

Computer Science Laboratory of Paris 13 University

Paris 13 University - Institut Galilée - LIPN, UMR 7030 du CNRS 99 Avenue J-B. Clément - 93430 Villetaneuse - France

Diversity Analysis in Collaborative Clustering

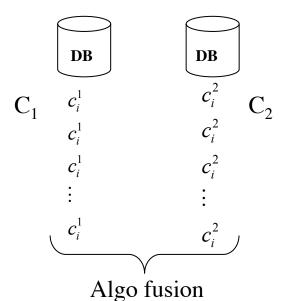
Nistor Grozavu, Guénël Cabanes, Younès Bennani

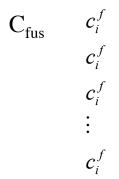
Plan

- Introduction
- The problem of the collaborative clustering
 - Horizontal collaboration
 - Vertical collaboration
- Topological Collaborative Clustering
- Diversity Analysis
 - □ The problem
 - □ Proposed solutions
- Conclusions & Future works

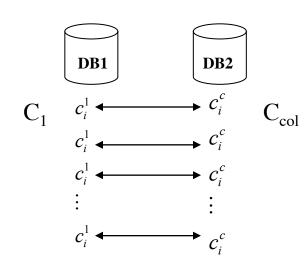
Introduction - Fusion vs Collaboration

The principle of the Fusion





The principle of the Collaboration



- Collaborate the datasets of different size;
- Use the same clustering method + a collaboration step;
- Use this schema for different datasets or for the multi-views datasets;

Collaborative Clustering

Three main types of collaboration:

1. Horizontal

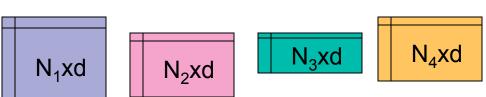
All datasets are described by the same observations but in different spaces Of description (different variables).

2. Vertical

All the datasets have the same variables (same description space), but have different observations.

3. Hybrid

Combination between 1 & 2.



