Relational type-checking of connected proof-structures

Giulio Guerrieri1,2, Luc Pellissier3, and Lorenzo Tortora de Falco1

1 Dipartimento di Matematica e Fisica, Università Roma Tre Rome, Italy \{gguerrieri,tortora\}@uniroma3.it
2 Institut de Mathématiques de Marseille, UMR 7373, Aix-Marseille Université F-13453 Marseille, France
3 LIPN, UMR 7030, Université Paris 13, Sorbonne Paris Cité F-93430 Villetaneuse, France luc.pellissier@lipn.univ-paris13.fr

Abstract

It is possible to define a typing system for Multiplicative Exponential Linear Logic (MELL): in such a system, typing judgments are of the form \(\vdash R : x : \forall \Gamma \), where \(R \) is a MELL proof-structure, \(\Gamma \) is the list of types of the conclusions of \(R \), and \(x \) an element of the relational interpretation of \(\forall \Gamma \), meaning that \(x \) is an element of the relational interpretation of \(R \) (of type \(\forall \Gamma \)).

As relational semantics can be used to infer execution properties of the proof-structure, these judgment can be considered as forms of quantitative typing.

We provide an abstract machine that decides, if \(R \) satisfies a geometric condition, whether the judgment \(\vdash R : x : \forall \Gamma \) is valid. Also, the machine halts in bilinear time in the sizes of \(R \) and \(x \).

1 Introduction

Intersection types have been introduced as a way of extending the \(\lambda \)-calculus’ simple types with finite polymorphism. This is done by adding a new type constructor \(\cap \) and new typing rules. A term of type \(A \cap B \) can be used in an ulterior derivation both as data of type \(A \) or of type \(B \). Contrarily to simple types (which are sound but incomplete), intersection types are a sound and complete characterization of strong normalization.

Intersection types were originally idempotent, that is, the equation \(A \cap A = A \) held. This corresponds to an interpretation of a type typed as \(M : A \cap B \) as \(M \) can be used as data of type \(A \) or as data of type \(B \). In a non-idempotent setting (i.e. by dropping the equation \(A \cap A = A \)), the meaning of the typing judgment is strengthened in \(M \) can be used once as data of type \(A \) and once as data of type \(B \). Non-idempotent intersection types have been used to get qualitative and quantitative information on the execution time of \(\lambda \)-terms [1, 5].

Relational semantics is one of the simplest semantics of \(\lambda \)-calculus (and linear logic). A type is interpreted by a set, and a \(\lambda \)-term (or linear logic proof-structure) by a relation between sets which is invariant under \(\beta \)-reduction (and cut-elimination). It happens that the relational semantics corresponds to a non-idempotent intersection types system, called System \(R \) in [1] (see also [7]): a type derivation of a \(\lambda \)-term in System \(R \) corresponds to an experiment (see [4]) of a linear logic proof-structure, and the conclusion of such a type derivation corresponds to the result of this experiment i.e. a point in the relational semantics. So, knowing that an element is or not in the relational interpretation of a \(\lambda \)-term (or linear logic proof-structure) already gives a lot of information on the execution of this \(\lambda \)-term (or linear logic proof-structure) [1, 2]. For instance, given two correct (i.e. arising from a derivation on the sequent calculus) MELL proof-structure \(\pi_1 \) and \(\pi_2 \) without cuts, it is
possible to compute whether π_1 and π_2 can be composed and the length of the reduction to the normal form of this composition.

We introduce semantical typing judgments of the form $\vdash R : x : \emptyset$, where R is a MELL (the multiplicative-exponential fragment of linear logic) proof-structure whose conclusion is the list of MELL formulæ \emptyset, and x in the interpretation in the relational model of the MELL formula \emptyset. Our goal is to decide in a tractable way whether a judgment of this form is valid or not, i.e. whether x is a point of the relational semantics of R or not.

We thus define the Relational Interaction Abstract Machine (Section 5) able to decide such judgments on a fragment of all MELL proof-structures, that works by moving tokens embodying relational elements through the proof-structure. The machine moreover stops on a sequent $\vdash R : x : \emptyset$ after a number of steps bilinear in the size of x and of R.

The class of MELL proof-structures on which our machine is sound and complete, defined in Section 4, is moreover quite natural and large enough to contain the λ-calculus.

As a corollary, we prove that languages decided by simply-typed λ-terms of type $\text{Str}[A/X] \to \text{Bool}$ are in LinTIME (deterministic linear time).

2 Elements of MELL syntax

We set $\mathcal{L}_{\text{MELL}} = \{1, \bot, \otimes, \exists, !, ?, ax, cut\}$. The MELL connectives are $1, \bot, \otimes, \exists, !, ?$. We say that $1, \bot, \otimes, \exists$ (resp. $!, ?$) are the multiplicative (resp. exponential) connectives, and $1, \bot$ are the units.

