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Plan Global

E Introduction :
E Fouille de textes
B Spécificité des données textuelles

E Approche numero 1 : méthodes a noyaux
E Philosophie des méthodes a noyaux
¥ Noyaux pour les donnees textuelles

E Approche numero 2 : modeles géneratifs
Bl Génératif versus discriminatif — semi-supervisé

E' Modeles graphiques a variables latentes
F Exemples : NB, PLSA, LDA, HPLSA

E Perspectives « récentes »
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Fouille de Textes?

E Sens strict ; tres rare

E Sens large: contient une panoplie de sous-taches
E Recherche d’information (IR->QA)
E' Analyse sémantique
B Catégorisation, Clustering
E Extraction d’information - population d’ontologie

B Focalisation utilisateur: navigation, visualisation,
resume adapte, traduction, ...

Souvent précédée de taches de pré-traitement
linguistique (jusqu’a I'analyse syntaxique et le tagging)
... elles-mémes appelées Fouille de textes!
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Speécificités du Texte

E Qu’est-ce qu'une observation?

B Objet d’étude a différents niveaux de granularité (mot,
phrase,section, document, corpus, mais aussi
utilisateur, communauté)

E Lien entre forme et fond
Bl Paradoxe structuré — non structure
Bl Importance d’'un background knowledge

¥ Redondance (cfr. Synonymie) et ambiguité (cfr.
Polysémie)
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Cas particulier

E Cas d’école le plus frequent
B Objet d’étude: document
E Attributs: mots
E Proprietes:
Bl Attributs: polysemie, synonymie, structuration

hiérarchique, dependance ordonnee, attributs
COMpPOSES

¥l Documents: polythématicite, structuration des classes,
appartenance floue
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Polythematicite
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Approach 1 — Kernel Methods

E \What's the philosophy of Kernel Methods??
E How to use Kernels Methods in Learning tasks?

E Kernels for text (BOW, latent concept, string,
word sequence, tree and Fisher Kernels)

B Applications to NLP tasks
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Kernel Methods : intuitive idea

E Find a mapping ¢ such that, in the new space,
problem solving is easier (e.g. linear)

E The kernel represents the similarity between two
objects (documents, terms, ...), defined as the
dot-product in this new vector space

E But the mapping is left implicit

E Easy generalization of a lot of dot-product (or
distance) based pattern recognition algorithms
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Kernel Methods : the mapping

® @

Original Space ® Feature (Vector) Space
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Kernel : more formal definition

E A kernel k(x,y)

Bl is a similarity measure

I defined by an implicit mapping ¢,

E from the original space to a vector space (feature
space)

B such that: k(x,y)=¢(x)*d(y)

E This similarity measure and the mapping include:
E Invariance or other a priori knowledge
B Simpler structure (linear representation of the data)
E The class of functions the solution is taken from
B Possibly infinite dimension (hypothesis space for learning)
E ... but still computational efficiency when computing k(x,y)

10
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Benefits from kernels

E Generalizes (nonlinearly) pattern recognition algorithms in
clustering, classification, density estimation, ...

B When these algorithms are dot-product based, by replacing the
dot product (x-y) by k(x,y)=d(x)*d(y)
e.g.: linear discriminant analysis, logistic regression, perceptron,
SOM, PCA, ICA, ...

NM. This often implies to work with the “dual” form of the algo.

E When these algorithms are distance-based, by replacing d(x,y) by
k(x,x)*+k(y.y)-2k(x,y)

B Freedom of choosing ¢ implies a large variety of learning
algorithms

11
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Valid Kernels

E The function k(x,y) is a valid kernel, if there exists a
mapping ¢ into a vector space (with a dot-product) such

that k can be expressed as k(X,y)=¢(Xx)*d(y)

E Theorem: k(x,y) is a valid kernel if k is positive definite and
symmetric (Mercer Kernel)
B A functionis P.D. if fK(X,y)f(X)f(y)a’xdyzO ViEL,

E In other words, the Gram matrix K (whose elements are k(x;,x;))
must be positive definite for all x;, x; of the input space

B One possible choice of ¢(x): k(+,x) (maps a point x to a function
k(,x) = feature space with infinite dimension!)
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Example of Kernels ()

E Polynomial Kernels: k(x,y)=(xey)d

B Assume we know most information is contained in
monomials (e.g. multiword terms) of degree d (e.g. d=2:
X1, X9%, X1Xp)

B Theorem: the (implicit) feature space contains all
possible monomials of degree d (ex: n=250; d=5; dim
F=1010)

Bl But kernel computation is only marginally more
complex than standard dot product!