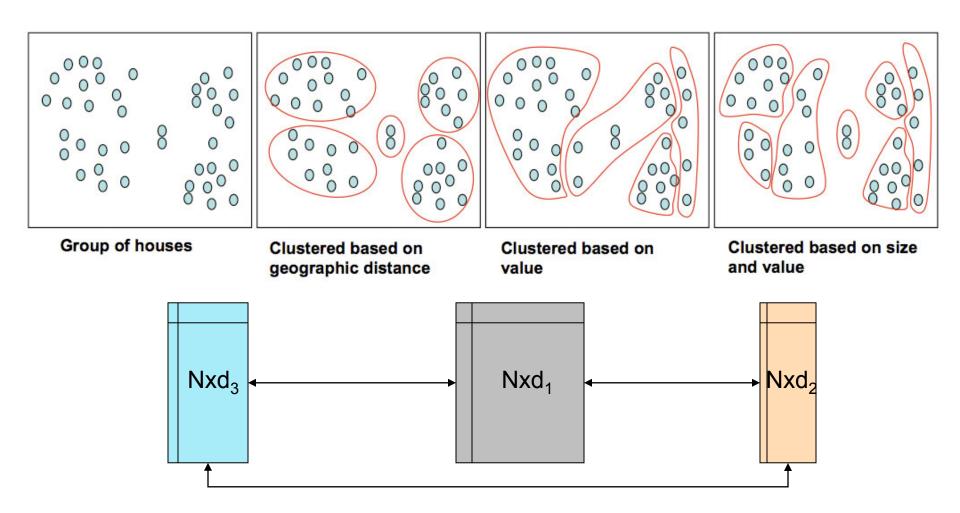
Nxd₁

Nxd₄

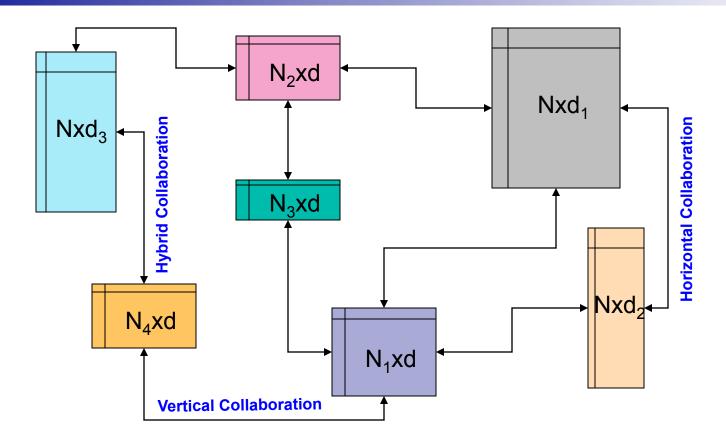
Nxd₃

The problem

Horizontal collaboration vs Vertical collaboration



The problem



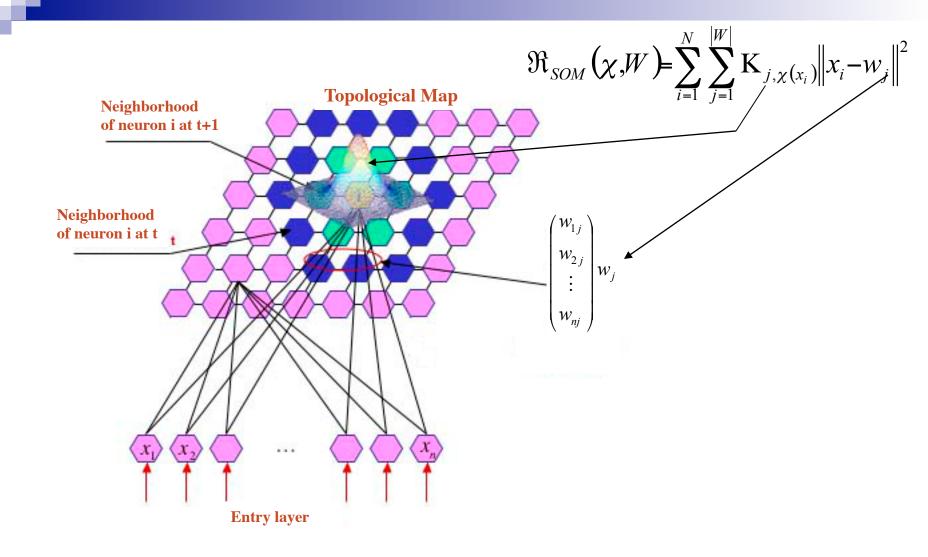
How to improve the local clustering derived out of a set of distant clustering results without sharing the initial data?

The problem

- The collaborative clustering is an emerging problem
- Some works (fusion & collaboration) :
 - ☐ Pedrycz & Rai 2008 (Collaboration);
 - Costa da Silva & Klusch, 2006 (Collaboration);
 - □ Wemmert & al., 2007 (Collaborative and Fusion);
 - □ Cleuziou et al., 2009 (Horizontal Collaboration);
 - ☐ Forestier et al., 2009 (Fusion/Collaboration);
 - ☐ Grozavu et al., 2009 (Fusion, Collaboration);
 - □ Strehl & Ghosh, 2002 (Fusion).
- Collaborative Topological Learning uses the principle of the Collaborative Fuzzy c-means (Pedrycz & Rai, 2008)
 - + self-organization
 - + the neighborhood between clusters using SOM (Self Organizing Maps)

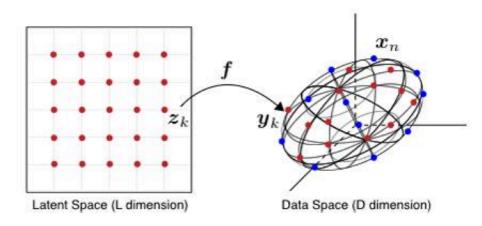
Topological Collaborative Clustering

Base model: Kohonen Self-Organizing Map's (SOM)



