
AAFD'06
1

Apprentissage Automatique et
Fouille de données textuelles

Jean-Michel RENDERS

Xerox Research Center Europe (France)

AAFD’06

AAFD'06
2

Plan Global

Introduction :
Fouille de textes
Spécificité des données textuelles

Approche numéro 1 : méthodes à noyaux
Philosophie des méthodes à noyaux
Noyaux pour les données textuelles

Approche numéro 2 : modèles génératifs
Génératif versus discriminatif – semi-supervisé
Modèles graphiques à variables latentes
Exemples : NB, PLSA, LDA, HPLSA

Perspectives « récentes »

AAFD'06
3

Fouille de Textes?

Sens strict : très rare
Sens large: contient une panoplie de sous-tâches

Recherche d’information (IR->QA)
Analyse sémantique
Catégorisation, Clustering
Extraction d’information  population d’ontologie
Focalisation utilisateur: navigation, visualisation,
résumé adapté, traduction, …

Souvent précédée de tâches de pré-traitement
linguistique (jusqu’à l’analyse syntaxique et le tagging)
… elles-mêmes appelées Fouille de textes!

AAFD'06
4

Spécificités du Texte

Qu’est-ce qu’une observation?
Objet d’étude à différents niveaux de granularité (mot,
phrase,section, document, corpus, mais aussi
utilisateur, communauté)

Lien entre forme et fond
Paradoxe structuré – non structuré

Importance d’un background knowledge

Redondance (cfr. Synonymie) et ambiguité (cfr.
Polysémie)

AAFD'06
5

Cas particulier

Cas d’école le plus fréquent
Objet d’étude: document

Attributs: mots

Propriétés:
Attributs: polysèmie, synonymie, structuration
hiérarchique, dépendance ordonnée, attributs
composés

Documents: polythématicité, structuration des classes,
appartenance floue

AAFD'06
6

Polythématicité

AAFD'06
7

Approach 1 – Kernel Methods

What’s the philosophy of Kernel Methods?

How to use Kernels Methods in Learning tasks?

Kernels for text (BOW, latent concept, string,
word sequence, tree and Fisher Kernels)

Applications to NLP tasks

AAFD'06
8

Kernel Methods : intuitive idea

Find a mapping φ such that, in the new space,
problem solving is easier (e.g. linear)

The kernel represents the similarity between two
objects (documents, terms, …), defined as the
dot-product in this new vector space

But the mapping is left implicit

Easy generalization of a lot of dot-product (or
distance) based pattern recognition algorithms

AAFD'06
9

Kernel Methods : the mapping

Original Space Feature (Vector) Space

φ

φ

φ

AAFD'06
10

Kernel : more formal definition

A kernel k(x,y)
is a similarity measure
defined by an implicit mapping φ,

from the original space to a vector space (feature
space)
such that: k(x,y)=φ(x)•φ(y)

This similarity measure and the mapping include:
Invariance or other a priori knowledge
Simpler structure (linear representation of the data)
The class of functions the solution is taken from
Possibly infinite dimension (hypothesis space for learning)
… but still computational efficiency when computing k(x,y)

AAFD'06
11

Benefits from kernels

Generalizes (nonlinearly) pattern recognition algorithms in
clustering, classification, density estimation, …

When these algorithms are dot-product based, by replacing the
dot product (x•y) by k(x,y)=φ(x)•φ(y)

e.g.: linear discriminant analysis, logistic regression, perceptron,
SOM, PCA, ICA, …

NM. This often implies to work with the “dual” form of the algo.

When these algorithms are distance-based, by replacing d(x,y) by
k(x,x)+k(y,y)-2k(x,y)

Freedom of choosing φ implies a large variety of learning
algorithms

AAFD'06
12

Valid Kernels

The function k(x,y) is a valid kernel, if there exists a
mapping φ into a vector space (with a dot-product) such
that k can be expressed as k(x,y)=φ(x)•φ(y)

Theorem: k(x,y) is a valid kernel if k is positive definite and
symmetric (Mercer Kernel)

A function is P.D. if

In other words, the Gram matrix K (whose elements are k(xi,xj))
must be positive definite for all xi, xj of the input space
One possible choice of φ(x): k(•,x) (maps a point x to a function
k(•,x)  feature space with infinite dimension!)