E For k(x,y)=(x*y+1)?, the (implicit) feature space
contains all possible monomials up to degree d !
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The Kernel Gram Matrix

14

E With KM-based learning, the sole information

used from the training data set is the Kernel Gram
Matrix

-k(xlaxl) k(XIDXZ) k(xlaxm)-
k(XZDXI) k(Xzaxz) k(XZDXm)

training

k(x, ,x,) k(x ,x,) .. k(x,X,)

E If the kernel is valid, K is symmetric definite-
positive .
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How to build new kernels

E Kernel combinations, preserving validity:
Kxy)=AK, (xy)+(1-AV)K,(xy) O0=A=1
Kxy)=aK (xy) a=0

K(xy) = K (Xy).K,(XY)
Kxy)= f(x).f(y) [fis real—-valued function

K(xy) = K;(0(x),0(y))
K(x,y) =x'Py P symmetric definite positive

_ K, (Xy)
AOey) = VK (xX)4/K, (y.y)
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Kernels and Learning

E In Kernel-based learning algorithms, problem
solving is now decoupled into:

B A general purpose learning algorithm (e.g. SVM, PCA,
...) — Often linear algorithm (well-funded, robustness,

)

B A problem specific kernel

Simple (linear) learning
algorithm

Complex Pattern

Recognition Tas

- ]

Specific Kernel function

16
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Learning in the feature space: Issues

E High dimensionality allows to render flat complex
patterns by “explosion”

E Computational issue, solved by designing kernels
(efficiency in space and time)

B Statistical issue (generalization), solved by the learning
algorithm and also by the kernel

m e.g. SVM, solving this complexity problem by maximizing the
margin and the dual formulation

F E.g. RBF-kernel, playing with the o parameter

E With adequate learning algorithms and kernels,
high dimensionality is no longer an issue
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Current Synthesis

E Modularity and re-usability
E Same kernel ,different learning algorithms
I Different kernels, same learning algorithms

E This presentation is allowed to focus only on
designing kernels for textual data

Data 1 (Text) Learning ,

— * Kernel 1 »O > Aloo 1
Gram Matrix g0
(not necessarily store
Data 2 Learni
(Image) — ¥ Kernel 2 > > caring

Gram Matrix Algo 2
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Agenda

E Kernels for text (BOW, latent concept, string,
word sequence, tree and Fisher Kernels)

B Applications to NLP tasks

19
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Kernels for texts

E Similarity between documents?

Seen as the realization of probability distribution
(generative model)

20
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Strategies of Design

E

E

E

E Invariance: synonymy, document length, ...
E' Linguistic processing: word normalisation, semantics,
stopwords, weighting scheme, ...
. text is a recursively-defined
data structure. How to build “global” kernels form
local (atomic level) kernels?

. the “topology”
of the problem will be translated into a kernel
function (cfr. Mahalanobis)

21
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Strategies of Design

W Kernel as a way to encode prior information
- E Invariance: synonymy, document length, ...

E Linguistic processing: word normalisation, semantics,
stopwords, weighting scheme, ...

22
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‘Bag of words’ kernels (1)

E Document seen as a vector d, indexed by all the
elements of a (controlled) dictionary. The entry is
equal to the number of occurrences.