Probabilistic Clustering

Generative Topographic Mapping [Bishop 95]



$$y = y(z, W) = W\Phi(z)$$

$$p(x_n|z, W, \beta) = \mathcal{N}(y(z, W), \beta)$$

$$\mathcal{L}(W,\beta) = \sum_{n=1}^{N} \ln \left\{ \frac{1}{K} \sum_{i=1}^{K} p(x_n | z_i, W, \beta) \right\} \Longrightarrow \boxed{\mathsf{EM} \; \mathsf{Algorithm}}$$

E & M steps

E step - Computing posterior probabilites

$$r_{in} = p(z_i|x_n, W_{old}, \beta_{old})$$

$$= \frac{p(x_n|z_i, W_{old}, \beta_{old})}{\sum_{i'=1}^{K} p(x_n|z_i', W_{old}, \beta_{old})}$$

M step - Updating parameters

$$\mathbb{E}[\mathcal{L}_{comp}(W,\beta)] = \sum_{n=1}^{N} \sum_{i=1}^{K} r_{in} \ln\{p(x_n|z_i, W, \beta)\}$$

$$\Phi^T G \Phi W_{new}^T = \Phi^T R X$$

$$\frac{1}{\beta_{new}} = \frac{1}{ND} \sum_{n=1}^{N} \sum_{i=1}^{K} r_{in} \|x_n - W^{new} \phi(z_i)\|^2$$

Topological Collaborative Clustering

Collaborative Clustering: local step + collaboration step

$$R_H^{[ii]}(W) = R_{Quantiz}(W) + R_{Collab}(W)$$

Prototype based Clustering

$$R_{Quantiz}(W) = \sum_{jj=1, jj \neq ii}^{P} \alpha_{[ii]}^{[jj]} \sum_{i=1}^{N} \sum_{j=1}^{|w|} \mathcal{K}_{\sigma(j,\chi(x_i))}^{[ii]} ||x_i^{[ii]} - w_j^{[ii]}||^2$$

$$R_{Collab}(W) = \sum_{\substack{j = 1, j \neq ii}}^{P} \beta_{[ii]}^{[jj]} \sum_{i=1}^{N} \sum_{j=1}^{|w|} \left(\mathcal{K}_{\sigma(j,\chi(x_i))}^{[ii]} - \mathcal{K}_{\sigma(j,\chi(x_i))}^{[jj]} \right)^2 * \|x_i^{[ii]} - w_j^{[ii]}\|^2$$

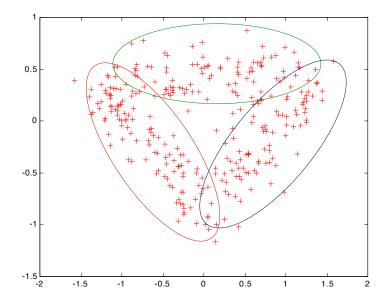
Probabilistic Clustering

$$\mathcal{L}^{hor}[ii] = \mathbb{E}[\mathcal{L}_{comp}(W^{[ii]}, \beta^{[ii]})] - \sum_{[ij]=1, [ij] \neq [ii]}^{P} \alpha^{[ii]}_{[ii]} \sum_{n=1}^{N} \sum_{i=1}^{K} \frac{\beta^{[ii]}}{2} (r^{[ii]}_{in} - r^{[ii]}_{in})^{2} ||x_{n} - W^{[ii]} \phi^{[ii]}(z_{i})||^{2}$$

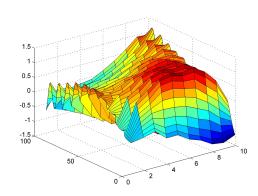
Experimental results (1)

■ Waveform dataset

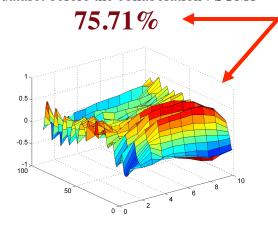
- 5000 samples
- 40 variables where 19 variables are Gaussian noisy
- 3 classes



