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Abstract8

We introduce a new class of Parametric Timed Automata (PTAs) where we allow clocks to be9

compared to parameters in guards, as in classic PTAs, but also to be updated to parameters.10

We focus here on the EF-emptiness problem: “is the set of parameter valuations for which some11

given location is reachable in the instantiated timed automaton empty?”. This problem is well-12

known to be undecidable for PTAs, and so it is for our extension. Nonetheless, if we update13

all clocks each time we compare a clock with a parameter and each time we update a clock to14

a parameter, we obtain a syntactic subclass for which we can decide the EF-emptiness problem15

and even perform the exact synthesis of the set of rational valuations such that a given location16

is reachable. To the best of our knowledge, this is the first non-trivial subclass of PTAs, actually17

even extended with parametric updates, for which this is possible.18
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1 Introduction26

Timed automata (TAs) are a powerful formalism to model and verify timed concurrent systems,27

both expressive enough to model many interesting systems and enjoying several decidability28

properties. In particular, the reachability of a discrete state is PSPACE-complete [AD94]. In29

TAs, clocks can be compared with constants in guards, and can be updated to 0 along edges.30

Timed automata may turn insufficient to verify systems where the timing constants31

themselves are subject to some uncertainty, or when they are simply not known at the early32

design stage. Parametric timed automata (PTAs) [AHV93] address this drawback by allowing33

parameters (unknown constants) in the timing constraints; this high expressive power comes34

at the cost of the undecidability of most interesting problems. In particular, the basic problem35

of EF-emptiness (“is the set of valuations for which a given location is reachable in the36

instantiated timed automaton empty?”) is “robustly” undecidable: even for a single rational-37

valued [Mil00] or integer-valued parameter [AHV93, BBLS15], or when only strict constraints38

are used [Doy07]. A famous syntactic subclass of PTAs that enjoys limited decidability is39
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XX:2 Parametric updates in parametric timed automata

L/U-PTAs [HRSV02], where the parameters set is partitioned into lower-bound and upper-1

bound parameters, i. e., parameters that can only be compared to a clock as a lower-bond2

(resp. upper-bound). The EF-emptiness problem is decidable for L/U-PTAs [HRSV02, BL09];3

however, most other problems are undecidable (e. g., [BL09, JLR15, ALR16, AL17]).4

Contributions. We investigate parametric updates, by showing that the EF-emptiness5

problem is decidable for PTAs augmented with parametric updates (i. e., U2P-PTA), with the6

additional condition that whenever a clock is compared to a parameter in a guard, all clocks7

must be updated (possibly to parameters)—this gives R-U2P-PTA. This result holds when8

the parameters are bounded rationals in guards, and possibly unbounded rationals in updates.9

Non-trivial decidable subclasses of PTAs are a rarity (to the best of our knowledge, only10

L/U-PTAs [HRSV02] and IP-PTAs [ALR16]); this makes our positive result very welcome. In11

addition, not only the emptiness is decidable, but exact synthesis for bounded rational-valued12

parameters can be performed—which contrasts with L/U-PTAs and IP-PTAs as synthesis13

was shown intractable [JLR15, ALR16].14

All proofs (or proof sketches) are available in the appendix. In addition, a full version of15

this paper with all detailed proofs is available at [ALR18a].16

Related work. Allowing parameters in clock updates is inspired by the updatable TA17

formalism defined in [BDFP04] where clocks can be updated not only to 0 (“reset”) but18

also to rational constants (“update”). In [ALR18b], we extended the result of [BDFP04] by19

allowing parametric updates (and no parameter elsewhere, e. g., in guards): the EF-emptiness20

is undecidable even in the restricted setting of bounded rational-valued parameters, but21

becomes decidable when parameters are restricted to (unbounded) integers.22

Synthesis is obviously harder than EF-emptiness: only three results have been proposed23

to synthesize the exact set of valuations for subclasses of PTAs, but they are all concerned24

with integer-valued parameters [BL09, JLR15, ALR18b]. In contrast, we deal here with25

(bounded) rational-valued parameters—which makes this result the first of its kind. The26

idea of updating all clocks when compared to parameters comes from our class of reset-PTAs27

briefly mentioned in [ALR16], but not thoroughly studied. Finally, updating clocks on28

each transition in which a parameter appears is reminiscent of the initialized rectangular29

hybrid automata [HKPV98], which remains one of the few decidable subclasses of hybrid30

automata.31

2 Preliminaries32

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e., real-valued variables33

evolving at the same rate. A clock valuation is w : X → R+. We write ~0 for the clock34

valuation that assigns 0 to all clocks. Given d ∈ R+, w+d (resp. w−d) denotes the valuation35

such that (w + d)(x) = w(x) + d (resp. (w − d)(x) = w(x)− d if w(x)− d > 0, 0 otherwise),36

for all x ∈ X. We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown constants. A37

parameter valuation v is a function v : P→ Q+. We identify a valuation v with the point38

(v(p1), . . . , v(pM )) of QM+ . Given d ∈ N, v + d (resp. v − d) denotes the valuation such that39

(v + d)(p) = v(p) + d (resp. (v − d)(p) = v(p)− d if v(p)− d > 0, 0 otherwise), for all p ∈ P.40

In the following, we assume / ∈ {<,≤} and ./ ∈ {<,≤,≥, >}.41

A parametric guard g is a constraint over X ∪ P defined as the conjunction of inequalities42

of the form x ./ z, where x is a clock and z is either a parameter or a constant in Z. A43

non-parametric guard is a parametric guard without parameters (i. e., over X).44

Given a parameter valuation v, v(g) denotes the constraint over X obtained by replacing45

in g each parameter p with v(p). We extend this notation to an expression: a sum or46
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difference of parameters and constants. Likewise, given a clock valuation w, w(v(g)) denotes1

the expression obtained by replacing in v(g) each clock x with w(x). A clock valuation w2

satisfies constraint v(g) (denoted by w |= v(g)) if w(v(g)) evaluates to true. We say that v3

satisfies g, denoted by v |= g, if the set of clock valuations satisfying v(g) is nonempty. We4

say that g is satisfiable if ∃w, v s.t. w |= v(g).5

A parametric update is a partial function u : X ⇀ N ∪ P which assigns to some of the6

clocks an integer constant or a parameter. For v a parameter valuation, we define a partial7

function v(u) : X ⇀ Q+ as follows: for each clock x ∈ X, v(u)(x) = k ∈ N if u(x) = k and8

v(u)(x) = v(p) ∈ Q+ if u(x) = p a parameter. A non-parametric update is unp : X⇀ N. For9

a clock valuation w and a parameter valuation v, we denote by [w]v(u) the clock valuation10

obtained after applying v(u).We first define a new class of parametric timed automata in11

order to properly define further plain parametric timed automata and timed automata.12