∫ ∈∀≥ 20)()(),(LfddffK yxyxyx

AAFD'06
13

Example of Kernels (I)

Polynomial Kernels: k(x,y)=(x•y)d

Assume we know most information is contained in
monomials (e.g. multiword terms) of degree d (e.g. d=2:
x1

2, x2
2, x1x2)

Theorem: the (implicit) feature space contains all
possible monomials of degree d (ex: n=250; d=5; dim
F=1010)

But kernel computation is only marginally more
complex than standard dot product!

For k(x,y)=(x•y+1)d , the (implicit) feature space
contains all possible monomials up to degree d !

AAFD'06
14

The Kernel Gram Matrix

With KM-based learning, the sole information
used from the training data set is the Kernel Gram
Matrix

If the kernel is valid, K is symmetric definite-
positive .



















=

),(...),(),(

............

),(...),(),(

),(...),(),(

21

22212

12111

mmmm

m

m

training

kkk

kkk

kkk

K

xxxxxx

xxxxxx

xxxxxx

AAFD'06
15

How to build new kernels

Kernel combinations, preserving validity:

)()(

)(
)(

)(

))()(()(

)().()(

)().()(

0)(.)(

10)()1()()(

11

1

3

21

1

21

yyxx

yx
yx

yxyx

yöxöyx

yx

yxyxyx

yxyx

yxyxyx

,K,K

,K
,K

positivedefinitesymmetricPP,K

,K,K

functionvaluedrealisfyfxf,K

,K,K,K

a,Ka,K

,K,K,K

=

′=

=

−=

=

>=

≤≤−+= λλλ

AAFD'06
16

Kernels and Learning

In Kernel-based learning algorithms, problem
solving is now decoupled into:

A general purpose learning algorithm (e.g. SVM, PCA,
…) – Often linear algorithm (well-funded, robustness,
…)

A problem specific kernel

Complex Pattern
Recognition Task

Simple (linear) learning
algorithm

Specific Kernel function

AAFD'06
17

Learning in the feature space: Issues

High dimensionality allows to render flat complex
patterns by “explosion”

Computational issue, solved by designing kernels
(efficiency in space and time)
Statistical issue (generalization), solved by the learning
algorithm and also by the kernel

 e.g. SVM, solving this complexity problem by maximizing the
margin and the dual formulation

E.g. RBF-kernel, playing with the σ parameter
With adequate learning algorithms and kernels,
high dimensionality is no longer an issue

AAFD'06
18

Current Synthesis

Modularity and re-usability
Same kernel ,different learning algorithms

Different kernels, same learning algorithms

This presentation is allowed to focus only on
designing kernels for textual data

Kernel 1
Data 1 (Text)

Gram Matrix
(not necessarily stored)

Learning
Algo 1

Kernel 2
Data 2

(Image)
Gram Matrix

Learning
Algo 2

AAFD'06
19

Agenda

What’s the philosophy of Kernel Methods?

How to use Kernels Methods in Learning tasks?

Kernels for text (BOW, latent concept, string,
word sequence, tree and Fisher Kernels)

Applications to NLP tasks

AAFD'06
20

Kernels for texts

Similarity between documents?
Seen as ‘bag of words’ : dot product or polynomial
kernels (multi-words)
Seen as set of concepts : GVSM kernels, Kernel LSI
(or Kernel PCA), Kernel ICA, …possibly multilingual
Seen as string of characters: string kernels
Seen as string of terms/concepts: word sequence
kernels
Seen as trees (dependency or parsing trees): tree
kernels
Seen as the realization of probability distribution
(generative model)

AAFD'06
21

Strategies of Design

Kernel as a way to encode prior information
Invariance: synonymy, document length, …

Linguistic processing: word normalisation, semantics,
stopwords, weighting scheme, …

Convolution Kernels: text is a recursively-defined
data structure. How to build “global” kernels form
local (atomic level) kernels?

Generative model-based kernels: the “topology”
of the problem will be translated into a kernel
function (cfr. Mahalanobis)

AAFD'06
22

Strategies of Design

Kernel as a way to encode prior information
Invariance: synonymy, document length, …

Linguistic processing: word normalisation, semantics,
stopwords, weighting scheme, …

Convolution Kernels: text is a recursively-defined
data structure. How to build “global” kernels form
local (atomic level) kernels?

