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Introduction Co-clustering methods

Simultaneous clustering on both dimensions
@ The co-clustering methods have attracted much attention in recent years
@ The block clustering had an influence in applied mathematics from the sixties
(Jennings, 1968)
o First works in J.A. Hartigan, Direct Clustering of a Data Matrix (1972)
o Works of Govaert (1983)

o Referred in the literature as bi-clustering, co-clustering, double clustering, direct
clustering, coupled clustering

o Different approaches (see for instance chapter 1, Govaert and Nadif 2013),

@ These approaches can differ in the pattern they seek and the types of data they
apply to

@ Organization of the data matrix into homogeneous blocks or extraction of
co-clusters

@ no-overlapping co-clustering
e overlapping co-clustering
Aim
@ To cluster the sets of rows and columns simultaneously in order to obtain
homogeneous blocks
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Example of co-clustering

Roordred data: co-clustaring esult

0 20 a0 40 500 0 20 a0 40 500

Why co-clustering ?
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@ (1) : Utilizing duality of clustering

@ (2) : Reducing running time

@ (3) : Discovering hidden latent patterns and generating compact representation
@ (4) : Reducing dimensionality implicitly

@ (5) : High dimension
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Introduction Co-clustering methods

Applications and approaches

Fields

@ Text mining: clustering of documents and words simultaneously

Bioinformatics: clustering of genes and tissus simultaneously

Collaborative Filtering

Social Network Analysis

Approaches
@ Spectral
o Factorization
o Latent block models

@ etc.

Softwares
o Package {biclust} in R, Bicat, etc.
o R {blockcluster}
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Introduction Co-clustering methods

Notations
o Let be x = (x;) of size n x d, i € | set of n rows, j € J set of d columns

Partition z of / in g clusters

0 z=(z1,...,2y) — (2zik)
o z cluster indicator of i = zx = 1 if i € k™ cluster
and zjx = 0 otherwise

o z cardinality of k* cluster, k € {1,...,g}

Partition w of J in m clusters
ow=(wi,...,wq) — (wje)
o w; cluster indicator of j = wj, = 1 if j € ¢ cluster and wj, = 0 otherwise

o w, cardinality of £*" cluster, £ € {1,...,m}

From z and w

o Block formed by the couple k™ and ¢* clusters is defined by the x;'s with zxwj, = 1

Nadif (LIPADE) AAFD’14, April 29-30, 2014 Co-clustering 6 /35



Introduction Co-clustering methods

General principle

Binary data Contingency table Continuous data
lode Sum mean
Tl Tl Tl
TO TO T0
Criteria
Data ake Criterion
Binary Mode 37, , ZikWje|xij — ael

Contingency  Sum  I(z,w) = 3=, , pxe log ;24— or X*(z,w)
Continuous ~ Mean 37, ., , Ziwje(x5 — ake)? = ||x — zaw" |2
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Introduction Binary data

Notations and example

1 2
1 2 3 4 s 6 7 8 o 10 . 3 5 s 10 A s 7
a 1 0 1 o 1 0 o 1 o 1 2 1 T < o 1 5 5 o o
b ° 1 ° 1 ° 1 1 ° 1 ° A d 1 1 [4 1 o o o o [
c 1 o 0 o 0 0 0 1 1 0 h 1 1 1 1 1 o o 1 o
d 1 [ 1 4 4 [4 [4 1 o [4
AT A A T A
f o 1 o o 4 1 1 [ 1 4
f o o [4 o [4 1 o 1 1
ﬁ 0 1 0 0 0 0 o 1 o 1 i o ps ps ° ps 1 1 o 1
A 1 0 1 ° 1 1 0 1 1 L < 1 0 0 1 0 0 0 o 0
i 1 0 0 1 0 0 o o o 1
i ° 1 ° 1 ° ° 1 o o ° c g | o o o 1 1 1 o o o
i 1 0 0 [ 1 0 1 0 0
Binary data x Reorganized data matrix x
1 2
A 1 o
B o 1
c o o
Summary matrix a
Matrix Size Definition
z __ z z __ L s
X =(xg) (g xd) X = 22 ZikXi
wo__ w wo__ v
x* = (x7) (nxm) Xie = Zj Wje Xjj

w __ (zw zw W X
X =(xr) (gxm) xi = Zi,j Zik WjeXij
Reduced matrices, sizes and definitions of x*, x¥ and x*V
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Introduction Binary data