I Definition 1. An update-to-parameter PTA (U2P-PTA) A is a tuple A = (Σ, L, l0,X,P, ζ),13

where: i) Σ is a finite set of actions, ii) L is a finite set of locations, iii) l0 ∈ L is the initial14

location, iv) X is a finite set of clocks, v) P is a finite set of parameters, vi) ζ is a finite set of15

edges e = 〈l, g, a, u, l′〉 where l, l′ ∈ L are the source and target locations, g is a parametric16

guard, a ∈ Σ and u : X⇀ N ∪ P is a parametric update function.17

Given a parameter valuation v, we denote by v(A) the structure where all occurrences18

of a parameter pi have been replaced by v(pi). If v(A) is such that all constants in guards19

and updates are rationals, then v(A) is a updatable timed automaton [BDFP04] but will be20

called timed automaton (TA) for the sake of simplicity in this paper.21

A bounded U2P-PTA is a U2P-PTA with a bounded parameter domain that assigns to22

each parameter a minimum integer bound and a maximum integer bound. That is, each23

parameter pi ranges in an interval [ai, bi], with ai, bi ∈ N. Hence, a bounded parameter24

domain is a hyperrectangle of dimension M .25

A parametric timed automaton (PTA) [AHV93] is a U2P-PTA where, for any edge26

e = 〈l, g, a, u, l′〉 ∈ ζ, u : X⇀ {0}.27

I Definition 2 (Concrete semantics of a TA). Given a U2P-PTA A = (Σ, L, l0,X,P, ζ), and28

a parameter valuation v, the concrete semantics of v(A) is given by the timed transition29

system (S, s0,→), with30

S = {(l, w) ∈ L× RH+} , s0 = (l0,~0)31

→ consists of the discrete and (continuous) delay transition relations:32

discrete transitions: (l, w) e7→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists e = 〈l, g, a, u, l′〉 ∈33

ζ, w′ = [w]v(u), and w |= v(g).34

delay transitions: (l, w) d7→ (l, w + d), with d ∈ R+.35

Moreover we write (l, w) e−→ (l′, w′) for a combination of a delay and discrete transitions36

where ((l, w), e, (l′, w′)) ∈ → if ∃d,w′′ : (l, w) d7→ (l, w′′) e7→ (l′, w′).37

Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states of S as the38

concrete states of v(A). A (concrete) run of v(A) is a possibly infinite alternating sequence of39

concrete states of v(A) and edges starting from s0 of the form s0
e0−→ s1

e1−→ · · · em−1−→ sm
em−→40

· · · , such that for all i = 0, 1, . . . , ei ∈ ζ, and (si, ei, si+1) ∈ →. Given a state s = (l, w), we41

say that s is reachable (or that v(A) reaches s) if s belongs to a run of v(A). By extension,42

we say that l is reachable in v(A), if there exists a state (l, w) that is reachable.43

Throughout this paper, let K denote the largest constant in a given U2P-PTA, i. e., the44

maximum between the largest constant compared to a clock in a guard and the largest bound45

of a parameter (if the U2P-PTA is bounded).46



XX:4 Parametric updates in parametric timed automata

Let us recall the notion of clock region [AD94]. Given a clock x and a clock valuation w,1

recall that bw(x)c denotes the integer part of w(x) while frac(w(x)) denotes its fractional2

part. We define the same notation for parameter valuations.3

I Definition 3 (clock region). For two clock valuations w and w′, ∼ is an equivalence relation4

defined by: w ∼ w′ iff5

1. for all clock x, either bw(x)c = bw′(x)c or w(x), w′(x) > K;6

2. for all clocks x, y with w(x), w(y) ≤ K, frac(w(x)) ≤ frac(w(y)) iff frac(w′(x)) ≤7

frac(w′(y));8

3. for all clock x with w(x) ≤ K, frac(w(x)) = 0 iff frac(w′(x)) = 0.9

A clock region Rc is an equivalence class of ∼.10

Two clock valuations in the same clock region reach the same regions by time elapsing,11

satisfy the same guards and can take thus the same transitions [AD94].12

In this paper, we address the EF-emptiness problem: given a U2P-PTA A and a13

location l, is the set of valuations v such that l is reachable in v(A) empty?14

3 A decidable subclass of U2P-PTAs15

We now impose that, whenever a guard or an update along an edge contains parameters,16

then all clocks must be updated (to constants or parameters) and prove that it makes17

EF-emptiness decidable.18

I Definition 4. An R-U2P-PTA is a U2P-PTA where for any edge e = 〈l, g, a, u, l′〉, u is a19

total function whenever:120

1. g is a parametric guard, or21

2. u(x) ∈ P for some x ∈ X,22

I Example 5. Consider the R-U2P-PTA in Figure 1a with five locations, three parametric23

clocks (x, y, t), one constant (max) and two parameters (p1, p2). As a motivating toy24

example, consider the case of a network of peers exchanging transactions grouped by blocks,25

e. g., a blockchain, using the Proof-of-Work as a mean to validate new blocks to add. In this26

simplified example, we consider a set of two peers (represented by x, y) which have different27

computation power (represented by p1, p2). We ask: “what are the possible computation power28

configurations so that there is an execution s.t. x is eventually rewarded” (EF (rewardx)-29

synthesis). A peer can write a new transaction on the current block (newTx). If it is full30

(t = p), it will try to add a new block (newBlock) to write the transaction on it. We update x31

to p1, y to p2, and t to 0 as the peers have a different power computation, and they start32

“mining” the block (find a solution to a computation problem). Either x or y will eventually33

find the solution (blockSolutionx if x = max or blockSolutiony if y = max) and be rewarded.34

Finally, the other peer checks for the solution (verifyBlock when it reaches max) and the35

block is added to the blockchain (addBlock).36

1 In the following we only consider either non-parametric, or (necessarily total) fully parametric update
functions. A total update function which is not fully parametric (i. e., an update of some clocks to
parameters and all others to constants) can be encoded as a total fully parametric update immediately
followed by a (partial) non-parametric update function.
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idle mine

rewardx

rewardy

checked

newTx

newBlock
t = p

x := p1
y := p2
t := 0

blockSolutionx
x = max ∧ y < max

blockSolutiony
y = max ∧ x < max

verifyBlock
y = max

verifyBlock
x = max

addBlock
x := 0
y := 0
t := 0

(a) A peer modeled with a bounded R-U2P-PTA

y

(k, k + 1)

v(p1)

(k, k)
v(p2)

(k + 2, k) x

frac(v(p2)) frac(v(p2)) + 1− frac(v(p1))

frac(v(p2)) + 1− frac(v(p1))

frac(v(p1))− frac(v(p2))

1− frac(v(p2))

1− frac(v(p1))

(b) A point–p–PDBM (black dot) and several open–
p–PDBMs resulting of time elapsing in green, up-
date of y to k in red, update of x to k in blue and
time elapsing in purple, with k ∈ N.

