Local accumulation for geometric tubular analysis
A. Krähenbühl
From works with: Bertrand Kerautret, Isabelle Debled-Rennesson, Jacques-Olivier Lachaud and Fabien Feschet
LORIA/Université de Lorraine & LaBRI/Université de Bordeaux

Objective Segment wood knots from X-Ray CT images
Needs Automatic process for precise measurements

Context
Step 1 Initial knot area detection process
Step 2 Individual segmentation of each knot area

Comparisons Power Watersheds

Bibliography

Z-Motion accumulation for tree knot detection
Step 1: Accumulation map generation
Step 2: Knot area detection
1. Binarization + connected components
2. Pixel sorting by accumulation value
3. Process of connected component aggregation

Results
Space
Details
Trunk slice
Detected knot areas
3D visualization

Normal accumulation for centerline detection
Step 1: Normal scanning
Scan process → Accumulation image
+ Director vector image from covariance matrix
Step 2: Centerline tracking
From the global maximum of accumulation, proceed to a bi-directional tracking. From a 2D patch orthogonal to \vec{d}_k:
1. Localize the C_{k+1} point at a step distance of \vec{d}_k
2. Build the patch P_{k+1} orthogonal to \vec{d}_k containing C_{k+1}
3. Correct the C_{k+1} location as the local maximum of P_{k+1}

Results
(1) Data / centerline
(2) Rebuild shape
(3) Error (1)-(2)

Context
A company produces machines for the cold bending of metallic tubes.
Need integrate a quality control process

Bibliography

Try online demonstrations!
http://ipol-geometry.loria.fr/~kerautre/ ipol-demo/KnotDetectIPOLDemo/