The set of MELL formulas is generated by the grammar:

$$A, B, C ::= X | X \bot | 1 | \bot | \otimes | A \otimes B | A \exists B | !A | ?A.$$

where X ranges over a infinite countable set of propositional variables.

Proof-structures offer a syntax for MELL proofs. They are direct labelled graphs Φ built from the cells: We call ports the wires of such graphs, divided in principal ports (depicted down in the picture) and auxiliary ports (depicted up).

They are moreover endowed with a function \boxempty_Φ from the $?$ and cut cells to auxiliary ports of ! cells such that:

- all cells in the image of \boxempty_Φ have exactly one auxiliary port;
- inclusion of proof-structures obtained by choosing all cells which are above cells of the same image through \boxempty_Φ is a tree-like order.

We say that a proof-structure is a MELL proof-structure if all !-cells are in the image of \boxempty_Φ. We say that it is a DiLL$_0$ proof-structure if \boxempty_Φ is the empty function.
Elements of relational semantics

We define relational experiments straightforwardly on \(\text{DiLL}_0 \) proof-structures (that is, proof-structures without boxes, but with arbitrary co-structural cells) by adapting the definition in [4]: a partial experiment is a function associating with a link an element of the interpretation of its type coherently with the structure. We define the relational semantics of a \(\text{DiLL}_0 \) proof-structure as the set of results of its experiments, i.e. the image of its conclusions through its experiments. The relational semantics of a \(\text{MELL} \) proof-structure \(R \) is just the union of the relational semantics of the \(\text{DiLL}_0 \) proof-structures in the Taylor expansion of \(R \) [3].

The Taylor expansion acts as a bridge between syntax and semantics, allowing to retain the simplicity of the multiplicative fragment while expanding it to the full \(\text{MELL} \).

3-connection

We now introduce the fragment on which our algorithm will act: 3-connected \(\text{MELL} \) proof-structures.

Definition 1 (3-path, 3-accessibility). Let \(R \) be a \(\text{MELL} \) proof-structure.

A 3-path on \(R \) (from \(p_0 \) to \(p_n \)) is a finite sequence \((p_0, \ldots, p_n)\) of ports of \(R \) obtained by applying a finite number of times the following rules:

1. \((p)\) is a 3-path for any \(p \) port of \(R \);
2. if \(\vec{p} = (p_0, \ldots, p_n) \) is a 3-path where \(p_n \) is a port of a cell \(l \) of \(R \) of type not 3, then \(\vec{p} \cdot q \) is a 3-path, for any \(q \) port of \(l \);
3. if \(\vec{p} = (p_0, \ldots, p_n) \) is a 3-path where \(p_n \neq p_0 \) is a port of a 3-cell \(l \) of \(R \), and if for all ports \(r \) of \(l \), save at most one, there is a 3-path from \(p_0 \) to \(r \), then \(\vec{p} \cdot q \) is a 3-path, for any \(q \) port of \(l \).

For every port \(p \) of \(R \), the set of the 3-accessible ports from \(p \) in \(R \) is

\[\text{access}_R^3(p) = \{ q \in P_R \mid \text{there is a 3-path in } R \text{ from } p \text{ to } q \} \].

Definition 2 (3-path inside a box, 3-connectedness). Let \(R \) be a \(\text{MELL} \) proof-structure.

Given a !-cell \(l \), a 3-path \(\vec{p} = (p_0, \ldots, p_n) \) in \(R \) is inside the box of \(l \) if \(p_i \) is in the box of \(l \) for any \(0 \leq i \leq n \).

\(R \) is 3-connected if
Relational type-checking of connected proof-structures

for any l-cell l and any port p inside the box of l, there is a \(? \)-path inside the box of l from the principal door of the box of l to p;
all the ports at depth 0 are \(? \)-accessible from the conclusions.

This technical condition arises from the algorithm presented next. Nonetheless, the fragment of \(? \)-connected proof-structures is quite general: all MELL proof-structures which are translations of \(\lambda \)-terms are \(? \)-connected.

Recognition of the relational interpretation

We now introduce the main object of this article: the Relational Interaction Abstract Machine that decides the semantic sequents. The notation is inspired by Danos, Régnier, Mackie and Laurent’s Interaction Abstract Machine [6]. Indeed, this work has a distinct Geometry of Interaction flavour.

The definition of the machine is in the Appendix. The main idea behind it is that its state is composed of tokens containing a relational element that travel through the proof-structure, obeying type-directed rules. For instance, whenever a token goes up through a \(\otimes \) cell, it splits into two tokens, one going left, one going right. A token going up and one going down containing the same relational element anihilate when they meet. The only thing that could cause non-determinism are the contractions, where we don’t know how to split a multiset between the different branches: that’s why the \(? \)-connection condition restricts the way contractions arise in the structures.