Figure 1 A motivating example of bounded R-U2P-PTA, and a representation of p–PDBMs

The main idea for proving decidability is the following: as in [AD94], given an R-U2P-PTA1

A we want to construct a finite region automaton that bisimulates A. For this purpose, we2

construct regions for clocks and parameters, of which we will show there is a finite number.3

Since parameters are allowed in guards, we need to construct parameter regions and more4

restricted clock regions. We will define a form of Parametric Difference Bound Matrices5

(viz., p–PDBMs for precise PDBMs, inspired by [HRSV02]) in which, once valuated by a6

parameter valuation, two clock valuations have the same discrete behavior and satisfy the7

same non-parametric guards. A key point is that in our p–PDBMs the parametric constraints8

used in the matrix will belong to a finite set of predefined expressions involving parameters9

and constants. We define this set as follows: PLT = {frac(pi), 1 − frac(pi), frac(pi) −10

frac(pj), frac(pj) + 1 − frac(pi), 1, 0, frac(pi) − 1 − frac(pj),−frac(pi), frac(pi) − 1}, for all11

1 ≤ i, j ≤M .12

Let us now define an equivalence relation between parameter valuations.13

I Definition 6 (regions of parameters). We write that v _ v′ if14

1. for all parameter p, bv(p)c = bv′(p)c;15

2. for all d1, d2, d3 ∈ PLT , v(d1) ≤ v(d2) + v(d3) iff v′(d1) ≤ v′(d2) + v′(d3);16

Parameter regions are defined as the equivalence classes of _, and we will use the17

notation Rp for parameter regions. The set of all parameter regions is denoted by Rp. The18

definition is in a way similar to Definition 3 but also involves comparisons of sums of elements19

of PLT . In fact, we will need this kind of comparisons to define our p–PDBMs. Nonetheless20

we do not need more complicated comparisons as in R-U2P-PTA whenever a parametric21

guard or update is met the update is a total function: this preserves us from the parameter22

accumulation, e. g., obtaining expressions of the form 5frac(pi) − 1 − 3frac(pj) (that may23

occur in usual PTAs).24

In the following, our p–PDBMs will contain pairs of the form D = (d, /), where d ∈ PLT .25

We therefore need to define comparisons on these pairs.26

We define an associative and commutative operator ⊕ as /1 ⊕ /2 = < if /1 6= /2, or /1 if27

/1 = /2. We define D1 +D2 = (d1 + d2, /1⊕ /2). Following the idea of parameter regions, we28

define the validity of a comparison between pairs of the form (di, /i) within a given parameter29

region, i. e., whether the comparison is true for all v in the parameter region.30
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I Definition 7 (validity of comparison). Let Rp be a parameter region. Given any two linear1

terms d1, d2 over P (i. e., of the form
∑
i αipi + d with αi, d ∈ Z) not necessarily in PLT ,2

the comparison (d1, /1) / (d2, /2) is valid for Rp if:3

1. / = <, and either4

a. for all v ∈ Rp, v(d1) < v(d2) evaluates to true regardless of /1, /2, or5

b. for all v ∈ Rp, v(d1) ≤ v(d2) evaluates to true, /1 = < and /2 = ≤;6

2. / = ≤, and either7

a. for all v ∈ Rp, v(d1) < v(d2) evaluates to true regardless of /1, /2, or8

b. for all v ∈ Rp, v(d1) ≤ v(d2) evaluates to true, and /1 = /2, or /1 = <;9

Transitivity is immediate from the definition: if D1 /1 D2 and D2 /2 D3 are valid for Rp,10

D1(/1 ⊕ /2)D3 is valid for Rp.11

We can now define our data structure, namely p–PDBMs (for precise Parametric Difference12

Bound Matrices), inspired by the PDBMs of [HRSV02]; PDBMs were themselves inspired13

by DBMs [Dil89]. However, our p–PDBM compare differences of fractional parts of clocks,14

instead of clocks as in classical DBMs; therefore, our p–PDBMs are closer to clock regions15

of [AD94] than to DBMs. A p–PDBM is a pair made of an integer vector (encoding the16

clocks integer part), and a matrix (encoding the parametric differences between any two17

clock fractional parts). Their interpretation also follows that of PDBMs and DBMs: for18

i 6= 0, the matrix cell Di,0 = (di,0, /i0) is interpreted as the constraint frac(xi) /i0 di,0, and19

D0,i = (d0,i, /0i) as the constraint −d0,i /0i frac(xi). For i 6= 0 and j 6= 0, the matrix cell20

Di,j = (di,j , /ij) is interpreted as frac(xi)− frac(xj) /ij di,j . Finally for all i, Di,i = (0,≤).21

Our p–PDBMs are partitioned into two types: open–p–PDBMs and point–p–PDBMs. A22

point–p–PDBM is a clock region defined by only parameters which contains only one clock23

valuation; that is, it corresponds to a set of inequalities of the form xi = pj . In contrast,24

an open–p–PDBM is a clock region which can contain several clock valuations satisfying25

some possibly parametric constraints, or contain at least one clock valuation satisfying26

non-parametric constraints (as the corner-point of [AD94]). In particular, the initial clock27

region {0H} and any clock region {EHi } where Ei is an integer vector for all clock xi, is an28

open–p–PDBM.29

Basically, only the first p–PDBM after a (necessarily total) parametric clock update will30

be a point–p–PDBM; any following p–PDBM will be an open–p–PDBM until the next (total)31

parametric update.32

I Definition 8 (open–p–PDBM). Let Rp be a parameter region. An open–p–PDBM for Rp33

is a pair (E,D) with E = (E1, · · · , EH) a vector of H integers (or ∞ when it exceeds a34

possible upper-bound) which is the integer part of each clock, and D is an (H + 1)2 matrix35

where each element Di,j is a pair (di,j , /ij) for all 0 ≤ i, j ≤ H, where di,j ∈ PLT . Moreover,36

for all 0 ≤ i ≤ H, Di,i = (0,≤). In addition:37

1. For all i, (−1, <) ≤ D0,i ≤ (0,≤) and (0,≤) ≤ Di,0 ≤ (1, <) are valid for Rp,38

2. For all i 6= 0, j 6= 0, either (0,≤) ≤ Di,j ≤ (1, <) is valid for Rp and (−1, <) ≤ Dj,i ≤39

(0,≤) is valid for Rp or (0,≤) ≤ Dj,i ≤ (1, <) is valid for Rp and (−1, <) ≤ Di,j ≤ (0,≤)40

is valid for Rp.41

3. For all i, j, if di,j = −dj,i and is different from 1 then /ij = /ji = ≤, else /ij = /ji = <,42

4. For all i, j, k, Di,j ≤ Di,k +Dk,j is valid for Rp (canonical form), and43

5. a. (Border open–p–PDBM) there is at least one i s.t. Di,0 = D0,i = (0,≤), or44

b. (Center open–p–PDBM) there is at least one i s.t. Di,0 = (1, <) and for all j s.t.45

D0,j = (0, /oj), then we have /oj = <.46
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An open–p–PDBM satisfying condition 5a can be seen as a subregion of an open line1

segment or a corner point region of [AD94, fig. 9 example 4.4] and one satisfying condition 5b2

can be seen as a subregion of an open region of [AD94, fig. 9 example 4.4]. Remark that sets3

of the form {frac(w(x)) | 0 ≤ frac(w(x)) ≤ 1} are forbidden by Definition 8 (3), as in the4

regions of [AD94].5

Let Rp be a parameter region. In the following, p–PDBM�(Rp) is the set of all possible6

open–p–PDBMs (E,D) for Rp.7

The second type is the point–p–PDBM. It represents the unique clock valuation (for a8

given parameter valuation) obtained after a total parametric update in an U2P-PTA.9

