Bounds on Directed star arboricity in some digraph classes

Mourad Baïou, Laurent Beaudou, Vincent Limouzy, Henri Perret du Cray

LIMOS, Université Clermont Auvergne

LAGOS 2017
1 Introduction

2 Known results and Conjectures

3 k-degenerate digraphs

4 Tournaments

5 Conclusion
A **directed star** is a star with all its arcs oriented towards its center. A **galaxy** is a set of vertex-disjoint stars.
A **directed star** is a star with all its arcs oriented towards its center. A **galaxy** is a set of vertex-disjoint stars.
A **directed star** is a star with all its arcs oriented towards its center. A **galaxy** is a set of vertex-disjoint stars.
A **directed star** is a star with all its arcs oriented towards its center. A **galaxy** is a set of vertex-disjoint stars.
Introduction

Definitions

Directed star k-coloring problem:
Deciding whether or not there exists a partition of the arcs of a digraph D into k galaxies.

NP-complete for $k \geq 3$ even when restricted to different classes of digraphs (Amini et al. 2010, Baïou et al. 2013).

The directed star arboricity, $dst(D)$, of a digraph D, is the minimum number of galaxies needed to cover all the arcs of D.
1 Introduction

2 Known results and Conjectures

3 k-degenerate digraphs

4 Tournaments

5 Conclusion
Known results and Conjectures

For every digraph D, $dst(D) \leq 2\Delta^+ + 1$.

For every digraph D, $dst(D) \leq \Delta + 1$.

Conjectures (O. Amini, F. Havet, F. Huc, and S. Thomassé (2010))

1. $dst(D) \leq 2\Delta^+$, if $\Delta^+ \geq 2$
2. $dst(D) \leq \Delta$, if $\Delta \geq 3$

$\Delta(D) = \max\{d^+(x) + d^-(x), x \in V(D)\}$
<table>
<thead>
<tr>
<th>Conjectures (O. Amini, F. Havet, F. Huc, and S. Thomassé (2010))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\text{dst}(D) \leq 2\Delta^+, \text{ if } \Delta^+ \geq 2)</td>
</tr>
<tr>
<td>2. (\text{dst}(D) \leq \Delta, \text{ if } \Delta \geq 3)</td>
</tr>
</tbody>
</table>

- Both conjectures are true when restricted to acyclic digraphs.
- Both conjectures (if true) are tight.
- Conjecture 2 is true for \(\Delta = 3 \).
1 Introduction

2 Known results and Conjectures

3 k-degenerate digraphs

4 Tournaments

5 Conclusion
A digraph D is \textbf{k-degenerate} if its underlying graph is k-degenerate.
A digraph D is k-degenerate if its underlying graph is k-degenerate.

k-degenerate graph

G is empty, or
There is some x with degree at most k such that $(G - x)$ is k-degenerate.
A digraph D is \textbf{k-degenerate} if its underlying graph is k-degenerate.

A digraph D is \textbf{k-degenerate} if its underlying graph is k-degenerate.
A digraph D is \textbf{k-degenerate} if its underlying graph is k-degenerate.
A digraph D is k-degenerate if its underlying graph is k-degenerate.

A k-degenerate graph G is empty, or there is some x with degree at most k such that $(G - x)$ is k-degenerate.
A digraph D is k-degenerate if its underlying graph is k-degenerate.
A digraph D is k-degenerate if its underlying graph is k-degenerate.

k-degenerate graph

G is empty, or
There is some x with degree at most k such that $(G - x)$ is k-degenerate.
A digraph D is k-degenerate if its underlying graph is k-degenerate.

A graph G is k-degenerate if

1. G is empty, or
2. There is some vertex x with degree at most k such that $(G - x)$ is k-degenerate.
Theorem 1

Let D be a k-degenerate digraph, $\text{dst}(D) \leq \Delta^+ + k$.

Sketch of proof

Proof by induction on the number of vertices of D.
Theorem 1

Let D be a k-degenerate digraph, $\text{dst}(D) \leq \Delta^+ + k$.

Sketch of proof

Proof by induction on the number of vertices of D.

$H_n : \text{all } k\text{-degenerate oriented graphs on } n \text{ vertices are } (\Delta^+ + k)\text{-colorable with at most } k \text{ colors entering each vertex.}$
Illustration for $\Delta^+ = 2$ and $k = 2$.

$$d^+(x) = 1$$
1. Introduction

2. Known results and Conjectures

3. k-degenerate digraphs

4. Tournaments

5. Conclusion
A **Tournament** is an orientation of a complete graph.

Theorem 2

Let T be a tournament on n vertices, $n \geq 4$, then $dst(T) \leq \Delta$.

Corollary: if $n \geq 4$, then $dst(T) \leq 2\Delta^+$.
A **Tournament** is an orientation of a complete graph.

Theorem 2

*Let T be a tournament on n vertices, $n \geq 4$, then $\text{dst}(T) \leq \Delta$.***

Corollary: if $n \geq 4$, then $\text{dst}(T) \leq 2\Delta^+$.

If n is even there is nothing to prove (partition in $n - 1$ perfect matchings).
Proof

Theorem 2

Let T be a tournament on n vertices, $n \geq 4$, then $dst(T) \leq \Delta$.

Sketch of the proof:

- remove one vertex,
- color the resulting even sub-tournament.
- extend the coloring using only one additional color.
Proof

Theorem 2

Let T be a tournament on n vertices, $n \geq 4$, then $dst(T) \leq \Delta$.

We color the arc entering u with the new color.

$$d^+(u) \geq d^-(u)$$
$$d^-(u) > 0$$
Proof

Theorem 2

Let T be a tournament on n vertices, $n \geq 4$, then $dst(T) \leq \Delta$.

Goal: color the arcs leaving u.

$d^+(u) \geq d^-(u)$

$d^-(u) > 0$
Assign a color to each arc leaving u.

\[N^+ \]

\[C_1 \]

\[C_{n-2} \]
Assign a color to each arc leaving u.

Find a maximum matching.
Color the remaining arcs.

\[|N^+| = k \]
Color the remaining arcs.

\[|N^+| = k \]
Color the remaining arcs.

\[|N^+| = k \]
1 Introduction

2 Known results and Conjectures

3 k-degenerate digraphs

4 Tournaments

5 Conclusion
Conjectures (O. Amini, F. Havet, F. Huc, and S. Thomassé (2010))

1. $\text{dst}(D) \leq 2\Delta^+, \text{ if } \Delta^+ \geq 2$
2. $\text{dst}(D) \leq \Delta, \text{ if } \Delta \geq 3$

- Conclusions of both conjectures are valid for tournaments.
- k-degenerate oriented graphs verify Conjecture (1) if $k \leq \Delta^+$.
- The main conjectures remain open.
Conjectures (O. Amini, F. Havet, F. Huc, and S. Thomassé (2010))

1. $\text{dst}(D) \leq 2\Delta^+, \text{ if } \Delta^+ \geq 2$
2. $\text{dst}(D) \leq \Delta, \text{ if } \Delta \geq 3$

- Conclusions of both conjectures are valid for tournaments.
- k-degenerate oriented graphs verify Conjecture (1) if $k \leq \Delta^+$.
- The main conjectures remain open.

Thanks for your attention