Intermediate data matrices x*, x" and x*

1 2 5 0
1 3 5 8 10 2 4 6 7 9 3 o0
a 1 1 1 1 1 0 [ [ [ o 5 2
A d 1 1 o 1 o [4 o o o o
h 1 1 1 1 1 4 [ 1 [ 1 0 5
BEo o o o o |1 1 1 1 1 W — 0 5
B e o o o o o 1 1 1 1 1 o 4
f [ [ o o [ 1 [ 1 1 1 0o 3
j o o o o o 1 1 o 1 o 2 1
c 1 [ 0 1 0 0 [ [ [ 1 2 1
[ g [ o o 1 1 1 o o [ o > 1
i 1 o o o 1 [4 1 o [ o
2 3 3 2 3 2 0 0 1 0 1
xZ = O 0 0 0O O 4 3 3 4 3
2 0 0o 2 2 1 1 0 0 1
13 2
x = 0 17
6 3

Minimization of the following criterion

C(z,w7a): E Zik Wi | Xij — ake|,

ik,

where ax € {0,1}

Nadif (LIPADE) AAFD’14, April 29-30, 2014



Algorithm
Minimization of C(z, w, a) by alternated minimization of C(z,alw) and C(w, a|z)

Crobin (here |x] is the nearest integer function)

input: x, g, m
initialization: z, w, ax, = LZsz]
repeat
0= 20 WieXij
repeat
step 1. z; = argmin, Y, Wje|xjy — W.rake
step 2. ax = Lizk Z"kx’!n’{}
P <. dke = Zw.e
until convergence
ij = Zi ZikXij
repeat
step 3. w; = argmin, Zk Zik| X — Z.kake
Z lexkj
step 4. aw = | =70

until convergence
until convergence
return z, w, a
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Introduction ~ Continuous data

Two geometrical representations

@ Each individual i is weighted by p; and each column j is weighted by g;
d n

&*(i,1") =Y a5 — x7)* and d*(j,j') = Y pilxy — xi)°
j=1 i=1

In the sequel, and only to simplify the notation, we assume that p; = % for all / and
g;j =1 for all j.

Using a partition z of / and a partition w of J, the initial data is summarized by two sets

of weights p* = (pi,...,pz) and q* = (q7’,...,qn) and a g X m matrix x** = (xgy’
defined by
DiZik | Zk
pi:T:7’ Q?:ZWJZZWJJ
J
and

o Do ZRWEPIGX D ZikWjeXis
Xke = = .
D i ZikWiepid; ZWy

mean

TI
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Introduction ~ Continuous data

Example

AN R
ARRN
o NN ®

1)

p=(1/4,1/4,1/4,1/4) andq = (1,1,1)
Let be z=(1,1,2,2) and w = (1,1, 2), we obtain the summary x* with weights
p* = (1/2,1/2) and q" = (2,1)
x" = (xj7) of size (4 x 2) and x* = (x§;) of size (2 x 3) can be defined

w Zj,l WjeqjXij Zj,z WjeXij 2 Z,-,k Zik Pi Xij Zi,k Zik Xij
Xie = = and x5 = =
220 Wied; W >k PiZik Zk

15 8

z__ (15 15 75 w_ (15 7 zw _ (1.5 7.5

X —(3 4 645)7 X =13 7 and X —(345 6.5)
4 6
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Introduction ~ Continuous data

Information measures

Let be (x*, p?,q") associated to (z,w) and having the same structure that the initial
data (x,p,q). We can define the information measure

1
Izwzw: z w zw2:7 zw\2
(x*,p%q") E picqr (Xke ) n E ZpW.e(Xkr )
k0 k0
and the chosen information to approximate

1
I(x.p.a) = Y _pigi; = > _x;
ij iJ

When x is “column-centered” this information represents in R the inertia of the set /
relative to the center of gravity and in R" the inertia of the set J relative to the origin.
This information measure is the measure used by PCA

Objective function

W 4 W 1 zwW
I(x,p,q) = Z(x™,p*,q") = > zuwie(xi — xir')?
ijk,2
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Introduction ~ Continuous data

Let be (x¥, p,q") obtained when z is the singleton partition and (x*, p?, q) obtained when
w is the singleton partition. Hence, we obtain the associated measures of association

w w 1 w
I(x*,p",q) ZZk(XkJ and  Z(x",p,q") = — > w(x)?