I Definition 9 (point–p–PDBM). Let Rp be a parameter region. A point–p–PDBM for Rp is10

a pair (E,D) where D is an (H + 1)2 matrix where each element Di,j is a pair (di,j ,≤) and11

for all 0 ≤ i, j ≤ H, di,0 = frac(p1) = −d0,i, and di,j = frac(p1)− frac(p2) = −dj,i, for any12

p1, p2 ∈ P. and for all 1 ≤ i ≤ H, Ei = bpkc if di,0 = frac(pk), for 1 ≤ k ≤M . In addition:13

1. For all i, (−1, <) ≤ D0,i ≤ (0,≤) and (0,≤) ≤ Di,0 ≤ (1, <) are valid for Rp,14

2. For all i, j, k, Di,j ≤ Di,k +Dk,j is valid for Rp (canonical form).15

The fact that D is antisymmetric i. e., for all i, j, Di,j = −Dj,i, means that each clock is16

valuated to a parameter and each difference of clocks is valuated to a difference of parameters.17

The set of all point–p–PDBM for Rp is denoted by p–PDBM�(Rp), and the set of all p–18

PDBMs forRp by p–PDBM(Rp) (hence p–PDBM(Rp) = p–PDBM�(Rp)∪p–PDBM�(Rp)).19

Given a p–PDBM (E,D) and a parameter valuation v, we denote by (E, v(D)) the20

valuated p–PDBM, i. e., the set of clock valuations defined by:21 ∧
i,j∈[0,H]

frac(xi)− frac(xj) /i,j v(di,j) ∧
∧

i∈[1,H]

bxic = Ei.22

For a clock valuation w, we write w ∈ (E, v(D)) if it satisfies all constraints of (E, v(D)).23

In the following subsections Sections 3.1.1 to 3.1.4, we are going to define operations24

on p–PDBMs (i. e., update of clocks, time elapsing and guards satisfaction), and will show25

that the set of p–PDBMs is stable under them. But let us first clarify our needs graphically.26

I Example 10. Let v be a parameter valuation. We assume bv(p2)c = bv(p1)c = k and27

frac(v(p1)) > frac(v(p2)). In Figure 1b, the black lines represent clock regions as defined28

in [AD94]. The p–PDBM represented as a big dot is obtained after an update u(x) = v(p2)29

and u(y) = v(p1). It is a point–p–PDBM. The green p–PDBM is obtained by time elapsing30

from the black point–p–PDBM. Here the blue p–PDBM is obtained after an update u(y) = k31

where k ∈ N, i. e., frac(y) = 0, while in the green p–PDBM, before it reaches its upper bound32

1 and time elapsing. The purple one is obtained after letting time elapse from the blue one.33

The red p–PDBM is obtained after an update u(x) = k where k ∈ N, i. e., frac(x) = 0 while34

in the green p–PDBM, with the same conditions, and time elapsing.35

3.1 Operations on p–PDBMs36

3.1.1 Non-parametric update37

Algorithm 1: update(D,unp):
for all clock xi where unp
is defined, update
frac(xi) := 0

1 foreach xi where unp(xi)
is defined do

2 Di,0 := D0,i = (0,≤)
3 for j from 1 to H do
4 Di,j = D0,j
5 Dj,i = Dj,0

6 end
7 end

To apply a non-parametric update on a p–PDBM, following38

classical algorithms for DBMs [BY03], we define an update39

operator, given in Algorithm 1.40

I Definition 11 (update of a p–PDBM). Let unp be41

a non-parametric update function. Given (E,D) ∈42
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p–PDBM(Rp), we define the update of (E,D), denoted1

by (E′, D′) = update((E,D), unp) as: D′ is the result2

of Algorithm 1 and for each clock x if unp(x) is defined3

E′x := unp(x), E′x := Ex otherwise.4

I Lemma 12 (stability under update). Let Rp be a parame-5

ter region and (E,D) ∈ p–PDBM(Rp). Let unp be a non-6

trivial non-parametric update. Then update((E,D), unp) ∈7

p–PDBM�(Rp).8

Proof idea. Intuitively, we update in (E,D) the lower and upper bounds of some clocks9

to (0,≤) and the difference between two clocks Di,j to D0,j if xi is updated: that is, the new10

difference between two clocks if one has been updated is just the lower/upper bound of the11

one that is not updated. This allows us to conserve the canonical form as we only “moved”12

some cells in D that already verified the canonical form. See Appendix .1 for details. J13

Applying a non-parametric update on any point–p–PDBM transforms it into an open–14

p–PDBM, and open–p–PDBMs are stable under update. It can seem a paradox that the15

(non-parametric) update of a point–p–PDBM becomes an open–p–PDBM; in fact, it remains16

geometrically speaking a point, i. e., a singleton containing one clock valuation. Recall17

that our open–p–PDBMs include p–PDBMs geometrically corresponding to a point for each18

valuation. In contrast, point–p–PDBMs are also punctual (for each valuation), but are fully19

parametric.20

The following lemma states that the update operator behaves as expected.21

I Lemma 13 (semantic of update on p–PDBM(Rp)). Let Rp be a parameter region and22

(E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. Let unp be a non-parametric update. For all w,23

w ∈ update((E, v(D)), unp) iff w′ ∈ (E, v(D)) for some w′ s.t. w = [w′]unp
.24

Proof idea. The technical part is (⇒). The idea is to prove that, given w′ ∈ update((E, v(D)), unp)25

there is a non-empty set of clock valuations w s.t. w′ = [w]unp
that is precisely defined by26

the constraints in (E, v(D)). See Appendix .2 for details. J27

3.1.2 Time elapsing28

Given Rp and (E,D) ∈ p–PDBM�(Rp), we show that the clocks with the (possibly para-29

metric) largest fractional part i. e., the clocks that have a larger fractional part than any30

other clock, can always be identified by their bounds in D.31

I Definition 14 (clocks with the largest fractional part in a p–PDBM). Let Rp be a parameter32

region and (E,D) ∈ p–PDBM(Rp). A clock with the (possibly parametric) largest fractional33

part is a clock x s.t. for all 0 ≤ i ≤ H, 0 ≤ Dx,i is valid for Rp.34

There is at least one clock with the (possibly parametric) largest fractional part:35

I Lemma 15 (existence of a clock with the largest fractional part). Let Rp be a parameter36

region and (E,D) ∈ p–PDBM(Rp). There is at least one clock x s.t. for all 0 ≤ i ≤ H,37

0 ≤ Dx,i is valid for Rp.38

Algorithm 2: TE<((E,D)):
set upper bound of all frac(xi) ∈
LFPRp

(D) to 1

1 pick xi ∈ LFPRp(D)
2 for j from 1 to H do
3 if j ∈ LFPRp(D) then
4 Dj,0 := (1, <)
5 else
6 Dj,0 := Dj,i + (1, <)
7 end
8 D0,j := D0,j + (0, <)
9 end