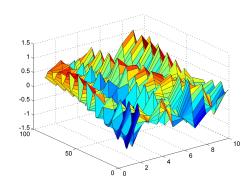
Horizontal Collaboration (waveform)



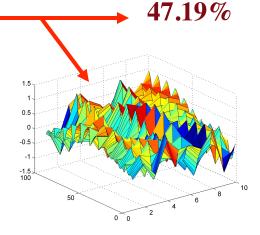
The prototypes of the 1st map obtained from the 1st dataset before the collaboration: SOM1



The prototypes of the map obtained from the 1st dataset after the collaboration with SOM3 : SOM13



The prototypes of the map from the 3rd dataset before the collaboration: SOM3



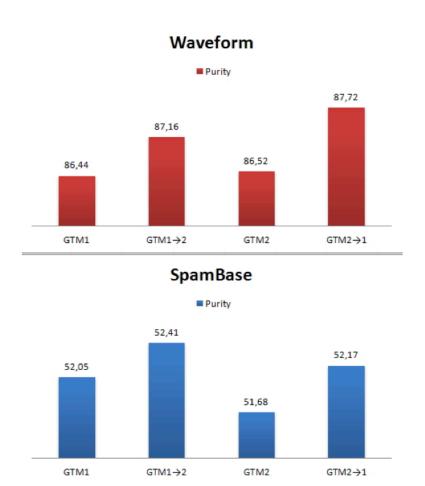
The prototypes of the map obtained from the 3rd dataset after the collaboration with SOM1 : SOM31

54.63%

62.47%

Experimental results (2)

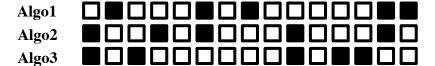
Dataset	Мар	Purity		
Waveform	GTM₁	86.44		
	GTM₂	86.52		
	$GTM_{1\rightarrow 2}$	87.16		
	$GTM_{2\rightarrow 1}$	87.72		
Wdbc	GTM₁	96		
	GTM₂	96.34		
	$GTM_{1\rightarrow 2}$	96.08		
	$GTM_{2\rightarrow 1}$	96.15		
Isolet	GTM₁	87.17		
	GTM₂	86.83		
	$GTM_{1\rightarrow 2}$	87.29		
	$GTM_{2\rightarrow 1}$	85.87		
SpamBase	GTM₁	52.05		
	GTM_2	51.68		
	$GTM_{1\rightarrow 2}$	52.41		
	$GTM_{2\rightarrow 1}$	52.17		