Generative model-based kernels: the “topology”
of the problem will be translated into a kernel
function

AAFD'06
23

‘Bag of words’ kernels (I)

Document seen as a vector d, indexed by all the
elements of a (controlled) dictionary. The entry is
equal to the number of occurrences.
A training corpus is therefore represented by a
Term-Document matrix,

 noted D=[d1 d2 … dm-1 dm]
The “nature” of word: will be discussed later
From this basic representation, we will apply a
sequence of successive embeddings, resulting in
a global (valid) kernel with all desired properties

AAFD'06
24

BOW kernels (II)

Properties:
All order information is lost (syntactical relationships, local context,
…)
Feature space has dimension N (size of the dictionary)

Similarity is basically defined by:
k(d1,d2)=d1•d2= d1

t.d2

or, normalized (cosine similarity):

Efficiency provided by sparsity (and sparse dot-product
algo): O(|d1|+|d2|)

),().,(

),(
),(ˆ

2211

21
21

ddkddk

ddk
ddk =

AAFD'06
25

‘Bag of words’ kernels: enhancements

The choice of indexing terms:
Exploit linguistic enhancements:

Lemma / Morpheme & stem
Disambiguised lemma (lemma+POS)
Noun Phrase (or useful collocation, n-grams)
Named entity (with type)

Exploit IR lessons
Stopword removal
Feature selection based on frequency
Weighting schemes (e.g. idf)
Semantic enrichment by term-term similarity matrix Q (positive definite):
k(d1,d2)=φ(d1)t.Q.φ(d2)

NB. Using polynomial kernels up to degree p, is a natural and efficient way
of considering all (up-to-)p-grams (with different weights actually), but order
is not taken into account (“sinking ships” is the same as “shipping sinks”)

AAFD'06
26

Semantic Smoothing Kernels

Synonymy and other term relationships:
GVSM Kernel: the term-term co-occurrence matrix (DDt) is used in
the kernel: k(d1,d2)=d1

t.(D.Dt).d2

The completely kernelized version of GVSM is:
The training kernel matrix K(= Dt.D) K2 (mxm)
The kernel vector of a new document d vs the training documents : t 
K.t (mx1)
The initial K could be a polynomial kernel (GVSM on multi-words terms)

Variants: One can use
a shorter context than the document to compute term-term similarity
(term-context matrix)
Another measure than the number of co-occurrences to compute the
similarity (e.g. Mutual information, …)

Can be generalised to Kn (or a weighted combination of K1 K2 … Kn

cfr. Diffusion kernels later), but is Kn less and less sparse!
Interpretation as sum over paths of length 2n.

AAFD'06
27

Semantic Smoothing Kernels

Can use other term-term similarity matrix than DDt; e.g.
a similarity matrix derived from the Wordnet thesaurus,
where the similarity between two terms is defined as:

 the inverse of the length of the path connecting the two terms
in the hierarchical hyper/hyponymy tree.

A similarity measure for nodes on a tree (feature space
indexed by each node n of the tree, with φn(term x) if term x is
the class represented by n or “under” n), so that the similarity
is the number of common ancestors (including the node of the
class itself).

With semantic smoothing, 2 documents can be similar
even if they don’t share common words.

AAFD'06
28

Latent concept Kernels

Basic idea :

documents

termstermstermstermsterms

Concepts space

Size t

Size k <<t

Size d

Φ1

Φ2

K(d1,d2)=?

AAFD'06
29

Latent concept Kernels

k(d1,d2)=φ(d1)t.Pt.P.φ(d2),
where P is a (linear) projection operator

From Term Space

to Concept Space

Working with (latent) concepts provides:
Robustness to polysemy, synonymy, style, …

Cross-lingual bridge

Natural Dimension Reduction

But, how to choose P and how to define (extract) the
latent concept space? Ex: Use PCA : the concepts are
nothing else than the principal components.