Lemma 3. Let \(R \) be a MELL proof-structure whose conclusions are ordered.
A successful run of \(M^R \) defines a partial experiment of \(R \).
Reciprocally, an experiment of \(R \) defines a successful run of \(M^R \).

Theorem 4. Let \(R \) be a \(? \)-connected MELL proof-structure whose conclusions \(\Gamma \) are ordered, and let \(x \in [\forall \Gamma] \).
The point \(x \) is in the relational interpretation of \(R \) iff \(M^R \) runs successfully on \(x \).
Moreover, if \(R \) is acyclical, if we write \(|x| \) the number of atoms appearing in \(x \) and \(\text{size}(R) \) the number of links in \(R \), the machine halts after \(O(|x| \times \text{size}(R)) \).
The Relational Interaction Abstract Machine decides sequents of the form \(\vdash R : x : \forall \Gamma \), when \(R \) is acyclical and \(? \)-connected, in bilinear time in the sizes of \(R \) and \(x \).
In particular, the machine decides in bilinear times such sequents for correct proof-structures.

This result can be used in the following special case: we know (from the aforelinked long version) that a certain point (an injective 2-point) of a \(? \)-connected MELL proof-structure characterizes entirely the proof-structure. So our algorithm can answer the following question: given a \(? \)-connected MELL proof-structure \(R \) (of conclusions \(\Gamma \)) and a cut-free MELL proof-structure \(S \) (with the same conclusions), is \(S \) the normal form of \(R \)?
In the general case, there is no better algorithm than performing the cut-elimination on \(R \) and verifying whether the resulting proof-structure is isomorphic to \(S \). In the box-connected case, it suffices to compute an injective 2-point of \(S \) (which faithfully represents \(S \)) and to verify that it is an element of the interpretation of \(R \).

Definition 5 (Injective 2-point). An injective 2-point is a point \(x \) of the relational interpretation of a MELL-proof structure \(R \) such that:
each atom appearing in \(x \) appears exactly twice;
Every multiset in x corresponding to a co-contraction in the difnet from which it arose is of cardinality (counted with its multiplicity) 2.

Every MELL proof-structure has injective 2-points. They are moreover all equivalent under the substitution of atoms.

Theorem 6. If R and S are two ?-connected MELL proof-structures of same (ordered) conclusions, and S is moreover cut-free, M^R runs successfully on any 2-point of S if and only if S is isomorphic to the normal form of R.

We use here ?-connection twice: the recognition algorithm requires R to be ?-connected, and ?-connection allows us to limit ourselves to having to check the 2-point of S.

The main theorem also have an interesting corollary, proven but unpublished by Terui:

Theorem 7 (Terui, 2012). Let

$$\text{Str} := !((X \rightarrow X) \rightarrow !((X \rightarrow X) \rightarrow X) \rightarrow X \rightarrow X)$$

$$\text{Bool} := !X \rightarrow !X \rightarrow X$$

be the linear-logic translations of Church binary strings and booleans.

Let R be a simply-typed MELL-proof structure of type $\text{Str[A/X]} \rightarrow \text{Bool}$, for arbitrary A. It decides a language L.

If R is ?-connected, then L is in LinTIME (deterministic linear time).

The result is surprising, as ?-connected proof-structures encompass the call-by-name translation of simply-typed λ-calculus, and simply-typed A-terms of type $\text{Nat[A/X]} \rightarrow \text{Nat}$ can represent a function of complexity an arbitrary tower of exponentials.

Acknowledgements

The authors thank Damiano Mazza for making them aware of Terui’s theorem. Work partially supported by ANR projects COQUAS ANR-12-JS02-006-01 and ELICA ANR-14-CE25-0005.

References

A The Machine: Formally

Definition 8 (Relational Interaction Abstract Machine). Let \(R \) be a MELL proof-structure where \(\Gamma \) is the list of its (ordered) conclusions.

A state of the machine \(M^R \) associated with the MELL proof-structure \(R \) is a multiset of tokens \(A^\uparrow(p, x, s) \) where

- \(A \) is a MELL formula,
- \(\uparrow \in \{\uparrow, \downarrow\} \),
- \(p \) is a port of \(R \) of type \(A \),
- \(x \in |A| \) or \(x = 0 \), with 0 neutral for multiset sum,
- \(s \) is a stack of box-cells of \(R \).