E A training corpus is therefore represented by a
Term-Document matrix,

noted D=[d, d, ...d__,d ]
E The “nature” of word: will be discussed later

E From this basic representation, we will apply a
sequence of successive embeddings, resulting in
a global (valid) kernel with all desired properties

23
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BOW kernels (ll)

E Properties:
E All order information is lost (syntactical relationships, local context,

)

E Feature space has dimension N (size of the dictionary)
B Similarity is basically defined by:
k(d,,d,)=d,*d,= d..d,
or, normalized (cosine similarity):
k(d,,d,)
Vk(d,,d)) k(d,,d,)

lg(dladz) =

B Efficiency provided by sparsity (and sparse dot-product
algo): O(|d,|+|d,])

24
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‘Bag of words’ kernels: enhancements

E The choice of indexing terms:

E Exploit linguistic enhancements:
@ Lemma / Morpheme & stem
m Disambiguised lemma (lemma+POS)
@ Noun Phrase (or useful collocation, n-grams)
m Named entity (with type)
E Exploit IR lessons
m Stopword removal
m Feature selection based on frequency
m Weighting schemes (e.g. idf )

m Semantic enrichment by term-term similarity matrix Q (positive definite):

k(d4,d,)=0(d ). Q.0(dy)

E! NB. Using polynomial kernels up to degree p, is a natural and efficient way
of considering all (up-to- )p grams (with different weights actually) but order
is not taken into account (“sinking ships” is the same as “shipping sinks”)

25
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Semantic Smoothing Kernels

E Synonymy and other term relationships:
E GVSM Kernel: the term-term co-occurrence matrix (DD?) is used in
the kernel: k(d,,d,)=d,'.(D.D!).d,
E The completely kernelized version of GVSM is:
® The training kernel matrix K(= Dt.D)> K2 (mxm)

®m The kernel vector of a new document d vs the training documents : t >
K.t (mx1)

m The initial K could be a polynomial kernel (GVSM on multi-words terms)

E Variants: One can use

® a shorter context than the document to compute term-term similarity
(term-context matrix)

m Another measure than the number of co-occurrences to compute the
similarity (e.g. Mutual information, ...)
B Can be generalised to K" (or a weighted combination of K' K2... K"
cfr. Diffusion kernels later), but is K" less and less sparse!
Interpretation as sum over paths of length 2n.
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Semantic Smoothing Kernels

E Can use other term-term similarity matrix than DD?; e.g.

a similarity matrix derived from the Wordnet thesaurus,
where the similarity between two terms is defined as:

m the inverse of the length of the path connecting the two terms
in the hierarchical hyper/hyponymy tree.

® A similarity measure for nodes on a tree (feature space
indexed by each node n of the tree, with ¢, (term x) if term x is
the class represented by n or “under” n), so that the similarity
is the number of common ancestors (including the node of the
class itself).

Bl With semantic smoothing, 2 documents can be similar
even if they don’t share common words.

27
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Latent concept Kernels

B Basic idea : D,

A’
K(dlb
e,

Size k <<t
Concepts space

Size t

Size d
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Latent concept Kernels

E k(d,d2)=¢(dy).P.P.¢(d,),
E where P is a (linear) projection operator
® From Term Space
m to Concept Space
E Working with (latent) concepts provides:
E Robustness to polysemy, synonymy, style, ...
E Cross-lingual bridge
B Natural Dimension Reduction
E But, how to choose P and how to define (extract) the

latent concept space? Ex: Use PCA : the concepts are
nothing else than the principal components.

29
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Why multilingualism helps ...

E Graphically:
@) O
OQ O
o—\%@/ Ooo
O
Terms in L1 Parallel Terms in L2

contexts

B Concatenating both representations will force language-
iIndependent concept: each language imposes constraints
on the other

B Searching for maximally correlated projections of paired
observations (CCA) has a sense, semantically speaking

30
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Diffusion Kernels

B Recursive dual definition of the semantic smoothing:
K=D'(I+uQ)D
Q=D(I+vK)D’
NB. u=v=0 - standard BOW; v=0 > GVSM

E Let B= D'D (standard BOW kernel); G=DD’

B If u=v, The solution is the “Von Neumann diffusion kernel”
F K=B.(I+uB+u?B2+...)=B(I-uB)"' and Q=G(l-uG)-! [only of u<||B||']