Note that several clocks may have the largest frac-39

tional parts (up to some syntactic replacements , in40

that case they satisfy the same constraints in (E,D)).41
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For a p–PDBM (E,D), we define the set of clocks with1

the largest fractional part (LFP) as LFPRp
(D) = {x ∈2

[1, H] | 0 ≤ Dx,i is valid for Rp, for all 0 ≤ i ≤ H}.3

As we are able, thanks to the parameter regions,4

to order our parameter valuations (i. e., whether5

one is greater or less than another one), we can de-6

fine LFP from the constraints defined in the point–p–7

PDBM. We will define and apply successively two8

time-elapsing algorithms: the first one starts from a9

point–p–PDBM or an open–p–PDBM respecting con-10

dition Definition 8 (5a). We will prove that we obtain an open–p–PDBM respecting condition11

Definition 8 (5b). The second one, starts from an open–p–PDBM respecting condition12

Definition 8 (5b) and will define the set of constraints defining the possible clocks valuations13

exactly when any clock of LFP has reached its upper bound 1. We will prove that we obtain14

an open–p–PDBM respecting condition Definition 8 (5a). As we will obtain at each iteration15

of the algorithm an open–p–PDBM respecting either condition Definition 8 (5a) or (5b), this16

will prove we have a stable set of open–p–PDBMs. Now we explain our algorithms more17

precisely.18

Algorithm 3: TE=((E,D)):
set upper and lower bound of
all frac(xi) ∈ LFPRp(D) to 1

1 pick xi ∈ LFPRp
(D)

2 for j from 1 to H do
3 if j ∈ LFPRp

(D) then
4 Dj,0 := (0,≤)
5 D0,j := (0,≤)
6 Ej := Ej + 1
7 else
8 Dj,0 := Dj,i + (1,≤)
9 D0,j := Di,j + (−1,≤)

10 end
11 end
12 for j from 1 to H do
13 Dj,i := Dj,0
14 Di,j := D0,j

15 end

Clocks belonging to LFP are the first to reach the19

upper bound 1 by letting time elapse. Since LFP20

can contain multiple clocks and they have the same21

fractional part, we can consider any x ∈ LFP.22

Let (E,D) ∈ p–PDBM(Rp) and xi ∈ LFPRp
(D).23

To formalize time elapsing until the largest fractional24

part frac(x) reaches 1, we define two algorithms, TE<25

and TE=.26

The first one TE< is applied to point–p–PDBMs27

and open–p–PDBMs respecting condition 5a; it28

sets Dx,0 := (1, <) and D0,x := D0,x + (0, <) for29

all x ∈ LFPRp
(D). Then, for all clocks 1 ≤ j ≤ H30

not in LFP sets Dj,0 := Dj,i + (1, <) and D0,j :=31

D0,j + (0, <). This gives the range of possible clock32

valuations before frac(xi) reaches 1. The obtained33

result is denoted by TE<((E,D)), and it leaves E34

unchanged. The second one TE= is applied to open–35

p–PDBMs respecting condition 5b and sets Dx,0 :=36

(0,≤) and D0,x := (0,≤) for all x ∈ LFPRp
(D). Then, for all clocks xj ∈ H \ LFPRp

(D) sets37

D0,j := (−1,≤) +Di,j and Dj,0 := Dj,i + (1,≤); it gives the range of clock valuations when38

frac(x) reaches 1, and increments Ex, for x ∈ LFPRp
(D). It then sets, regardless of whether39

xj ∈ LFPRp
(D) Di,j := D0,j and Dj,i := Dj,0. The last step is to set Ex to ∞ if Ex > K40

(the maximum between constants and parameter bounds in the R-U2P-PTA) or is ∞. The41

obtained result is denoted by TE=((E,D)).42

I Definition 16 (time elapsing in a p–PDBM). Let Rp be a parameter region and (E,D) ∈43

p–PDBM�(Rp) ∪ p–PDBM�(Rp). We define (E′, D′) = TE((E,D)) as applying either44

TE< if (E,D) respects condition 5a or (E,D) ∈ p–PDBM�(Rp), or TE= if (E,D) respects45

condition 5b.46

I Lemma 17 (stability under time elapsing). Let Rp be a parameter region. Let (E,D) ∈47

p–PDBM(Rp). Then TE((E,D)) ∈ p–PDBM(Rp).48
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Proof idea. The idea is to apply the time elapsing to a p–PDBM (depending on its type),1

and to check that the result still matches our Definition 8. Although we perform some2

additions such as Dj,i + (1, <), we do not create new expressions that are not in PLT . In3

fact, this addition is performed on a negative term (e. g., frac(p)−1), as xi is a clock with the4

largest fractional part and adding 1 transforms it into another term of PLT . The intuition5

is similar when performing additions such as Di,j + (−1,≤): as xi is a clock with the largest6

fractional part, di,j is a positive term. See Appendix .3 for details. J7

Note that, from Lemma 17 (E′, D′) is always an open–p–PDBM. open–p–PDBMs are8

stable under TE< and TE=, switching the condition they respect (5a, 5b). Applying TE<9

on a point–p–PDBM transforms it into an open–p–PDBM. The following proposition proves10

that time elapsing behaves as we expect.11

I Proposition 18 (semantic of p–PDBM under TE). Let Rp be a parameter region and12

(E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. There exists w′ ∈ TE((E, v(D))) iff there exist13

w ∈ (E, v(D)) and a delay δ s.t. w′ = w + δ.14

Proof idea. This proof is quite technical. Intuitively, we bound the difference of each upper15

bound v(di,0) and w(xi) and each lower bound v(d0,i) and w(xi). This allows us to take a16

delay δ inside these bounds that allows us to reach the next p–PDBM. See Appendix .19 for17

details. J18

3.1.3 Non-parametric guard19

We claim that intersecting a non-parametric guard with a p–PDBM does not affect the20

p–PDBM. It is sufficient to test whether the solution set is empty or not, and it is non empty21

if and only if every clock valuation in the p–PDBM satisfies the guard.22

Our idea is to define a clock region “larger” than our p–PDBM and show that, even for23

this (larger) clock region, either all clock valuations satisfy the guard—or none do.24

I Definition 19. Let Rp be a parameter region, v ∈ Rp. Let (E,D) be a p–PDBM for Rp.25

We define the clock region containing (E, v(D)), denoted by [(E, v(D))]Rc
, as follows: for all26

w ∈ [(E, v(D))]Rc , for all clocks xi, xj ,27

if Exi
< K, bw(xi)c = Exi

, else if Exi
=∞, w(xi) ≥ K28

if (0,≤) < Di,j is valid for Rp and Exi
< K, frac(w(xj)) < frac(w(xi))29

if (0,≤) = Di,j is valid for Rp and Exi
< K, frac(w(xj)) = frac(w(xi))30

if Di,0 = D0,i = (0,≤) and Exi < K, frac(w(xi)) = 0.31

if Di,0 6= (0,≤), D0,i 6= (0,≤) and Exi
< K, frac(w(xi)) 6= 0.32

I Lemma 20. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. We have (E, v(D)) ⊆33

[(E, v(D))]Rc
.34

Proof. Clock regions of Definition 3 define constraints on clocks of the form 0 = frac(x),35

