Formal Verification of Floating-Point programs

Sylvie Boldo and Jean-Christophe Filliâtre

Montpellier – June, 26th 2007
Motivations

Goal: reliability in numerical software
Motivations

Goal: reliability in numerical software
Tool: formal proofs
Motivations

Goal: reliability in numerical software
Tool: formal proofs
Drawback: we were not checking the real program
Motivations

Goal: reliability in numerical software
Tool: formal proofs
Drawback: we were not checking the real program

⇒ put together existing tools
⇒ check what is really written by programmers
Outline

Existing tools
 Caduceus
 Formalization of floats

Model and specification of FP numbers

Examples

Conclusion
What is Caduceus?

The method is to annotate the C program.
What is Caduceus?

The method is to **annotate the C program**

We add **pre-conditions and post-conditions** to functions

We add variants, invariants, assertions
What is Caduceus?

The method is to annotate the C program

We add pre-conditions and post-conditions to functions
We add variants, invariants, assertions

The tool generates proof obligations (such as Coq theorems) associated to the user annotations
The proof of the verification conditions ensures that the program meets its specification
Caduceus

Java

C
Caduceus

Existing tools
Model and specification of FP numbers
Examples
Conclusion

Caduceus
Formalization of floats

Java
Krakatoa
Why
C
Caduceus
Why

COq
PVS
HOL
Mizar

Proof obligations
Simplify
haRVey
CVC

Formal Verification of Floating-Point programs
Caduceus

Java

Krakatoa

C

Caduceus

Why

Coq

PVS

HOL

Mizar

Proof obligations
Caduceus

Existing tools
Model and specification of FP numbers
Examples
Conclusion

Caduceus
Formalization of floats

Caduceus

Java

C

Why

Krakatoa

Caduceus

Coq

PVS

HOL

Mizar

Simplify

haRVey

CVC

Proof obligations
Example: search in an array

```c
int index(int t[], int n, int v) {
    int i = 0;
    while (i < n) {
        if (t[i] == v) break;
        i++;
    }
    return i;
}
```
Example: search in an array

```c
/*@ requires \valid_range(t,0,n-1)
  @ ensures @ (0 <= \result < n => t[\result] == v) && @ (\result == n => 
  @ \forall int i; 0 <= i < n => t[i] != v) */

int index(int t[], int n, int v) {
    int i = 0;
    /*@ invariant 0 <= i && @ \forall int k; 0 <= k < i => t[k] != v @ variant n - i */
    while (i < n) {
        if (t[i] == v) break;
        i++;
    }
    return i;
}
```
Existing tools

Caduceus

Formalization of floats

Model and specification of FP numbers

Examples

Conclusion
Coq formalization (by Daumas, Rideau, Théry)

Float \equiv pair of signed integers (mantissa, exponent)

$(n, e) \in \mathbb{Z}^2$
Coq formalization (by Daumas, Rideau, Théry)

Float = pair of signed integers (mantissa, exponent)
associated to a real value

\[(n, e) \in \mathbb{Z}^2 \iff n \times \beta^e \in \mathbb{R}\]
Coq formalization (by Daumas, Rideau, Théry)

Float = \text{pair} of signed integers (mantissa, exponent)
associated to a real value

\[(n, e) \in \mathbb{Z}^2 \iff n \times \beta^e \in \mathbb{R}\]

1.00010_2 \ E 4 \ \rightarrow \ (100010_2, -1)_2 \ \rightarrow \ 17

IEEE-754 significant of 754R real value

\Rightarrow \text{normal floats, subnormal floats, cohorts, overflow}
Partial Conclusion

- We have all the needed tools
 - program \rightarrow formal theorem (obligations)
 - formal float, formal rounding...
Partial Conclusion

- We have all the **needed tools**
 - program \rightarrow formal theorem (obligations)
 - formal float, formal rounding...

- We have to **merge** them to get a tool:

 program \rightarrow formal theorem on FP arithmetic
Partial Conclusion

- We have all the **needed tools**
 - program \rightarrow formal theorem (obligations)
 - formal float, formal rounding...