B Can be extended, with a faster decay, to exponential diffusion kernel:
K=B.exp(uB) and Q=exp(uG)
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Graphical Interpretation
B These diffusion kernels correspond to defining similarities
between nodes in a graph, specifying only the myopic
view
Documents
The (weighted) Diffusion kernels corresponds to
@ adjacency matrix is considering all paths of length 1, 2,
O©  the Doc-Term .« 7.
Matrix 3, 4 ... linking 2 nodes and
summing the product of local
Terms similarities, with different decay
Or Strategies
By agaregation, the It is in some way similar to KPCA by just
(weighted) adjacency matrix “rescaling” the eigenvalues of the basic
is the term-term similarity Kernel matrix (decreasing the lowest ones)

matrix G
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Strategies of Design

| Convolution Kernels

33
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Sequence kernels

E Consider a document as:
. A sequence of characters (string)
Bl A sequence of tokens (or stems or lemmas)
B A paired sequence (POS+lemma)
E A sequence of concepts

F ;

E Sequence kernels - order has importance

B Kernels on string/sequence : counting the subsequences two objects
have in common ... but various ways of counting

B Contiguity is necessary (p-spectrum kernels)
B Contiguity is not necessary (subsequence kernels)
E Contiguity is penalised (gap-weighted subsequence kernels)
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String and Sequence

E Just a matter of convention:
B String matching: implies contiguity
E Sequence matching : only implies order

35
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Gap-weighted subsequence kernels

B Feature space indexed by all elements of =P

E ¢,(s)=sum of weights of occurrences of the p-gram u as a

(non-contiguous) subsequence of s, the weight being
length penalizing: Alength(w)) [NB: length includes both

matching symbols and gaps]

B Example:
E D1:ATCGTAGACTGTC
E D2 : GACTATGC
E (D1)car = 2083+20M10 and (D2)qa7 = A*
B Kk(D1,D2)pr=20124+2014

E Naturally built as a dot product - valid kernel
E For alphabet of size 80, there are 512000 trigrams
E For alphabet of size 26, there are 12.10° 5-grams

36
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Gap-weighted subsequence kernels

E Hard to perform explicit expansion and dot-
product!

E Efficient recursive formulation (dynamic
programming —like), whose complexity is
O(k.|D1].|D2|)

E Normalization (doc length independence)

A - k(dpdz)
K, ) = \/k(dpdl)'k(dz’dz)

37
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Word Sequence Kernels ()

B Here “words” are considered as symbols
E Meaningful symbols - more relevant matching
¥ Linguistic preprocessing can be applied to improve

performance

B Shorter sequence sizes = improved computation time
E But increased sparsity (documents are more

F Intermediate step: syllable kernel (indirectly realizes some
low-level stemming and morphological decomposition)

E Motivation : the noisy stemming hypothesis (important N-
grams approximate stems), confirmed experimentally in a

categorization task

4-GRAMS

. “orthogonal”)

F}I

R

C

E

O

F

C

O

R

N

E

X

F:I

O

R

T

A

5-GRAMS

5
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Word Sequence Kernels (ll)

B Link between Word Sequence Kernels and other
methods:

B For k=1, WSK is equivalent to basic “Bag Of Words” approach
B For A=1, close relation to polynomial kernel of degree k, WSK
takes order into account

B Extension of WSK:
B Symbol dependant decay factors (way to introduce IDF concept,
dependence on the POS, stop words)

E Different decay factors for gaps and matches (e.g. A
gap; Aoun>hag When match)

noun<}"adj when

E Soft matching of symbols (e.g. based on thesaurus, or on
dictionary if we want cross-lingual kernels)



AAFD'06
40

Trie-based kernels

B An alternative to DP based on string matching techniques

E TRIE= Retrieval Tree (cfr. Prefix tree) = tree whose internal
nodes have their children indexed by Z.

B Suppose F= 2P : the leaves of a complete p-trie are the
indices of the feature space

B Basic algorithm:
B Generate all substrings s(i:j) satisfying initial criteria; idem for t.
I Distribute the s-associated list down from root to leave (depth-first)

B Distribute the t-associated list down from root to leave taking into
account the distribution of s-list (pruning)

E Compute the product at the leaves and sum over the leaves

B Key points: in steps (2) and (3), not all the leaves will be
populated (else complexity would be O(| ZP|) ... you need not
build the trie explicitly!
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Tree Kernels

E Application: categorization [one doc=one tree],
parsing (desambiguation) [one doc = multiple
trees]

B Tree kernels constitute a particular case of more
general kernels defined on discrete structure
(convolution kernels). Intuitively, the philosophy is