0 < frac(x) < 1, 0 = frac(x)−frac(y) and 0 < frac(x)−frac(y) < 1 for some x, y, and bxc = k36

for some integer k. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. It defines a set of constraints37 ∧
i,j∈[0,H]2

frac(xi)− frac(xj) /i,j v(di,j) ∧
∧

i∈[1,H]

bxic = Ei.38

traints
∧
i∈[1,H]bxic = Ei. Clearly, if w ∈ (E, v(D)) satisfies bxic = Ei then it satisfies39

the same constraint defined in [(E, v(D))]Rc .40

Consider the constraints frac(xi)− frac(xj) /i,j v(di,j) and frac(xj)− frac(xi) /j,i v(dj,i).41
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If i, j are both different from 0. From Definition 8 (3) and Definition 9, either di,j = dj,i1

and then /i,j = ≤ = /j,i, then if di,j = dj,i = 0 it satisfies the same constraint defined2

in [(E, v(D))]Rc
, or di,j and dj,i are different from 0, as they are elements of PLT3

which are strictly smaller than 1, it satisfies either 0 < frac(xi) − frac(xj) < 1 or 0 =4

frac(xi) − frac(xj) in [(E, v(D))]Rc
. Finally if di,j 6= dj,i, then /i,j = < = /j,i and it5

satisfies 0 < frac(xi)− frac(xj) < 1 in [(E, v(D))]Rc .6

If i is different from 0 and j = 0. From Definition 8 (3) and Definition 9, either di,0 = d0,i7

and then /i,0 = ≤ = /0,i, then if di,0 = d0,i = 0 it satisfies the same constraint defined8

in [(E, v(D))]Rc
, or di,0 and d0,i are different from 0, as they are elements of PLT which are9

strictly smaller than 1, it satisfies either 0 < frac(xi) < 1 or 0 = frac(xi) in [(E, v(D))]Rc
.10

Finally if di,0 6= d0,i, then /i,0 = < = /0,i and it satisfies 0 < frac(xi) < 1 in [(E, v(D))]Rc
.11

The case j is different from 0 and i = 0 is similar.12

If both i, j are 0, the constraint is not taken into account as we have not x0 in [(E, v(D))]Rc
.13

Finally, we have that if w ∈ (E, v(D)) then w ∈ [(E, v(D))]Rc
. J14

From [AD94, Section 4.2] we have that either every clock valuation of a clock region15

satisfies a guard, or none of them does. As a p–PDBM for Rp is contained into its containing16

clock region from Lemma 20, we have that if w ∈ (E, v(D)) satisfies a non-parametric guard g,17

then for all w′ ∈ (E, v(D)) we also have w′ satisfies g.18

Let v ∈ Rp. We define v ∈ guard∀(g,E,D) iff for all w ∈ (E, v(D)), w |= g. As any19

two v, v′ ∈ Rp satisfy the same constraints, we state the following lemma:20

I Lemma 21. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. Let g be a non-parametric21

guard. If v ∈ guard∀(g,E,D), then for all v′ ∈ Rp, v′ ∈ guard∀(g,E,D).22

Proof. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. It defines a set of constraints23 ∧
i,j∈[0,H]2

frac(xi)− frac(xj) /i,j v(di,j) ∧
∧

i∈[1,H]

bxic = Ei.24

Moreover, let g be a non-parametric guard. It defines a set of constraints for a finite number25

of integer constants ki with i ∈ I ⊆ [1, H]26 ∧
i∈I

frac(xi) ≤ 0 ∧
∧
i∈I
−frac(xi) ≤ 0 ∧

∧
i∈I
bxic ./ ki.27

The intersection between the two is given by the conjunction of those constraints. We28

project this intersection on parameter variables (by elimination of clock variables) and we29

prove that the intersection does not create new constraints on parameters different from30

those we already have in (E, v(D)) (and therefore in Rp). For some set of clocks I ⊆ [1, H]31

and i ∈ I, suppose we have the constraints frac(xi) ≤ 0 and −frac(xi) ≤ 0 in g. When32

eliminating xi in any constraint of the form frac(xi) − frac(xj) /i,j v(di,j), it is clear that33

we proceed on PLT to the operation (0,≤) + (di,j , /i,j) = (0 + di,j ,≤ ⊕/i,j) = (di,j , /i,j).34

The same way on any constraint of the form frac(xi) /i,0 v(di,0), eliminating xi gives the35

constraint (0,≤) + (di,0, /i,0) = (di,0, /i,0). Hence it does not create new inequalities not36

belonging to Rp.37

Now suppose v ∈ guard∀(g,E,D). We have that all w ∈ (E, v(D)) satisfies g. As no new38

constraints not in PLT have been created, all v′ ∈ Rp respect the same constraints on their39

fractional part and integer part as v and therefore, (E, v′(D)) is contained in the same clock40

region as (E, v(D)) is, i. e., [(E, v(D))]Rc = [(E, v′(D))]Rc . Finally, v′ ∈ guard∀(g,E,D). J41
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3.1.4 Parametric guard1

We assume a parametric guard g composed of conjunctions of comparisons x ./ p for some2

clocks x and parameters p and x ./ k for some integers. We focus here on the conjunctions of3

comparisons x ./ p. Given (E,D) ∈ p–PDBM(Rp) and v ∈ Rp, we compute the intersection4

between the set of constraints defined by (E,D) and g. We again prove that it does not5

create new constraints on parameters different from those in Rp. This is a key point in the6

overall process of proving the decidability of our R-U2P-PTAs.7

Claim: Let (E,D) ∈ p–PDBM(Rp) and v ∈ Rp. Let g be a parametric guard. The8

projection onto the parameters of the intersection of (E, v(D)) and v(g) is contained in Rp.9

As for the previous result, using a projection on parameters i. e., eliminating clocks, does10

not create new constraints on parameters that are not already in a parameter region Rp.11

Indeed, a parametric guard g only adds new constraints of the form x ./ p which gives, when12

eliminating clocks in both a p–PDBM (E,D) and a parametric guard, again a comparison13

between elements of PLT . Therefore, these new constraints already belong to PLT and we14

can decide whether the set of clock valuations satisfying this set of constraints is non-empty15

i. e., given v ∈ Rp, v(g) is satisfied by some clock valuation w ∈ (E, v(D)). See Appendix A16

for a detailed argument.17

Note that there will also be additional constraints involving clocks (with other clocks,18

constants or parameters), but they will not be relevant as we immediately update all clocks,19

therefore replacing these constraints with new constraints encoding the clock updates.20

Let v ∈ Rp. We define v ∈ p-guard∃(g,E,D) iff there is a w ∈ (E, v(D)) s.t. w |= v(g).221

Again, as any two v, v′ ∈ Rp satisfy the same constraints, we state the following lemma:22

I Lemma 22. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. Let g be a parametric guard.23

If v ∈ p-guard∃(g,E,D), then for all v′ ∈ Rp, v′ ∈ p-guard∃(g,E,D).24

Proof. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. Let g be a parametric guard and25

suppose v ∈ p-guard∃(g,E,D). After applying a projection on parameters, we obtain a set26

of constraints on elements of PLT . By hypothesis, all these constraints are satisfied by v.27