AAFD'06
30

Why multilingualism helps …

Graphically:

Concatenating both representations will force language-
independent concept: each language imposes constraints
on the other
Searching for maximally correlated projections of paired
observations (CCA) has a sense, semantically speaking

Terms in L1 Parallel
contexts

Terms in L2

AAFD'06
31

Diffusion Kernels

Recursive dual definition of the semantic smoothing:

K=D’(I+uQ)D

Q=D(I+vK)D’

NB. u=v=0  standard BOW; v=0  GVSM

Let B= D’D (standard BOW kernel); G=DD’

If u=v, The solution is the “Von Neumann diffusion kernel”

K=B.(I+uB+u2B2+…)=B(I-uB)-1 and Q=G(I-uG)-1 [only of u<||B||-1]

Can be extended, with a faster decay, to exponential diffusion kernel:

K=B.exp(uB) and Q=exp(uG)

AAFD'06
32

Graphical Interpretation

These diffusion kernels correspond to defining similarities
between nodes in a graph, specifying only the myopic
view

Or

Terms

Documents

The (weighted)
adjacency matrix is

the Doc-Term
Matrix

By aggregation, the
(weighted) adjacency matrix
is the term-term similarity

matrix G

Diffusion kernels corresponds to
considering all paths of length 1, 2,

3, 4 … linking 2 nodes and
summing the product of local

similarities, with different decay
strategies

It is in some way similar to KPCA by just
“rescaling” the eigenvalues of the basic

Kernel matrix (decreasing the lowest ones)

AAFD'06
33

Strategies of Design

Kernel as a way to encode prior information
Invariance: synonymy, document length, …

Linguistic processing: word normalisation, semantics,
stopwords, weighting scheme, …

Convolution Kernels: text is a recursively-defined
data structure. How to build “global” kernels form
local (atomic level) kernels?

Generative model-based kernels: the “topology”
of the problem will be translated into a kernel
function

AAFD'06
34

Sequence kernels

Consider a document as:
A sequence of characters (string)

A sequence of tokens (or stems or lemmas)

A paired sequence (POS+lemma)

A sequence of concepts

A tree (parsing tree)

A dependency graph

Sequence kernels  order has importance
Kernels on string/sequence : counting the subsequences two objects
have in common … but various ways of counting

Contiguity is necessary (p-spectrum kernels)

Contiguity is not necessary (subsequence kernels)

Contiguity is penalised (gap-weighted subsequence kernels)

(later)

AAFD'06
35

String and Sequence

Just a matter of convention:
String matching: implies contiguity

Sequence matching : only implies order

AAFD'06
36

Gap-weighted subsequence kernels

Feature space indexed by all elements of Σp

φu(s)=sum of weights of occurrences of the p-gram u as a
(non-contiguous) subsequence of s, the weight being
length penalizing: λlength(u)) [NB: length includes both
matching symbols and gaps]
Example:

D1 : ATCGTAGACTGTC
D2 : GACTATGC
(D1)CAT = 2λ8+2λ10 and (D2)CAT = λ4

k(D1,D2)CAT=2λ12+2λ14

Naturally built as a dot product  valid kernel
For alphabet of size 80, there are 512000 trigrams
For alphabet of size 26, there are 12.106 5-grams

AAFD'06
37

Gap-weighted subsequence kernels

Hard to perform explicit expansion and dot-
product!

Efficient recursive formulation (dynamic
programming –like), whose complexity is
O(k.|D1|.|D2|)

Normalization (doc length independence)

),().,(

),(
),(ˆ

2211

21
21

ddkddk

ddk
ddk =

AAFD'06
38

Word Sequence Kernels (I)

Here “words” are considered as symbols
Meaningful symbols  more relevant matching
Linguistic preprocessing can be applied to improve
performance
Shorter sequence sizes  improved computation time
But increased sparsity (documents are more : “orthogonal”)
Intermediate step: syllable kernel (indirectly realizes some
low-level stemming and morphological decomposition)

Motivation : the noisy stemming hypothesis (important N-
grams approximate stems), confirmed experimentally in a
categorization task

AAFD'06
39

Word Sequence Kernels (II)

Link between Word Sequence Kernels and other
methods:

For k=1, WSK is equivalent to basic “Bag Of Words” approach
For λ=1, close relation to polynomial kernel of degree k, WSK
takes order into account

Extension of WSK:
Symbol dependant decay factors (way to introduce IDF concept,
dependence on the POS, stop words)
Different decay factors for gaps and matches (e.g. λnoun<λadj when
gap; λnoun>λadj when match)

Soft matching of symbols (e.g. based on thesaurus, or on
dictionary if we want cross-lingual kernels)

AAFD'06
40

Trie-based kernels

An alternative to DP based on string matching techniques
TRIE= Retrieval Tree (cfr. Prefix tree) = tree whose internal
nodes have their children indexed by Σ.
Suppose F= Σp : the leaves of a complete p-trie are the
indices of the feature space
Basic algorithm:

Generate all substrings s(i:j) satisfying initial criteria; idem for t.
Distribute the s-associated list down from root to leave (depth-first)
Distribute the t-associated list down from root to leave taking into
account the distribution of s-list (pruning)
Compute the product at the leaves and sum over the leaves

Key points: in steps (2) and (3), not all the leaves will be
populated (else complexity would be O(| Σp|) … you need not
build the trie explicitly!

