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Existing tools
Model and specification of FP numbers

Examples
Conclusion

Motivations

Goal: reliability in numerical software

Tool: formal proofs

Drawback: we were not checking the real program

⇒ put together existing tools
⇒ check what is really written by programmers
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Existing tools
Model and specification of FP numbers

Examples
Conclusion

Caduceus
Formalization of floats

What is Caduceus?

The method is to annotate the C program

We add to functions

We add variants, invariants, assertions

The tool generates proof obligations (such as Coq theorems)
associated to the user annotations

The proof of the verification conditions ensures that the
program meets its specification
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Caduceus
Formalization of floats

Caduceus

JavaJava CC

KrakatoaKrakatoa CaduceusCaduceus

WhyWhy

CoqCoq PVSPVS HOLHOL MizarMizar

Proof obligationsProof obligations

SimplifySimplify haRVeyhaRVey CVCCVC
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Existing tools
Model and specification of FP numbers

Examples
Conclusion

Caduceus
Formalization of floats

Example: search in an array

i n t i n d e x ( i n t t [ ] , i n t n , i n t v ) {
i n t i = 0 ;
whi le ( i < n ) {

i f ( t [ i ] == v ) break ;
i ++;

}
return i ;

}
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Caduceus
Formalization of floats

Example: search in an array
/*@ requires \valid_range(t,0,n-1)

@ ensures
@ (0 <= \result < n => t[\result] == v) &&
@ (\result == n =>
@ \forall int i; 0 <= i < n => t[i] != v) */

i n t i n d e x ( i n t t [ ] , i n t n , i n t v ) {
i n t i = 0 ;
/*@ invariant 0 <= i &&

@ \forall int k; 0 <= k < i => t[k] != v
@ variant n - i */

whi le ( i < n ) {
i f ( t [ i ] == v ) break ;
i ++;

}
return i ;

}
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Caduceus
Formalization of floats

Coq formalization (by Daumas, Rideau, Théry)

Float = pair of signed integers (mantissa, exponent)

(n, e) ∈ Z2
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Coq formalization (by Daumas, Rideau, Théry)

Float = pair of signed integers (mantissa, exponent)
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Caduceus
Formalization of floats

Coq formalization (by Daumas, Rideau, Théry)

Float = pair of signed integers (mantissa, exponent)
associated to a real value

(n, e) ∈ Z2 ↪→ n × βe ∈ R

1.000102 E 4 7→ (1000102,−1)2 ↪→ 17

IEEE-754 significant of 754R real value

⇒ normal floats, subnormal floats, cohorts, overflow
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Caduceus
Formalization of floats

Partial Conclusion

I We have all the needed tools
I program → formal theorem (obligations)
I formal float, formal rounding. . .

I We have to merge them to get a tool:
program → formal theorem on FP arithmetic

I We have to decide how to specify a FP program!
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Model and specification of FP numbers

Examples
Conclusion

Caduceus’s model of FP numbers

A “program” float is a triple:

I the floating-point number, as computed by the program,
x → xf floating-point part

I the value if all previous computations were exact,
x → xe exact part

I the ideally computed value
x → xm model part
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Model and specification of FP numbers

Examples
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Caduceus’s model of FP numbers (II)

Program features

I types for single and double precision floats

I roundings that may be switched

I basic operations

I . . .

Specification features

I computations are exact inside annotations

I access to the exact and model parts

I round error and total error macros
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Example 1: exact subtraction

f l o a t Ste rbenz ( f l o a t x , f l o a t y ){
return x−y ;

}
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Existing tools
Model and specification of FP numbers

Examples
Conclusion

Example 1: exact subtraction

/*@ requires y/2 <= x <= 2*y
@ ensures \result == x-y
@*/

f l o a t Ste rbenz ( f l o a t x , f l o a t y ){
return x−y ;

}

(44 lines of Coq)
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Existing tools
Model and specification of FP numbers

Examples
Conclusion

Example 2: Malcolm’s Algorithm

double malcolm ( ) {
double A, B;
A=2;
whi le (A != (A+1))

A∗=2;

B=1;
whi le ( (A+B)−A != B)

B++;
return B; }

(747 lines of Coq)
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Example 2: Malcolm’s Algorithm
/*@ ensures \result == 2 */
double malcolm ( ) {

double A, B;
A=2; /*@ assert A==2 */
/*@ invariant A == 2 ^^ my_log(A)

@ && 1 <= my_log(A) <= 53
@ variant (53-my_log(A)) */

whi le (A != (A+1))
A∗=2;

/*@ assert A == 2 ^^ (53) */

B=1; /*@ assert B==1 */
/*@ invariant B == IRNDD(B) && 1 <= B <= 2

@ variant (2-IRNDD(B)) */
whi le ( (A+B)−A != B)

B++;
return B; }
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Example 3: stupid exponential computation

double my exp ( double x ) {
double y=1+x∗(1+x /2 ) ;
return y ;

}
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Example 3: stupid exponential computation

/*@ requires |x| <= 2 ^^ (-3)
@ ensures \model(\result)==exp(\model(x))
@ && (\round_error(x)==0
@ => \round_error(\result)
@ <= 2 ^^ (-52))
@ && \total_error(\result)
@ <= \total_error(x)
@ + 2 ^^ (-51)

*/
double my exp ( double x ) {

double y=1+x∗(1+x /2 ) ;
/*@ \set_model y exp(\model(x)) */
return y ;

}

(unproved)
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Conclusion

Advantages

⊕ a way to specify and formally prove a FP program

⊕ includes all other aspects of program verification

⊕ with or without Overflow

⊕ intuitive specification
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Conclusion

Advantages

⊕ a way to specify and formally prove a FP program

⊕ includes all other aspects of program verification

⊕ with or without Overflow

⊕ intuitive specification

Drawbacks

	 no NaNs, no ±∞
	 no exception, no flag

	 no way to detect compiler optimizations

	 fails on Intel architectures (no way to predict if 53 or 80 bits
are used)
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