El to split the structured objects in parts,

¥ to define a kernel on the “atoms” and a way to
recursively combine kernel over parts to get the kernel
over the whole.
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Fundaments of Tree kernels

E Feature space definition: one feature for each
possible proper subtree in the training data,
feature value = number of occurences

E A subtree is defined as any part of the tree which
Includes more than one node, with the restriction
there is no “partial” rule production allowed.
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Tree Kernels : example

E Example : e S\ N
NP VP \
S VP Mary
NP/ ™ VRN VE
‘ VP v N / \
VAN VN

John

‘ loves
loves Mary

loves Mar
4 ... a few among the

VP
A Parse Tree many subtrees of / \
this tree! \4 N
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Tree Kernels : algorithm

E Kernel = dot product in this high dimensional feature space

E Once again, there is an efficient recursive algorithm (in
polynomial time, not exponential!)

E Basically, it compares the production of all possible pairs of
nodes (n1,n2) (n1€T1, n2 € T2); if the production is the

same, the number of common subtrees routed at both n1
and n2 is computed recursively, considering the number of
common subtrees routed at the common children

E Formally, let K., ,oteq(N1,n2)=number of common subtrees
rooted at both n1 and n2

k(Tl ) Tz) = E 2 kco—rooted (nl ) nz)
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Variant for labeled ordered tree

E Example: dealing with html/xml documents

E Extension to deal with:
¥l Partially equal production
E Children with same labels

B ... but order is important

The subtree

n1 N2
m ﬁ\l
A B
A B C

A A B B A

IS common 4 times
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Dependency Graph Kernel

A sub-graph is a Wlth
connected part 4{]_0@
* with at least two te fsﬁe‘?p ©
l word (and the
labeled edge) the
saw
suf/ Nwith saxgg
man . “
I -obj
ldet tel€scope an
l det det
the

the the

46
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Paired sequence kernel

A subsequence 1s a sub-
sequence of states, withor Noun Verb
without the associated >
word

States Det Noun Verb Det Noun

i A Y R |

words The man Saw The man
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Graph kernels based on Common Walks

E Walk = (possibly infinite) sequence of labels
obtained by following edges on the graph

E Path = walk with no vertex visited twice

E Important concept: direct product of two graphs
G1xG2
EV(G1xG2)={(v1,v2), v1 and v2: same labels)

E E(G1xG2)={(e1,e2): e1, e2: same labels, p(e1) and
p(e2) same labels, n(e1) and n(e2) same labels}

e
O > @ n(e)

p(e)
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Strategies of Design

B Kernel as a way to encode prior information
Invariance: synonymy, document length, ...
Linguistic processing: word normalisation, semantics,
stopwords, weighting scheme, ...
B Convolution Kernels: text is a recursively-defined
data structure. How to build “global” kernels form
local (atomic level) kernels?

| Generative model-based kernels

49
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Plan Global

E Introduction :
E Fouille de textes
B Spécificité des données textuelles

E Approche numero 1 : méthodes a noyaux
E Philosophie des méthodes a noyaux
¥ Noyaux pour les donnees textuelles

E Approche numero 2 : modeles géneratifs
Bl Génératif versus discriminatif — semi-supervisé

E' Modeles graphiques a variables latentes
F Exemples : NB, PLSA, LDA, HPLSA

E Perspectives « récentes »

50
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Generative vs Discriminative

E Generative approach:

E Model P(x,y) (= P(y[x).P(x) = P(x]y).P(y))

E Then, for a new x, choose y = argmax P(X,y)
B Discriminative approach:

E Model P(y|x)

E Then, for a new x, choose y = argmax P(y|x)

E Most advantages for discriminative approach but:

B Semi-supervised learning — continuum between clustering and
categorization

E Novelty Detection

E NB. Most generative approaches use latent variables (hidden
classes or components) — strong link between component and
categories — Then use probabilistic values of these latent variables
as new features in a discriminative setting (cfr. Dimension
reduction — generative model-based kernels)
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Graphical models : NB

.ll:._._.- r --.\"\-“.
Z  ——
x ) _..H,-'

Z W

M

N
p(w) = Zp[:] ﬂp{wﬂ ).

n=l1

E M documents
B N words
E 1! Topic per document

E Supervised case (z
observed):

E Training : Parameters (class
priors and class profiles) by
max likelihood

E Classify : max p(w,z)
E Unsupervised:
Use EM
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PLSA

|

d

7N

—»

N S

W

N

M

pld,wy) =pld) Y pw,|z)p(z|d).