When w is the partition of singletons, this criterion can be expressed as the loss of
information due to z and, by using the Huygens theorem, it can be shown that

1=
Z(x,p,q) — Z(x*,p*,q) = ~W(z|J)
where W(z|J) = Dok Zik 2 (xi — xt;)? is the intra-class inertia, or within-group sum of

squares, minimized by the classical k-means algorithm. Similarly, when z is the partition
of singletons, we have

w w 1=
I(X7 p7q) _I(X »P,q ) = ;W(W“)

where W(w|/) = 37, , wie 3=, (x5 — xtt)?
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Introduction ~ Continuous data

The minimization of the objective function can be solved by an iterative alternating
least-squares optimization procedure. Several equivalent variants of double k-means

Double k-means
Input: x, g, m
Initialization: z, w, xZ&' =3
repeat
step 1. z; = argmin, ZL@ wie(xj — xit')?
step 2. wj = argminz Zi,k zik(xij - lezl)z
w Zik WjeXij
Step 3. Xke = Zi,j Z Wy
until convergence
return z, w

Zjk Wi Xij
i zywy

@ Croeuc algorithm (Govaert, 1983)

@ As for Crobin, Croeuc is based on reduced intermediate matrices

x" = (xj¢) and x* = (x§;)
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Introduction ~ Continuous data

Croeuc

input: x, g, m
initialization: z, w

repeat
Xjy = W%Z 20 WieXij, Xe = i > Zikxiy
repeat
step 1. z = argmin, >, w.o(x}} — xi/')*
step 2. x7) = Zzzi,:x/"‘é

until convergence

X = 3 D0 2 Xel = D Ziexy

repeat
step 3. w; = argmin, >, zk(xg — xtt')?
step 4. x5y = X 50
until convergence

until convergence

return z, w

W.e
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Introduction ~ Continuous data

Weaknesses

Limits of classical co-clustering methods

- Wirlx — o wir( X — 2 — Pke
° Zi,j,k,e ZikWje|xij — axel | Zi,j,k,[ zuwje(xy — ake)” , Z(z,w) = Zk,e pxe log Y
o Choice of the criterion not often easily, Implicit hypotheses unknown

@ Algorithms not able to propose a solution when

o the clusters are not well-separated
o degrees of homogeneity of blocks dramatically different
o proportions of clusters dramatically different

Aim
Propose a general framework able to formalize the hypotheses of co-clustering
algorithms: latent block model

@ to overcome the defects of criteria and therefore to propose other criteria

@ to develop other efficient algorithms
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Latent block model and CML approach

Outline

© Latent block model and CML approach
@ Bernoulli Latent block models
@ Gaussian latent block models
o Asymmetric Gaussian model
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Latent block model and CML approach

Definition
The pdf of x:
F0)= > []m pr HSD(XUvaz,W)
(zw)eZxW i
where 0 = (m1,...,Tg, P1y- -+, Pm, Q11, -« ., Olgm)
T p
a— |
- J
Advantages

@ Parsimonious models
o Gives probabilistic interpretations of classical criteria via Classification ML approach

@ Allows a rigorous simulation (degree of mixtures, proportions)
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Latent block model and CML approach Bernoulli Latent block models

Binary data: Classical Bernoulli Mixture model

o We have f(x;0) = >, m[]; akj (1 — a)* =9, cu can be replaced by the two
parameters ax and e« : f(x;;0) =37, ™ [ alx” il (1 — i) P~ where

aky = 0,6 = if aug <0.5
a=1les=1—oay ifay>05

o p(xj = 1lag; = 0) = p(x;
° p(xj = 0lag = 0) = p(x;