AAFD'06
41

Tree Kernels

Application: categorization [one doc=one tree],
parsing (desambiguation) [one doc = multiple
trees]

Tree kernels constitute a particular case of more
general kernels defined on discrete structure
(convolution kernels). Intuitively, the philosophy is

to split the structured objects in parts,

to define a kernel on the “atoms” and a way to
recursively combine kernel over parts to get the kernel
over the whole.

AAFD'06
42

Fundaments of Tree kernels

Feature space definition: one feature for each

possible proper subtree in the training data;

feature value = number of occurences

A subtree is defined as any part of the tree which

includes more than one node, with the restriction

there is no “partial” rule production allowed.

AAFD'06
43

Tree Kernels : example

Example :

S

NP VP

V NJohn

loves Mary

S

NP VP

VP

V N

loves Mary

VP

V N

loves

N

Mary

VP

V N
A Parse Tree

… a few among the
many subtrees of

this tree!

AAFD'06
44

Tree Kernels : algorithm

Kernel = dot product in this high dimensional feature space

Once again, there is an efficient recursive algorithm (in
polynomial time, not exponential!)

Basically, it compares the production of all possible pairs of
nodes (n1,n2) (n1∈T1, n2 ∈ T2); if the production is the
same, the number of common subtrees routed at both n1
and n2 is computed recursively, considering the number of
common subtrees routed at the common children

Formally, let kco-rooted(n1,n2)=number of common subtrees
rooted at both n1 and n2

∑ ∑
∈ ∈

−=
11 22

),(),(2121
Tn Tn

rootedco nnkTTk

AAFD'06
45

Variant for labeled ordered tree

Example: dealing with html/xml documents

Extension to deal with:
Partially equal production

Children with same labels

… but order is important

Α Α Β Β Α

n1

Α Β C

n2

Α Β

is common 4 times

The subtree

AAFD'06
46

Dependency Graph Kernel

saw

I
man

the

with

telescope

the

*

PPsub

PP-obj

det

det

obj

with

the

PP-obj

det
telescope

saw

the

obj

man
det

A sub-graph is a
connected part

with at least two
word (and the
labeled edge)

AAFD'06
47

Paired sequence kernel

…
Det Noun Verb

The man saw

A subsequence is a sub-
sequence of states, with or

without the associated
word

States
(TAG)

words

Det Noun Verb

Det Noun

The man

AAFD'06
48

Graph kernels based on Common Walks

Walk = (possibly infinite) sequence of labels
obtained by following edges on the graph

Path = walk with no vertex visited twice

Important concept: direct product of two graphs
G1xG2

V(G1xG2)={(v1,v2), v1 and v2: same labels)

E(G1xG2)={(e1,e2): e1, e2: same labels, p(e1) and
p(e2) same labels, n(e1) and n(e2) same labels}

e

p(e) n(e)

AAFD'06
49

Strategies of Design

Kernel as a way to encode prior information
Invariance: synonymy, document length, …

Linguistic processing: word normalisation, semantics,
stopwords, weighting scheme, …

Convolution Kernels: text is a recursively-defined
data structure. How to build “global” kernels form
local (atomic level) kernels?

Generative model-based kernels: the “topology”
of the problem will be translated into a kernel
function

AAFD'06
50

Plan Global

Introduction :
Fouille de textes
Spécificité des données textuelles

Approche numéro 1 : méthodes à noyaux
Philosophie des méthodes à noyaux
Noyaux pour les données textuelles

Approche numéro 2 : modèles génératifs
Génératif versus discriminatif – semi-supervisé
Modèles graphiques à variables latentes
Exemples : NB, PLSA, LDA, HPLSA

Perspectives « récentes »

AAFD'06
51

Generative vs Discriminative

Generative approach:
Model P(x,y) (= P(y|x).P(x) = P(x|y).P(y))
Then, for a new x, choose y = argmax P(x,y)