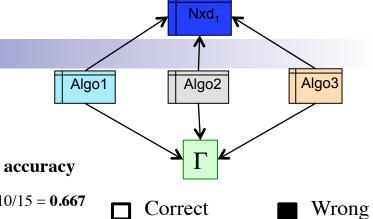


Diversity analysis

Studied in Consensus clustering

Dataset X containing 15 samples





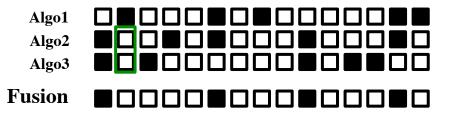
10/15 =**0.667**

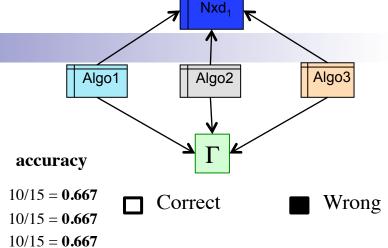
10/15 =**0.667**

10/15 =**0.667**

Studied in Consensus clustering

Dataset X containing 15 samples



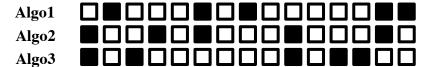


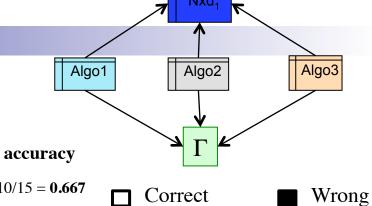
Majority vote rule

11/15 = 0.773

Studied in Consensus clustering

Dataset X containing 15 samples





$$10/15 = 0.667$$

$$10/15 = 0.667$$

$$11/15 = 0.773$$

Majority vote rule

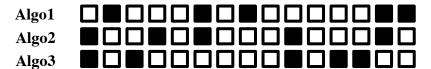
$$10/15 = 0.667$$

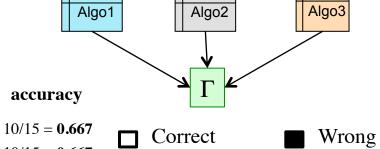
$$10/15 = 0.667$$

$$10/15 = 0.667$$

Studied in Consensus clustering

Dataset X containing 15 samples





$$10/15 = 0.667$$
 Correct

$$10/15 =$$
0.667

$$11/15 =$$
0.773

Majority vote rule

$$10/15 = \mathbf{0.667}$$

$$10/15 = 0.667$$

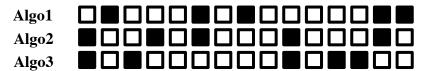
$$10/15 = 0.667$$

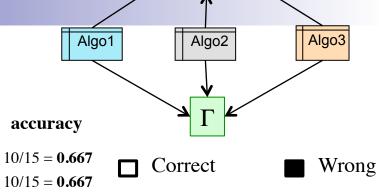
$$10/15 = 0.667$$

Majority vote rule

Studied in Consensus clustering

Dataset X containing 15 samples





$$10/15 = 0.667$$

 $10/15 = 0.667$
 $11/15 = 0.773$ Majority vote rule

$$10/15 = 0.667$$
$$10/15 = 0.667$$

$$10/15 =$$
0.667

$$10/15 = 0.667$$
 Majority vote rule

$$10/15 = 0.667$$

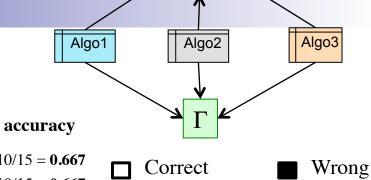
$$10/15 = 0.667$$

$$10/15 = 0.667$$

Studied in Consensus clustering

Dataset X containing 15 samples





$$11/15 = 0.773$$
 Majority vote rule

$$10/15 = 0.667$$
 Majority vote rule

$$10/15 = 0.667$$
$$10/15 = 0.667$$

10/15 =**0.667**

10/15 =**0.667**

10/15 =**0.667**

10/15 =**0.667**

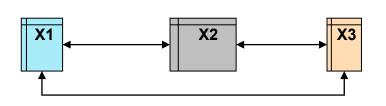
$$10/15 = 0.667$$

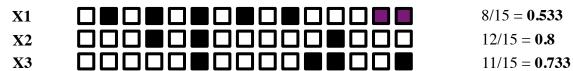
$$8/15 = 0.533$$
 Majo

Diversity (2)

Collaborative clustering

Dataset X1 containing 15 samples Dataset X2 containing 15 samples Dataset X3 containing 15 samples





Diversity measures

index	formula		
Rand index	$Rand = \frac{a_{00} + a_{11}}{a_{00} + a_{01} + a_{10} + a_{11}}$		
Adjusted Rand index	$AdjustedRand = rac{a_{00} + a_{11} - n_c}{a_{00} + a_{01} + a_{10} + a_{11} - n_c}$		
Jaccard index	$Jaccard = rac{a_{11}}{a_{01} + a_{10} + a_{11}}$		
Wallace's coefficient	$W_{P1 o P2}=rac{a_{11}}{a_{11}+a_{10}} ext{ and } W_{P2 o P1}=rac{a_{11}}{a_{11}+a_{01}}$		
Adjusted Wallace index	$AW_{P1 \to P2} = \frac{W_{P1 \to P2} - Wi_{P1 \to P2}}{1 - Wi_{P1 \to P2}}$		
Normalized Mutual Information	$NMI = rac{-2\sum_{ij}n_{ij}lograc{n_{ij}N}{n_{i}n_{j}}}{\sum_{i}n_{i}lograc{n_{i}}{N} + \sum_{j}n_{j}lograc{n_{j}}{N}}$		
Variation of Information	$VI = -2\sum_{ij}rac{n_{ij}}{N}lograc{n_{ij}N}{n_in_j} - \sum_irac{n_i}{N}lograc{n_i}{N} - \sum_jrac{n_j}{N}lograc{n_j}{N}$		