Bernoulli Latent block model: B(a¢)

ake = 0 Eke (6774 If Oy S 05
ake =1,exe =1 —ake if axe > 0.5
ake = (ake,exe) where agp € {0,1} and g4 €]0,1/2]

More parsimonious than classical mixture models on / and J
e n=10000, d =5000, g =4, m=3

@ Bernoulli latent block model : 4 x 3+ 3 + 2 = 17 parameters, Two mixture models :

(4 x 5000 + 3) + (3 x 10000 + 2) parameters
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Classification likelihood
The criterion

o Complete data: (x,z,w)

o Complete (or classification) log-likelihood

Lc(0,z,w) = L(O;x,z,w) = log (H Tz prj Hga(x,-j; az/.wj)>
i J iJ
= > logm, + Y logpw + Y log (i oz,
i J iJ

= Y zilogm+ > welogpr+ Y zikwielog p(xj; ouke)
k Y4

i kit

o Find the partitions z and w and the parameter 8 maximizing L¢

Various alternated maximization of L¢ using from an initial position (z,w, 8), the three
steps:

a):argmaxLc(0,z,w) b):argmaxLc(0,z,w) c):argmaxLc(0,z,w)
z w [
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Link between LBCEM and Crobin

Parsimonious models
As for classical mixture models, it is possible to impose various constraints
o Fixed proportions: m1 =...=mgand p1 = ... = pm
o Bernoulli latent model : ays — (ake, exe) where ax, € {0,1} and € €]0,1/2]

o Different models with €, e, ¢, exe
Aim
@ Find the partitions z and w and the parameter @ maximizing Lc under constraints

@ Maximization of L¢

€
Lc(0,z,w) = Iog(i) Z ZikWje|Xjj — ake| + cst

i kit

Summary
@ Maximization of L¢ equivalent to minimization of Z,.j w0 ZikWie| Xij — ae|

@ The optimization of C by Crobin assumes strong constraints on the heterogenity of
blocks and their proportions

o BCEM=Crobin
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Latent block model and CML approach Gaussian latent block models

Continuous data

We assume that for each block k¢ the values x;; are distributed according to a Gaussian
distribution
([,Lke,O'iz) with pwe € R and o € RY,

we obtain the Gaussian latent block model with the following pdf f(x; 8) taking this form

N we 1 1 ) , ZjkWjp
s Al (m““{zaa‘xﬂ‘““) }> W

(z,w)ex i,k ikt
With this model, the complete-data log-likelihood is, up to the constant —"—; log 2,
given by
Lc(e,Z,W) = Zz,-k |og7rk+Zng log pe
ke st

— 2Z<zkwelogak5+ ZZIkWJeXU /M((Z))

Nadif (LIPADE) AAFD’14, April 29-30, 2014 Co-clustering 23 /35



Latent block model and CML approach Gaussian latent block models

Gaussian LBCEM
input: x, g, m

zw
oz wg =R 2 Tpmvweqd o
initialization: z, w, Ty = %% pp = %L ke = Zawe k= T w, ke
repeat
IZ_ Z WieXij, l[_WgZ VVJZ
repeat
Ul —2pp X tul
step 1. z = argmax, log 7, — % wy (logod, + H— R T e
k 2L ke o2,
2 > ziexty 2 > Zikujy 2
step 2. mx = 5, pwe = =T Ok = ST — i
until convergence
z — 1 . 2
X = Z ZikXij, Vi = Zr > ZikXj
repeat
3 B | | ZMkZXkJ+NkIZ
step 3. w; = argmax, logpe — 3 3 2k Zk og ok, + T
. 2
_ wy XWXy 2 WiVl 2
step 4. Pe= g Hke = T Oke = — 7 T Hk

until convergence
until convergence
return z, w, T, p,
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Link between LBCEM and Croeuc

Criterion
Parsimonious model can be defined by imposing constraints on the variances: we obtain
the [o], [o«], [07], - - -

