 2
NP-completeness result

Theorem

Deciding whether $\overrightarrow{pc}_e(D) \leq 2$ for a given digraph D is NP-complete.

Proof.

- **NP-hard**: reduction from Positive NAE-SAT

Problem (Positive NAE-SAT)

Input: A propositional formula Φ in conjunctive normal form, with unnegated variables.

Question: Does there exist a truth assignment satisfying Φ in which no clause has all its literals valued 1?
Figure: D_Φ for $\Phi = (x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4)$
Clause gadget

Figure: Gadget representing the clause $C_j = x_{i_1} \lor x_{i_2} \lor x_{i_3}$.

(Bibliography)
Clause gadget

- unique paths: $[\alpha_j, \beta_j, C_j, \gamma_j, \delta_j]$ and $[\gamma_j, \delta_j, C_j, \alpha_j, \beta_j]$

Figure: Gadget representing the clause $C_j = x_{i_1} \lor x_{i_2} \lor x_{i_3}$.
Clause gadget

- unique paths: $[\alpha_j, \beta_j, C_j, \gamma_j, \delta_j]$ and $[\gamma_j, \delta_j, C_j, \alpha_j, \beta_j] \implies$ arcs with same color

Figure: Gadget representing the clause $C_j = x_{i_1} \lor x_{i_2} \lor x_{i_3}$.
Proper vertex connection number of digraphs

Figure: D_Φ for $\Phi = (x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3})$