Suppose v′ ∈ Rp. By definition of our parameter regions, and since v and v′ both belong28

to Rp, v′ satisfies the same set of constraints on elements of PLT . Therefore, the same set29

of constraints is satisfied by v′ and v′ ∈ p-guard∃(g,E,D). J30

Now that we have defined useful operations on p–PDBMs, we are going, given a parameter31

region Rp, to construct a finite region automaton in which for any run, there is an equivalent32

concrete run in the R-U2P-PTA.33

3.2 Parametric region automaton34

I Definition 23 (clock valuations in equivalent valuated p–PDBMs). Let Rp be a parameter35

region. l is an equivalence relation defined by: (w, v) l (w′, v′) iff v ∈ Rp, v′ _ v, there36

is (E,D) ∈ p–PDBM(Rp) s.t. w ∈ (E, v(D)) and w′ ∈ (E, v′(D)).37

Let (E,D) ∈ p–PDBM(Rp), we say (E′, D′) ∈ Succ((E,D))⇔ ∃ i ≥ 0 s.t. (E′, v(D′)) =38

TE i((E,D)). In other words, (E′, D′) is obtained after applying TE((E,D)) a finite number39

of times. Succ((E,D)) is also called a time successor of (E,D).40

2 Remark that here is why our construction works for EF-emptiness, but cannot be used for, e. g.,,
AF-emptiness (“is there a parameter valuation such that all runs reach a goal location l”): un-
like guard∀(g, E, D), not all clock valuations in a p–PDBM (E, v(D)) can satisfy a parametric guard
if v ∈ p-guard∃(g, E, D).
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Given (E,D) ∈ p–PDBM(Rp) we write update((E,D), u) to denote the update of (E,D)1

by u, when u is a total parametric update function, i. e., updating the set of clocks exclusively2

to parameters. We therefore obtain a point–p–PDBM, containing the parametric set of3

constraints defining a unique clock valuation. Recall that a total update function which4

is not fully parametric (i. e., an update of some clocks to parameters and some others to5

constants) can be encoded as a total parametric update immediately followed by a partial6

non-parametric update function.7

In order to finitely bisimulate an R-U2P-PTA, we create a parametric region automaton.8

I Definition 24 (Parametric region automaton). Let Rp be a parameter region. For an9

R-U2P-PTA A = (Σ, L, l0,X,P, ζ), given (E0, D0) the initial open–p–PDBM {~0} ×Rp, the10

parametric region automaton R(A) over Rp is the tuple (L′,Σ, L′0, ζ ′) where:11

1. L′ = L× p–PDBM(Rp)12

2. L′0 = (l0, (E0, D0))13

3. ζ ′ = {
(
(l, (E,D)), e, (l′, (E′, D′)

)
∈ L′ × ζ × L′ | either ∃e = 〈l, g, a, unp, l′〉 ∈ ζ, g14

is a non-parametric guard, ∃(E′′, D′′) ∈ Succ((E,D)), Rp ⊆ guard∀(g, (E′′, D′′)) and15

(E′, D′) = update(E′′, D′′, unp) is an open–p–PDBM, or ∃e = 〈l, g, a, u, l′〉 ∈ ζ, g is a16

parametric guard, ∃(E′′, D′′) ∈ Succ((E,D)), Rp ⊆ p-guard∃(g, (E′′, D′′)) and (E′, D′) =17

update(E′′, D′′, u) is a point–p–PDBM.}18

Let Rp be a parameter region, A be an R-U2P-PTA and R(A) = (L′,Σ, L′0, ζ ′) its19

parametric region automaton over Rp. A run in R(A) is an untimed sequence20

σ : (l0, (E0, D0))e0(l1, (E1, D1))e1 · · · (li, (Ei, Di))ei(li+1, (Ei+1, Di+1))ei+1 · · · such that for21

all i we have
(
(li, (Ei, Di)), ei, (li+1, (Ei+1, Di+1))

)
∈ ζ ′, which we also write (li, (Ei, Di))

ei−→22

(li+1, (Ei+1, Di+1)) where ei. Note that we label our transitions with the edges of the R-23

U2P-PTA.24

3.3 Decidability of EF-emptiness and synthesis25

Using our construction of the parametric region automaton R(A) for a given R-U2P-PTA A,26

we state in the next proposition that there is a bisimulation between A and R(A).27

I Proposition 25. Let Rp be a parameter region. Let A be an R-U2P-PTA and R(A) its28

parametric region automaton over Rp. There is a run σ : (l0, (E0, D0)) e0−→ (l1, (E1, D1)) e1−→29

· · · (lf−1, (Ef−1, Df−1)) ef−1−→ (lf , (Ef , Df )) in R(A) iff for all v ∈ Rp there is a run ρ :30

(l0, w0) e0−→ (l1, w1) e1−→ · · · (lf−1, wf−1) ef−1−→ (lf , wf ) in v(A) s.t. for all 0 ≤ i ≤ f ,31

wi ∈ (Ei, v(Di)).32

From Proposition 25, we deduce that if there is a run reaching a goal location in an33

instantiated R-U2P-PTA, then for another parameter valuation in the same parameter region34

there is a run in the instantiated R-U2P-PTA with the same locations and transitions (but35

possibly different delays), reaching the same location.36

I Theorem 26. Let A be an R-U2P-PTA. Let Rp be a parameter region and v ∈ Rp. If37

there is a run ρ = (l0, w0) e0−→ · · · ei−1−→ (li, wi) in v(A), then for all v′ ∈ Rp there is a run38

ρ′ = (l0, w′0) e0−→ · · · ei−1−→ (li, w′i) in v′(A) such that for all i, (wi, v) l (w′i, v′).39

Note that there is a finite number of p–PDBMs for each parameter region Rp. Let (E,D) ∈40

p–PDBM(Rp) and consider PLT : D is an (H + 1)2 matrix made of pairs (d, /) where d ∈41

PLT and / ∈{≤, <}. Therefore the number of possible D is bounded by (2× (2 + 3×
(
M
2
)

+42
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4×M))(H+1)2 . Moreover the number of E is unbounded, but only a finite subset of all values1

needs to be explored, i. e., those smaller than K + 1: indeed, following classical works on2

timed automata [AD94, BDFP04], (integer) values exceeding the largest constant used in3

the guards or the parameter bounds are equivalent.4

To test EF-emptiness given a bounded R-U2P-PTA A and a goal location l, we first5

enumerate all parameter regions (which are in finite number), and apply for each Rp the6

following process: we pick v ∈ Rp (e. g., using a linear programming algorithm [Kar84]).7

Then, we consider v(A) which is an updatable timed automaton and test the reachability8

of l in v(A) [BDFP04]. Then EF-emptiness is false if and only if there is v and a run in v(A)9

reaching l.10

I Theorem 27. The EF-emptiness problem is PSPACE-complete for bounded R-U2P-PTAs.11

Given a goal location l and a bounded R-U2P-PTA A, we can exactly synthesize the12

parameter valuations v s.t. there is a run in v(A) reaching l by enumerating each parameter13

region (of which there is a finite number) and test if l is reachable for one of its parameter14

valuations. The result of the synthesis is the union of the parameter regions for which one15

valuation (and, from our results, all valuations in that region) indeed reaches the goal location16

in the instantiated TA.17

I Corollary 28. Given a bounded R-U2P-PTA A and a goal location l we can effectively18

compute the set of parameter valuations v s.t. there is a run in v(A) reaching l.19