In the simplest case, the [¢] model, given identical proportions (7« = 1/g,pe = 1/m)

2

1
~ 32 Z Zuwje(xj — pke)® — nlog g — dlogm
inj kit

Le(z,w, ) = f%d log o

and it is easy to see that maximizing L¢ is equivalent to minimizing W(z, w) where

W(z,w) = Z ziewje(xj — x£2')? minimized by Croeuc

i kit

Assignation steps
It suffices to remark that in step 1 of LBCEM we have

1 Y — 2pikexty 4 2
z; = argmaxlog mx — = Z W.g (Iog oo + Uit Mkt;X,e + M”) .
k 2 n ke

For the [o] model, this leads to z; = argmin, 3, w.¢(xf — pke)?. In the same way we can
prove that in step 3 of LBCEM we have w; = argmin, 24 (X — pure)?
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Latent block model and CML approach Asymmetric Gaussian model
Model

Hereafter, we use a classical mixture model in which the partition w of the variables is
considered as a parameter of the model. The pdf is therefore

f(xi;0) = Zﬂ'kf(x,-;w,a)

1 2\ Wiy
. — gz (j—ae)®\ Y .
with f(x;;w, ) =[] , <\/%e 2%k . The unknown parameter 6 is
? 7\'0"(2

formed now by 7, w and o where = (a, X) with a and X being g X m matrices
representing the means and the variances of blocks

i ... aim o3 ... of,
a= , L= ,
i o am 2 .. ok
or
(a11,031) ... (aim,0%,)
(31,021) - (agm, 05m)
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Latent block model and CML approach Asymmetric Gaussian model

Asymmetric Gaussian LBCEM

input: x, g, m
2
e, _wy - Kk 2 prkwieg 2
initialization: z, w, m = 2k pp = =L, pi = Zawe Tk = Tz w, Fke
repeat
w 1 s w __ 1 %2
Xip = We Zj WjeXij, Uip = W Zj WieXij
repeat
W 2y XY 2
step 1. z = argmax, logmc — 1 3", w (|Og O + LR
ke
iz 2 X Zikuip 2
1 Oke = T, T Hke

—_— z( —_—
step 2. mx = S, pwe = =

until convergence
z _ 1 Ox YR — L %2
Xk =z, Do ZikXij, Vig = Zr 2o ZikXj

repeat
z z 2
1 2 Vij 21 kexjgt e
step 3. w; = argmax,logpe — 3 >, Zk (Iog Oke + 71—
ke
z z
w ) Wiexi 2 22 wieVig 2
step 4. pr = T, pe = T Oke = T — i

until convergence
until convergence
return z, w, m, p,
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Latent block model and CML approach Asymmetric Gaussian model

Comparisons

o LBVEM: Variational EM
LBCEM: Classification version of LBVEM.
EM: EM applied only on the rows.

CEM: Classification version of EM applied on the rows and columns separately.
EM-w: Classical EM applied with optimal partition w obtained by CEM.

CEM-w: Classification version of EM-w.

Comparison on 5000 x 2000 with different degrees of mixtures

error Models LBVEM LBCEM CEM EM EM-w CEM-w
M1 1 1 0 0 1 1
5(z,2) M2 11 12 21 19 15 15
M3 29 41 41 39 44 42
M1 0 0 0 = 0 0
S(w, w’) M2 5 5 30 — 30 30
M3 20 35 48 — 47 48

o LBCEM > CEM, CEM-w
e LBVEM > EM, EM-w
o LBVEM outperforms all the other variants
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Outline

© Factorization
@ Nonnegative Matrix Factorization
@ Nonnegative Matrix Tri-Factorization
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Factorization Nonnegative Matrix Factorization

NMF: Nonnegative Matrix Factorization (Lee and Seung, 1999, 2001)

e Problem : argminy v [|X — UVT||> where factor matrices, U € R7*¢ and

V € R*m
@ Other measures can be used as an error measures (for instance, KL divergence)

@ The clustering problem is not the main objective of NMF

X U v

!