Diversity measures on waveform datasets

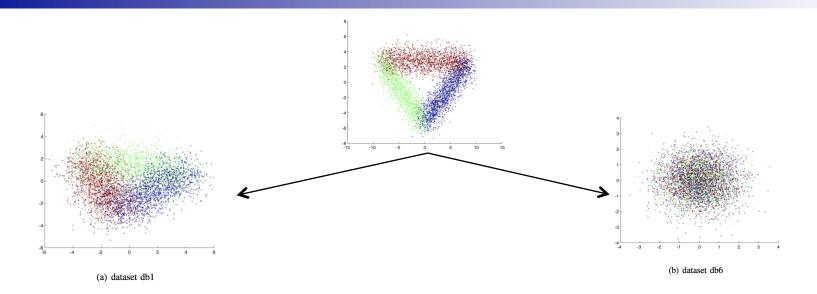


Table 1: Diversity measure on the waveform subsets

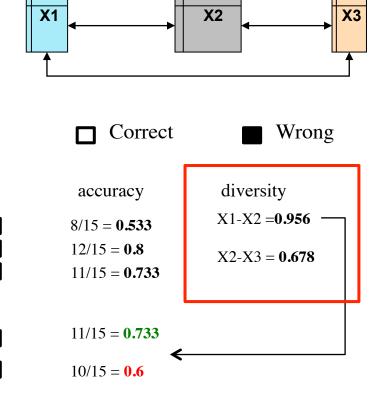
Subset	Relevant datasets		Relevant vs Noisy datasets		Noisy datasets	
Diversity index	db2/db3	db3/db4	db2/db8	db4/db9	db7/db8	db9/db10
Rand	0.6707	0.7042	0.5539	0.555	0.543	0.5553
Adjusted Rand	0.2625	0.3356	0.00008	0.0002	0.00002	0.00004
Jaccard	0.3429	0.3869	0.2017	0.2008	0.2	0.2003
Wallace's coefficient	0.5079	0.5578	0.3332	0.3342	0.33	0.3334
Adjusted Wallace	0.5135	0.5581	0.3383	0.3347	0.35	0.3411
Normal Mutual Information	0.262	0.3072	0.0002	0.0006	0.0003	0.0004
Variation of Information	2.334	2.1918	3.1577	3.1631	3.168	3.1664

Diversity (2)

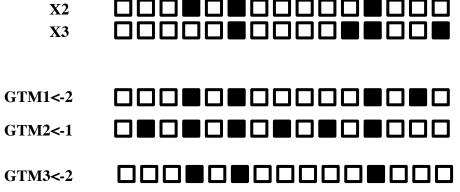
Collaborative clustering

X1

Dataset X1 containing 15 samples Dataset X2 containing 15 samples Dataset X3 containing 15 samples