Discriminative approach:
Model P(y|x)
Then, for a new x, choose y = argmax P(y|x)

Most advantages for discriminative approach but:
Semi-supervised learning – continuum between clustering and
categorization
Novelty Detection
NB. Most generative approaches use latent variables (hidden
classes or components) – strong link between component and
categories – Then use probabilistic values of these latent variables
as new features in a discriminative setting (cfr. Dimension
reduction – generative model-based kernels)

AAFD'06
52

Graphical models : NB

M documents

N words

1! Topic per document

Supervised case (z
observed):

Training : Parameters (class
priors and class profiles) by
max likelihood

Classify : max p(w,z)

Unsupervised:

 Use EM

AAFD'06
53

PLSA

M documents
N words
Multiple Topics per
document
Supervised case

Parameters (p(z,d) and
class profiles) by max
likelihood
Inference : by EM to identify
p(z|d)

Unsupervised:
 Use tempered-EM

AAFD'06
54

LDA

M documents
N words
Multiple Topics per document
Dirichlet prior on the topic
mixing proportion
Supervised case

Parameters (α,β) (class priors
and class profiles) by max
likelihood, given w, θ,z
Variational Inference : to
identify p(θ,z| α,β,w)

Unsupervised:
 Use variational-EM to identify

(α,β) , given observed w

AAFD'06
55

Polythématicité

AAFD'06
56

Strategies of Design

Kernel as a way to encode prior information
Invariance: synonymy, document length, …

Linguistic processing: word normalisation, semantics,
stopwords, weighting scheme, …

Convolution Kernels: text is a recursively-defined
data structure. How to build “global” kernels form
local (atomic level) kernels?

Generative model-based kernels: the “topology”
of the problem will be translated into a kernel
function

AAFD'06
57

Remind

This family of strategies brings you the additional
advantage of using all your unlabeled training
data to design more problem-adapted kernels

They constitute a natural and elegant way of
solving semi-supervised problems (mix of labelled
and unlabelled data)

AAFD'06
58

Marginalised – Conditional Independence Kernels

Assume a family of models M (with prior p0(m) on each
model) [finite or countably infinite]

each model m gives P(x|m)
Feature space indexed by models: x P(x|m)
Then, assuming conditional independence, the joint
probability is given by

This defines a valid probability-kernel (CI implies PD
kernel), by marginalising over m. Indeed, the gram matrix
is K=P.diag(P0).P’ (some reminiscence of latent concept
kernels)

∑∑
∈∈

==
MmMm

M mPmzPmxPmPmzxPzxP)()|()|()()|,(),(00

AAFD'06
59

AAFD'06
60

Fisher Kernels

Assume you have only 1 model
Marginalised kernel give you little information: only one feature: P(x|m)

To exploit much, the model must be “flexible”, so that we can measure
how it adapts to individual items  we require a “smoothly”
parametrised model

Link with previous approach: locally perturbed models constitute our
family of models, but dimF=number of parameters

More formally, let P(x|θ0) be the generative model (θ0 is typically
found by max likelihood); the gradient reflects how the model
will be changed to accommodate the new point x (NB. In
practice the loglikelihood is used)

0
)|(log

èèè è
=

∇ xP

AAFD'06
61

Fisher Kernel : formally

Two objects are similar if they require similar
adaptation of the parameters or, in other words, if
they stretch the model in the same direction:
K(x,y)=

Where IM is the Fisher Information Matrix

))|(log()')|(log(
00

1

èèèèèè èè
=

−

=
∇∇ yPIxP M

])')|(log())|(log([
00 èèèèèè èè

==
∇∇= xPxPEIM

AAFD'06
62

Example 2 : PLSA-Fisher Kernels

An example : Fisher kernel for PLSA improves the
standard BOW kernel

where k1(d1,d2) is a measure of how much d1 and d2
share the same latent concepts (synonymy is taken
into account)

where k2(d1,d2) is the traditional inner product of
common term frequencies, but weighted by the degree
to which these terms belong to the same latent concept
(polysemy is taken into account)

∑∑∑ +=
cwc cwP

wdcPwdcP
dwftdwft

cP

dcPdcP
ddK

)|(

),|().,|(
),(~),(~

)(

)|().|(
),(21

21
21

21

AAFD'06
63

“New” perspectives

Multi-lingual

Multi-media

Emotion mining

Structured documents

Help to labelling – Active learning