E M documents
E N words

E Multiple Topics per
document

E Supervised case

E Parameters (p(z,d) and
class profiles) by max
likelihood

E Inference : by EM to identify
p(z|d)
E Unsupervised:
Use tempered-EM

53
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M documents
N words
Multiple Topics per document

e — — Dirichlet prior on the topic
L g ——{ ) mixing proportion

Supervised case

M El Parameters (o,p) (class priors

and class profiles) by max
likelihood, given w, 6,z

N _ El Variational Inference : to
de. identify p(0,z| o.,f,w)

E Unsupervised:

Use variational-EM to identify
(a,B) , given observed w

mEEm

AN
7

@ |
.

8]

I::-;:

™




“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

95

The William Randolph Hearst Foundation will give S1.25 mullion to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health. medical research. education
and the social services” Hearst Foundation President Randolph A. Hearst said Monday 1in
announcing the grants. Lincoln Center’s share will be $200.000 for its new building. which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will recerve $400.000 each. The Juilliard School, where music and
the performing arts are taught, will get $250.000. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual S100.000
donation, too.
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Strategies of Design

B Kernel as a way to encode prior information
Invariance: synonymy, document length, ...
Linguistic processing: word normalisation, semantics,
stopwords, weighting scheme, ...
B Convolution Kernels: text is a recursively-defined
data structure. How to build “global” kernels form
local (atomic level) kernels?

| Generative model-based kernels

56
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Remind

E This family of strategies brings you the additional
advantage of using all your unlabeled training
data to design more problem-adapted kernels

E They constitute a natural and elegant way of
solving semi-supervised problems (mix of labelled
and unlabelled data)



AAFD'06
58

Marginalised — Conditional Independence Kernels

E Assume a family of models M (with prior pO(m) on each
model) [finite or countably infinite]

E each model m gives P(x|m)

B Feature space indexed by models: x> P(x|m)

B Then, assuming conditional independence, the joint
probability is given by

Py(x.2)= 3 P(x,z|m)By(m) = P(x|m)P(z| m)E,(m)

B This defines a valid probability-kernel (Cl implies PD
kernel), by marginalising over m. Indeed, the gram matrix
is K=P.diag(P0).P’ (some reminiscence of latent concept
kernels)
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Fisher Kernels

E Assume you have only 1 model
E Marginalised kernel give you little information: only one feature: P(x|m)

E To exploit much, the model must be “flexible”, so that we can measure
how it adapts to individual items - we require a “smoothly”
parametrised model

E Link with previous approach: locally perturbed models constitute our
family of models, but dimF=number of parameters

E More formally, let P(x|6,) be the generative model (6, is typically
found by max likelihood); the gradient reflects how the model
will be changed to accommodate the new point x (NB. In
practice the loglikelihood is used) V, log P(x | &)

é=é0
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Fisher Kernel : formally

E Two objects are similar if they require similar
adaptation of the parameters or, in other words, if
they stretch the model in the same direction:

K(x,y)=

(Vi log P(x|@)],_, )'1; (V,log P(y|&)
Where /), is the Fisher Information Matrix

é=é0 )

I, = E[(V, log P(x|¢)

e, (Ve log P(x|e)

é=é0)']
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Example 2 : PLSA-Fisher Kernels

62

E An example : Fisher kernel for PLSA improves the
standard BOW kernel

P(c|d,).P(c|d ~ ~ P(c|d,,w).P(c|d,,
Kidy ) = 3 AT STy i () 3 T
F where k,(d1,d2) is a measure of how much d1 and d2

share the same latent concepts (synonymy is taken
into account)

E where k,(d1,d2) is the traditional inner product of
common term frequencies, but weighted by the degree
to which these terms belong to the same latent concept
(polysemy is taken into account)
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"New” perspectives

E Multi-lingual

E Multi-media

E Emotion mining

E Structured documents

E Help to labelling — Active learning
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