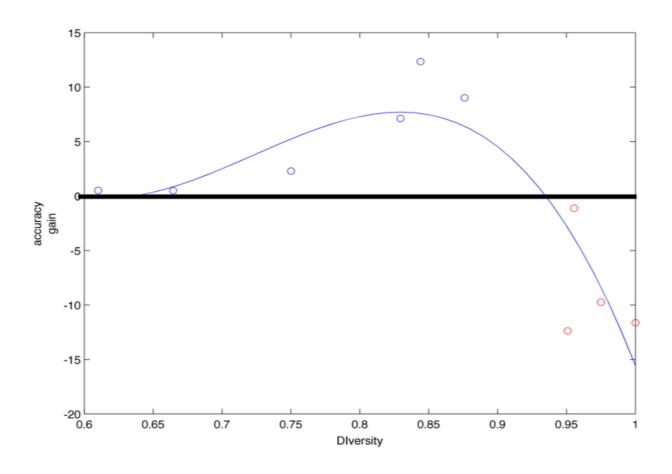


12/15 = 0.8



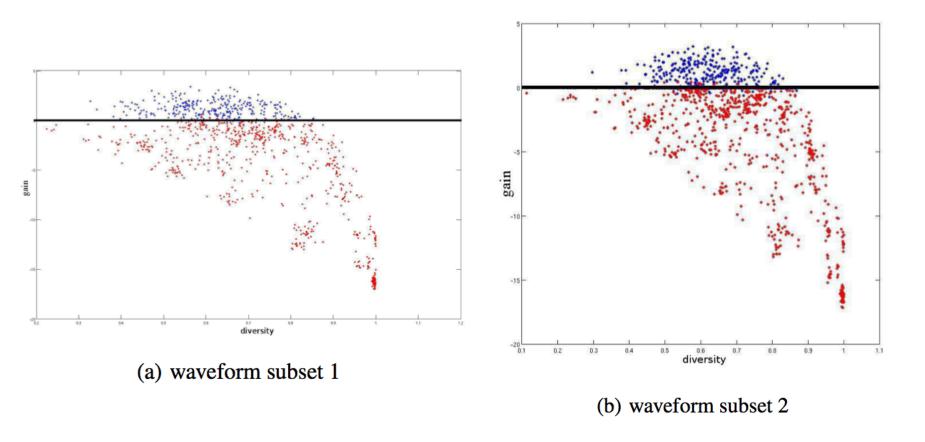
Need to study the local quality.

Results: 10 waveform sub-sets



The plot of diversity and the accuracy difference after collaboration

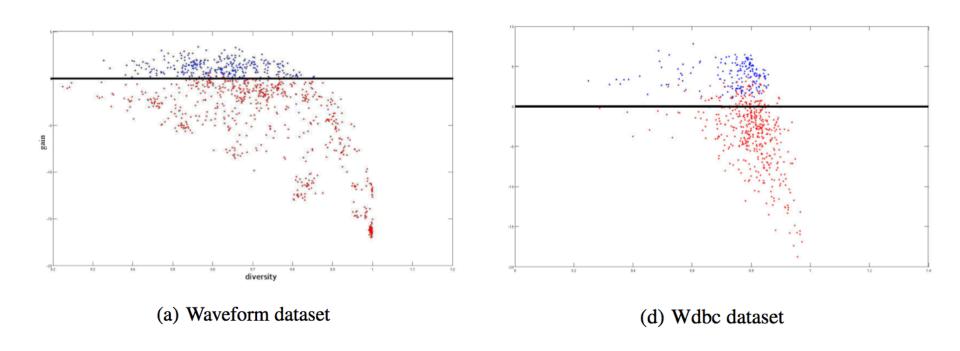
Results: 1-1.000 waveform sub-sets



Waveform datasets: Collaboration results between a fixed subset and 1000 randomly subsets (axe X represents the Diversity and axe Y - the Accuracy gain)

Collaboration results (1)

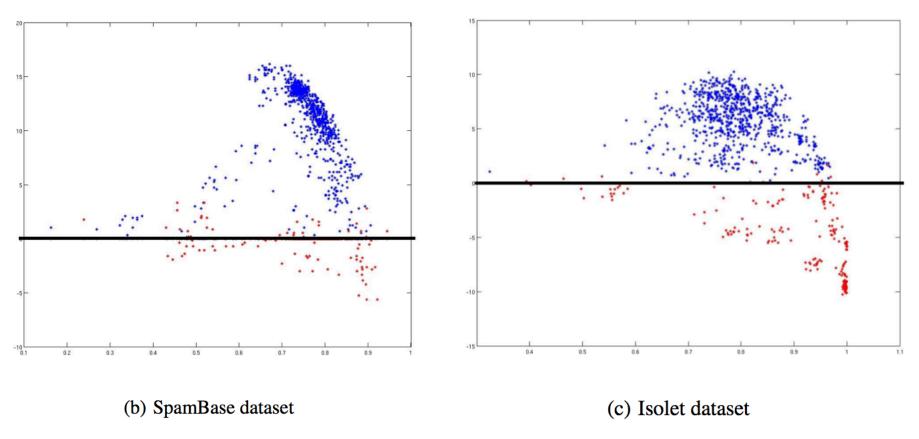
Collaboration results between a fixed subset and 1000 randomly subsets