NMPF: Nonnegative Matrix Factorization
@ Each column of X is treated as a data point in n-dimensional space
o Each uj of U corresponds to the degree to which row i belongs to kth cluster
@ Each column of U is associated with a prototype vector for the kth cluster
@ Problems: Uniqueness, initialization

Nadif (LIPADE) AAFD’14, April 29-30, 2014 Co-clustering
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Factorization Nonnegative Matrix Factorization

Expressions of U and V
A typical constrainted optimization problem, and can be solved using the Lagrange

uny
multiplier method: wuy < Uik ¢ (XV)i (X_U)

UVTV);, and vij ¢ vij VUTU),

Uniqueness

If U and V are solutions, then, UD, VD! will also form a solution for any positive
diagonal matrix D. Generally to eliminate this uncertainty, in practice one will further
require that the Euclidean length of each column vector in U or V is 1.

Uik < \/zu% and Vikj <— ka‘/Zi ui2k

i Zik

NMF towards clustering
@ Perform the NMF on X to obtain U and V
@ Normalize U and V

© Use matrix V to determine the cluster label of each column. More precisely, examine
each row of matrix V. Assign a column j to cluster k* if k™ = arg max vj;

Orthogonal NMF

argming o || X — UVT||* where factor matrices, U € R7*¢,V € R{*" and V'V =1
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Factorization Nonnegative Matrix Tri-Factorization

NBVD: Nonegative Block Value Decomposition (Long et al. 2005)

@ For co-clustering, it consists in seeking a 3-factor decomposition:

argmin ||X — RAC”||> where R € R7*6, A € RE*™ C ¢ R{*"
R,A,C>0

@ R and C play the roles of row and column memberships
@ A makes it possible to absorb the scales of R, C and X
NMTF: Nonnegative Matrix Tri-Factorization (Ding et al., 2006), (Wang et al. 2011)

argmin [[X — RACT|?
R,A,C>0,RT R=l,CT C=ln,
Double kmeans towards NMTF (Lazhar and Nadif, 2011)

o Convert the double kmeans criterion to an optimization problem under NMF

@ R and C are cluster indicators

argmin [[X — RRTXCC'|[* with R = RD; ®® and C = CD_°*®
R,>0,RTR=/;,CTC=Ip
where D;%5 = Diag(%, o f@) and D;%5 = Diag(\/la,..., fc;)
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Factorization Nonnegative Matrix Tri-Factorization

Dyadic Analysis
@ Document clustering, term-document co-clustering
o Even if the objective is the clustering of documents, the co-clustering is beneficial

© TF-IDF x; < x; log = where "= Zi|x,-j;£o

Datasets

@ Classic30 is an extract of Classic3 which counts three classes denoted Medline, Cisi,
Cranfield as their original database source. It consists of 30 random documents
described by 1000 words

@ Classic150 consists of 150 random documents described by 3652 words

o NG2 is a subset of 20-Newsgroup data NG20, it is composed by 500 documents
concerning talk.politics.mideast and talk.politics.misc described by 2000 words

Results

dataset performance measure DNMF ODNMF ONM3F ONMTF NBVD

Classic30 Acc 06.67 100 100 100 96.67

NMI 89.97 100 100 100 89.97

Classic150 Acc 98.66 98.66 99.33 98.66 98.66

NMI 94.04 94.04 97.02 94.04 94.04

NG2 Acc 77.6 86.2 74.6 74.2 77.4
NMI 19.03 43.47 18.27 16.03 23.31
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Outline

© Conclusion
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Conclusion

Conclusion

Principal points
o Different approches exist
o Latent Block Models offer different co-clustering algorithms: LBCEM, LBVEM
o LBVBEM is more efficient in terms of clustering and estimation

@ Document clustering: LBVEM, LBCEM on document-term matrix without any
normalization
Case of continuous data: Connections between LBCEM and NMTF

Works related to co-clustering

o KL divergence as an error measure: Connections between NMF and PLSA (Gaussier
and Goutte, 2005), NMTF and Aspect model (Yoo and Choi, 2012).

o Visualization by GTM using LBM (Priam et al., 2013, 2014)

o Constraint co-clustering in Bioinformatics and document clustering
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