- We have to **merge** them to get a tool:
 program \rightarrow formal theorem on FP arithmetic

- We have to decide **how to specify a FP program**!
Existing tools

Caduceus

Formalization of floats

Model and specification of FP numbers

Examples

Conclusion
A “program” float is a triple:

- the floating-point number, as computed by the program, $x \rightarrow x_f$ floating-point part
Caduceus’s model of FP numbers

A “program” float is a triple:

- the floating-point number, as computed by the program, \(x \rightarrow x_f \) floating-point part
- the value if all previous computations were exact, \(x \rightarrow x_e \) exact part
A “program” float is a triple:

- the floating-point number, as computed by the program, \(x \rightarrow x_f \) floating-point part
- the value if all previous computations were exact, \(x \rightarrow x_e \) exact part
- the ideally computed value \(x \rightarrow x_m \) model part
Caduceus’s model of FP numbers (II)

Program features

- types for single and double precision floats
- roundings that may be switched
- basic operations
- ...

Sylvie Boldo & Jean-Christophe Filliâtre

Formal Verification of Floating-Point programs
Caduceus’s model of FP numbers (II)

Program features

- types for single and double precision floats
- roundings that may be switched
- basic operations
- ...

Specification features

- computations are exact inside annotations
- access to the exact and model parts
- round_error and total_error macros
Existing tools
Caduceus
Formalization of floats

Model and specification of FP numbers

Examples

Conclusion
Example 1: exact subtraction

```c
float Sterbenz(float x, float y)
{
    return x - y;
}
```
Example 1: exact subtraction

```cpp
/*@ requires y/2 <= x <= 2*y 
  @ ensures \result == x-y 
  @*/

float Sterbenz(float x, float y)
{
  return x-y;
}
```

(44 lines of Coq)
Example 2: Malcolm’s Algorithm

```plaintext
double malcolm() {
    double A, B;
    A = 2;
    while (A != (A+1))
        A *= 2;

    B = 1;
    while ((A+B)-A != B)
        B++;
    return B;
}

(747 lines of Coq)
```
Example 2: Malcolm’s Algorithm

```c
/*@ ensures \result == 2 */
double malcolm() {
    double A, B;
    A=2; /*@ assert A==2 */
   /*@ invariant A == 2 ^^ my_log(A)
    @     && 1 <= my_log(A) <= 53
    @ variant (53-my_log(A)) */
    while (A != (A+1))
        A*=2;
   /*@ assert A == 2 ^^ (53) */

    B=1; /*@ assert B==1 */
   /*@ invariant B == IRNDD(B) && 1 <= B <= 2
    @ variant (2-IRNDD(B)) */
    while ((A+B)-A != B)
        B++;
    return B; }
```
Example 3: stupid exponential computation

```c
double my_exp(double x) {
    double y = 1 + x * (1 + x / 2);
    return y;
}
```
Example 3: stupid exponential computation

```c
/*@ requires |x| <= 2 ^^ (-3) @
    @ ensures model(result)==exp(model(x)) @
    @   && (round_error(x)==0 @
    @       => round_error(result) @
    @       <= 2 ^^ (-52)) @
    @   && total_error(result) @
    @       <= total_error(x) @
    @       + 2 ^^ (-51) */

double my_exp(double x) {
    double y=1+x*(1+x/2);
    /*@ \set_model y \exp(model(x)) */
    return y;
}

(unproved)
```
Existing tools

Caduceus
Formalization of floats

Model and specification of FP numbers

Examples

Conclusion
Conclusion

Advantages

⊕ a way to specify and formally prove a FP program
⊕ includes all other aspects of program verification
⊕ with or without Overflow
⊕ intuitive specification
Conclusion

Advantages

⊕ a way to specify and formally prove a FP program
⊕ includes all other aspects of program verification
⊕ with or without Overflow
⊕ intuitive specification

Drawbacks

⊖ no NaNs, no $\pm \infty$
⊖ no exception, no flag
⊖ no way to detect compiler optimizations
⊖ fails on Intel architectures (no way to predict if 53 or 80 bits are used)