Bispindle in strongly connected digraphs with large chromatic number

William Lochet
Joint work with N. Cohen, F. Havet and R. Lopes

Université Côte d’Azur, CNRS, Inria, I3S, France
LIP, ENS de Lyon, CNRS, Université de Lyon, France
Definition

• The *chromatic number*, $\chi(D)$, of a digraph D is the chromatic number of its underlying graph.

• A directed path (dipath) is a path where all the arcs are oriented in the same direction.

Question

• What are the subgraphs of a digraph with large chromatic number?

• For a digraph D, can we bound the chromatic number of D-free digraphs?
Known results

Theorem (Gallai-Hasse-Roy-Vitaver, 60s)
\[\chi(D) = k \Rightarrow D \text{ has a directed path with } k \text{ vertices.} \]
This can only be extended to acyclic digraphs:

Theorem (Erdős)
There are digraphs with arbitrarily large girth and chromatic number.

Conjecture (Burr, 1980)
Every digraph of chromatic number \(2k - 2\) contains all oriented tree of order \(k\)

Best bound is \(k^2/2\) by Addario-berry et al.
Definition
A subdivision of a digraph D is obtained by replacing arcs by dipaths.

Theorem (Cohen, Havet, L. and Nisse)
For any oriented cycle C, there exists digraphs with arbitrarily large chromatic number and without a subdivision of C.

The question is different in strong digraphs:

Theorem (Bondy, 1976)
D is strong, $\chi(D) = k \Rightarrow D$ has a directed cycle with at least k vertices.
Definition
In an oriented path or cycle, a block is a maximal directed sub-path.

Theorem (Cohen, Havet, L. and Nisse)
Let C be an oriented cycle with two blocks. There exists $f(C)$ s.t:
If D is a strong digraph with $\chi(D) \geq f(C)$, then D contains a subdivision of C.
Disjoint path between a pair of vertices

A cycle on two blocks can be seen as two disjoint dipaths between a pair of vertices.

Question
Can we generalise this question for more dipaths?
Proposition

There exists strong digraphs with arbitrarily large chromatic number avoiding the following digraphs as subdivision:
Definition
Let $B(k_1, k_2; k_3)$ be the union of three dipaths, two of length k_1 and k_2 in one direction, and one of length k_3 in the other.

Theorem (Cohen, Havet, L. and Lopes)
For every k, there exists $f(k)$ such that every strong digraph D with $\chi(D) \geq f(k)$ contains a subdivision of $B(k, 1; k)$.

I will present the proof for $B(k, 1; 1)$.
Hamiltonian case

Theorem

Any Hamiltonian digraph on \(n > k + 3 \) vertices without a \(B(k, 1; 1) \) is \(2k - 1 \) degenerate.

The maximum out degree of a vertex is \(k - 1 \).
Theorem

Any Hamiltonian digraph on \(n > k + 3 \) vertices without a \(B(k, 1; 1) \) is \(2k - 1 \) degenerate.

The maximum out degree of a vertex is \(k - 1 \).
If D is a $B(k, 1; 1)$-free strong digraph with large chromatic number:

- Bondy’s Theorem implies the existence of a large cycle.
- Large cycles have a simple structure.

So the idea is to contract long cycles such that:

- We control the chromatic number of the contracted structure.
- There are no long cycle remaining.
Lemma
Let D be a digraph, $D_1 \ldots D_l$ be disjoint subdigraphs of D and D' the digraph obtained by contracting each D_i into one vertex d_i. Then $\chi(D) \leq \chi(D') \cdot \max\{\chi(D_i) \mid i \in [l]\}$.

Proof.
Let c' be a colouring of D' and c_i be colouring of the D_i. Define c a colouring of D as follows:

- if $x \in D_i$, $c(x) = (c'(d_i), c_i(x))$.
- else $c(x) = (c'(x), 1)$.
We say a set of cycles \mathcal{C} of D is *nice* if:

- All cycles of \mathcal{C} are longer than $2k$.
- Any two distinct cycles C_1, C_2 of \mathcal{C} intersect in at most one vertex.
Components of \mathcal{C}

Definition

- Two cycles of \mathcal{C} are *adjacent* if they intersect.
- A *component* of \mathcal{C} is a set of cycle forming a connected component in the adjacency graph of the cycle of \mathcal{C}.
Let D be a strong digraph without $B(k, 1; 1)$.

Take C a maximal collection of cycles and call D' the digraph obtained by contracting each component into one vertex.

We will prove the two following lemmas:

Lemma 1
For each component S of C, $\chi(D[S]) \leq 2k$

Lemma 2
$\chi(D') \leq 2k$

Which will prove that $\chi(D) \leq 4k^2$.
Lemma

Let C_1 and C_2 be two cycles of the same component of C, then there is no dipath from C_1 to C_2 outside of C.
Lemma

Let C_1, C_2 be two cycles of the same component of C, then there is no dipath from C_1 to C_2 outside of C.
Lemma

Let C_1 and C_2 be two cycles of the same component of C, then there is no dipath from C_1 to C_2 outside of C.
Lemma

Let C_1 and C_2 be two cycles of the same component of C, then there is no dipath from C_1 to C_2 outside of C.
Lemma

Let C_1 and C_2 be two cycles of the same component of \mathcal{C}, then there is no dipath from C_1 to C_2 outside of \mathcal{C}.
Lemma

Let C be a nice collection of cycles and S a component, then $\chi(D[S]) \leq 2k$

Proof.

By induction on the number of cycles in S. \qed
Proposition

There is no arcs between the new components.

This would contradict the headphone lemma.
Proposition

Each new component intersects the blue cycle in one vertex.

- Each cycle intersects the blue cycle in at most one vertex.
- Two cycles intersecting the blue cycle contradicts the headphone Lemma.
We can prove the result:

- Colour the blue cycle by degeneracy.
- Apply induction on each new component, where one vertex is already coloured.
Proposition

- D' is strongly connected
- D' has no cycle longer than $2k - 1$

Bondy’s result then implies that $\chi(D') \leq 2k$.
Suppose there exists a cycle C' longer than $2k$ in D'.
Each contracted vertex can be replaced by a path
This means we obtain a cycle C of D.
This means we obtain a cycle C of D.
Finally, it is easy to show that:

- C is longer than $2k$.
- It intersect each other cycle of C in at most 1 vertex.

Which contradicts the maximality of C!
The ideas are similar, but we allow cycles to intersect on a short path.

- Proving that the contracted digraph is without any long cycle is easy.
- Bounding the chromatic number of the components is way more difficult.
Thank you!