axe X represents the Diversity and axe Y - the Accuracy gain

Collaboration results (2)

Collaboration results between a fixed subset and 1000 randomly subsets



axe X represents the Diversity and axe Y - the Accuracy gain

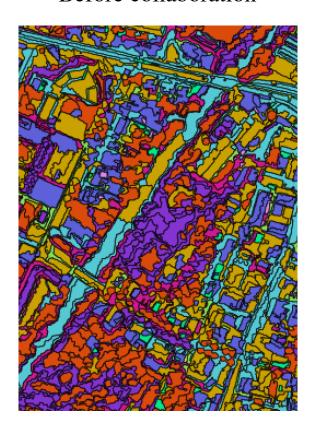
Images: Strasbourg satellite image (1)

Projet COCLICO

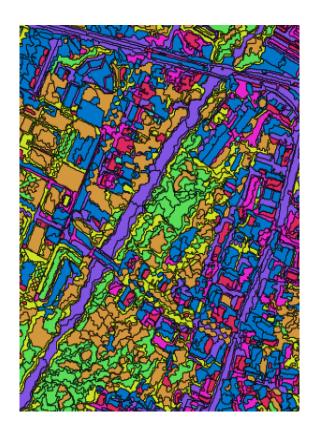
The authors would like to thank CESBIO (Danielle Ducrot, ClaireMarais-Sicre, Olivier Hagolle, Mireille Huc and Jordi Inglada) for providing the land-cover maps and the geometrically and radiometrically corrected Formosat-2 images.

Projet COCLICO

Before collaboration



After collaboration



Conclusions & Future works

- The collaborative clustering allows:
 - ☐ An interaction between different datasets
 - □ Reveal underlying structures and patterns within data sets.
- During the collaboration step, where is no need of data, the algorithm requires only the clustering results of other datasets.
 - □ obtain a new classification that is as close as possible to that which would have obtained if we had centralized datasets and then make a partition.
- The quality of the local clustering algorithm is very important for the collaboration's quality improvement regarding the diversity index
 - □ Overall, the variability of the collaboration's quality increase with the diversity
- Create a *«helper site»* which will build the global clustering and send these information to other local sites
- Use the diversity for Selective Collaborative Clustering

Collaborative Generative Topographic Mapping

Horizontal approach

$$\mathcal{L}^{hor}[ii] = \mathbb{E}[\mathcal{L}_{comp}(W^{[ii]}, \beta^{[ii]})] - \sum_{[ii]=1, [ii] \neq [ii]}^{P} \alpha^{[ij]}_{[ii]} \sum_{n=1}^{N} \sum_{i=1}^{K} \frac{\beta^{[ii]}}{2} (r^{[ii]}_{in} - r^{[ij]}_{in})^{2} ||x_{n} - W^{[ii]} \phi^{[ii]}(z_{i})||^{2}$$

Vertical approach

$$\mathcal{L}^{ver}[ii] = \mathbb{E}[\mathcal{L}_{comp}(W^{[ii]}, \beta^{[ii]})] - \sum_{[ii]=1, [ii]}^{P} \alpha^{[ii]}_{[ii]} \sum_{n=1}^{N[ii]} \sum_{i=1}^{K} r_{in} \frac{\beta^{[ii]}}{2} ||W^{[ii]}\phi^{[ii]}(z_i) - W^{[ii]}\phi^{[ii]}(z_i)||^{2}$$