The machine follows the transitions of Figures 3, 4 and 5: a rule of the form \(\frac{P'}{P} \) removes from the state the tokens on the left and adds to it the tokens on the right, if the guard condition \(P \) and \(P' \) are verified. Notations of the Figures:

- \(c \) (respectively \(d \)) is always the cell of \(R \) such that \(p \) is its principal (respectively auxiliary) port, when it exists and is unique;
- \(\mathbf{P}^\text{pri}_R(c) \) denotes the principal ports of \(c \); it is either a set (denoted by curly brackets \(\{\cdot\} \)) or an ordered pair (denoted by angle brackets \(\langle\cdot\rangle \));
- \(\mathbf{P}^\text{aux}_R(c) \) denotes the auxiliary ports of \(c \); it is either a set (denoted by curly brackets \(\{\cdot\} \)) or an ordered pair (denoted by angle brackets \(\langle\cdot\rangle \));
- \(\text{auxd}_R(l) \) denotes the auxiliary doors of a box rooted in the cell \(l \);
- \(\text{tp} \) is the type of a port.

A run of \(M^R \) on \((x_1, \ldots, x_n) \in \Gamma\) is any succession of transitions with the machine initialized in the state

\[
A^\uparrow \left(\text{concl}_R(i), x_i, \varepsilon \right), 1 \leq i \leq n
\]

where \(\text{concl}_R(i) \) is an enumeration of the conclusions of \(R \).

We say that \(M^R \) accepts \((x_1, \ldots, x_n) \) if there exists a run of \(M^R \) on \((x_1, \ldots, x_n) \) that halts on the empty state.
\[
\begin{align*}
A^\uparrow (p, a, s) & \xrightarrow{\text{cut}} A^\uparrow (p', a, s) \\
A^\downarrow (p, a, s) & \xrightarrow{\Phi} A^\uparrow (p', a, s) \\
A^\downarrow (p, a, s) & \xrightarrow{\emptyset} \emptyset \\
A \otimes B^\uparrow (p, (a, b), s) & \xrightarrow{\emptyset} A^\uparrow (p, a, s) \rightarrow B^\uparrow (p, b, s) \\
A \otimes B^\uparrow (p, (a, b), s) & \xrightarrow{\emptyset} A^\uparrow (p, a, s) \rightarrow B^\uparrow (p, b, s) \\
A^\uparrow (p, a, s) \rightarrow B^\uparrow (p, b, s) & \xrightarrow{\emptyset} A \otimes B^\uparrow (p, (a, b), s) \\
A^\uparrow (p, a, s) \rightarrow B^\uparrow (p, b, s) & \xrightarrow{\emptyset} A \otimes B^\uparrow (p, (a, b), s)
\end{align*}
\]

Figure 3 Multiplicative transitions

\[
\begin{align*}
A^\uparrow (p, a, s) & \xrightarrow{\emptyset} A \otimes B^\uparrow (p, (a, \bullet), s) \rightarrow B^\uparrow (p, b, s) \\
B^\uparrow (p, b, s) & \xrightarrow{\emptyset} A \otimes B^\uparrow (p, (a, \bullet), s) \rightarrow A^\uparrow (p, \bullet, s) \\
A^\uparrow (p, a, s) & \xrightarrow{\emptyset} A \otimes B^\uparrow (p, (a, \bullet), s) \rightarrow B^\uparrow (p, \bullet, s) \\
B^\uparrow (p, b, s) & \xrightarrow{\emptyset} A \otimes B^\uparrow (p, (a, \bullet), s) \rightarrow A^\uparrow (p, \bullet, s)
\end{align*}
\]

Figure 4 Cyclicity transitions. \(\bullet\) denotes a fresh variable.
\[
A^!(p, [a_1, \ldots, a_n], s) \xrightarrow{c!} A^!(p', a_1, s \cdot p), \ldots, A^!(p', a_n, s \cdot p)
\]

\[
A^!(p, [], s) \xrightarrow{c!} \text{tp}(p_1)^!(p_1, 0, s), \ldots, \text{tp}(p_n)^!(p_n, 0, s)
\]

\[
?A^!(p, [], s) \xrightarrow{c?} \emptyset
\]

\[
A^!(p_1, a_1^1, s \cdot l_1^1 \cdots l_{k_1}^1)
\]

\[
\ldots
\]

\[
A^!(p_n, a_n^m_1, s \cdot l_n^1 \cdots l_{k_n}^1)
\]

\[
A^!(p_1, a_1^1, s \cdot l_1^1 \cdots l_{k_1}^1)
\]

\[
\ldots
\]

\[
A^!(p_n, a_n^m_1, s \cdot l_n^1 \cdots l_{k_n}^1)
\]

\[
A^!(p_1, a_1^1, s \cdot l_1^1 \cdots l_{k_1}^1)
\]

\[
\ldots
\]

\[
A^!(p_n, a_n^m_1, s \cdot l_n^1 \cdots l_{k_n}^1)
\]

\[
?A^!(p, [a_1^1, \ldots, a_n^m_1, a_1', \ldots, a_p'], s)
\]

\[
\text{Figure 5} \quad \text{Exponential transitions.}
\]