I Remark. By bounding parameter valuations in guards but not those used in updates, we still20

have a finite number of parameter regions. Indeed, an integer vector E with components Ex21

greater than bKc+ 1 is equivalent to an integer vector E′ with E′x = Ex if Ex < bKc+ 122

and E′x = bKc+ 1 if Ex ≥ bKc+ 1. Moreover for all p, we have to replace each parameter23

valuation v used in an update by v(p) = v′(p) if v(p) ≤ K and v′(p) = K + 1 if v(p) > K.24

4 Conclusion and perspectives25

Our class of bounded R-U2P-PTAs is one of the few subclasses of PTAs (actually even26

extended with parametric updates) to enjoy decidability of EF-emptiness. In addition, R-U2P-27

PTAs are the first “subclass” of PTAs to allow exact synthesis of bounded rational-valued28

parameters.29

In terms of future works, beyond reachability emptiness, we aim at studying unavoidability-30

emptiness and language preservation emptiness, as well as their synthesis.31

Finally, we would like to investigate whether our parametric updates can be applied to32

decidable hybrid extensions of TAs [HKPV98, BDG+13].33
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The following three lemmas are direct from the definitions, and will be used in the1

subsequent results.2

I Lemma 29 (validity of addition). Let d1, d2, d3, d4 ∈ PLT . Let Rp be a parameter region.3

If (d1, /1) ≤ (d2, /2) and (d3, /3) ≤ (d4, /4) are valid for Rp then (d1, /1) + (d3, /3) ≤4

(d2, /2) + (d4, /4) is valid for Rp.5

Proof. Four cases show up: for all v ∈ Rp,6

v(d1) < v(d2) and v(d3) < v(d4), then clearly v(d1) + v(d3) < v(d2) + v(d4) and we have7

our result from Definition 7 (2a).8

v(d1) < v(d2) and v(d3) ≤ v(d4), then v(d1) + v(d3) < v(d2) + v(d4) and we have our9

result from Definition 7 (2a).10

v(d1) ≤ v(d2) and v(d3) < v(d4), then v(d1) + v(d3) < v(d2) + v(d4) and we have our11

result from Definition 7 (2a).12

v(d1) ≤ v(d2) and v(d3) ≤ v(d4), then v(d1) + v(d3) ≤ v(d2) + v(d4) and13

1. if /1 = /2 and /3 = /4 then /1 ⊕ /3 = /2 ⊕ /4 and we have our result from Defini-14

tion 7 (2b).15

2. if /1 = /2 and /3 = <, /4 = ≤ then /1 ⊕ /3 = < and /2 ⊕ /4 is either < or ≤ and we16

have our result from Definition 7 (2b).17

3. if /1 = <, /2 = ≤ and /3 = /4 then /1 ⊕ /3 = < and /2 ⊕ /4 is either < or ≤ and we18

have our result from Definition 7 (2b).19

4. if /1 = /3 =< and /2 = /4 =≤ then /1 ⊕ /3 =< and /2 ⊕ /4 =≤ and we have our20

result from Definition 7 (2b).21

From Definition 7 (2a, 2b) we have that (d1, /1) + (d3, /3) ≤ (d2, /2) + (d4, /4) is valid for22

Rp. J23

I Lemma 30 (positivity of reflexivity). Let Rp be a parameter region and (E,D) be a p–PDBM24

for Rp. For all clocks i, j, (0,≤) ≤ Di,j +Dj,i is valid for Rp.25

Proof. By condition (4) in Definition 8 and Definition 9 (2), we have that Di,i ≤ Di,j +Dj,i26

is valid for Rp; the result follows from the fact that Di,i = (0,≤) (again from Definition 827

and Definition 9). J28

I Lemma 31 (neutral element of the set of cells). Let Rp be a parameter region and (E,D)29

be a p–PDBM for Rp. For all clocks i, j, Di,j ≤ Di,j +Dj,j and Di,j ≤ Di,i +Di,j are valid30

for Rp.31

Proof. Let Rp be a parameter region and (E,D) be a p–PDBM for Rp. Let Di,j =32

(di,j , /ij) with di,j ∈ PLT . By Definition 8 and Definition 9 for all clock i, Di,i = (0,≤). We33

have Dj,i +Di,i = (dj,i + 0, /ij⊕ ≤) = Dj,i. Moreover from Definition 7 (2b) Di,j ≤ Di,j is34

valid forRp. HenceDi,j ≤ Di,i+Di,j is valid forRp. The same way we proveDi,j ≤ Di,j+Dj,j35

is valid for Rp. J36

.1 Proof of Lemma 1237

We split this proof in two parts: the first one treats the case of point–p–PDBMs and the38

second one of open–p–PDBMs.39

The following lemma shows that applying a update on any point–p–PDBM transforms it40

into an open–p–PDBM.41
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I Lemma 32 (p–PDBM�(Rp) becomes p–PDBM�(Rp) after update). Let Rp be a pa-1

rameter region and (E,D) ∈ p–PDBM�(Rp). Let unp be a non-parametric update. Then2

update((E,D), unp) ∈ p–PDBM�(Rp).3

Proof. Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Consider (E′, D′) =4

update((E,D), unp). After applying Algorithm 1, for all clock xi of (E,D) where unp is5

defined, E′i = unp(xi); moreover for all clock j, D′i,j = D0,j and D′j,i = Dj,0. First note that6

if xi, xj have been updated, D′i,j = D′j,i = D′0,j = D′j,0 = D′0,i = D′i,0 = (0,≤) = D0,0. For7

all clocks i, j, k, the following inequalities are valid for Rp:8

1. a. if xi is updated: D′i,0 = (0,≤) = D′0,i and therefore trivially it holds that −1 ≤ D′0,i ≤ 09

and 0 ≤ D′i,0 ≤ 1 are valid for Rp;10

b. if xi is not updated: D′i,0 = Di,0 and therefore −1 ≤ D′0,i ≤ 0 and 0 ≤ D′i,0 ≤ 1 are11

valid for Rp because these constraints were already satisfied in (E,D).12

2. For all xi, xj , if neither xi nor xj is updated, Di,j and Dj,i are not modified so condition13

Definition 8 (2) still holds. If either xi is updated, as D′i,j = D0,j and D′j,i = Dj,014

condition Definition 8 (2) still holds as it holds for D0,j and Dj,0 and we apply the same15

reasoning if xj is updated. If both xi, xj are updated, condition Definition 8 (2) trivially16

holds.17

3. For all xi, if it is updated then D′0,i = D′i,0 = (0,≤), hence d0,i = −di,0 = 0 and /0i =18

/i0 =≤; condition Definition 8 (3) holds. For all xi, xj , if neither xi nor xj is updated,19

D′i,j = Di,j and D′j,i = Dj,i so condition Definition 8 (3) holds as it holds for Di,j and Dj,i20

. If either xi is updated, as D′i,j = D0,j and D′j,i = Dj,0, condition Definition 8 (3)21

holds as it holds for D0,j and Dj,0. We treat the case where xj is updated similarly. If22

both xi, xj are updated, condition Definition 8 (3) trivially holds.23

4. Canonical form is preserved:24

a. if xi, xj , xk are not updated: since no clock is updated we have D′i,j = Di,j , D′j,k = Dj,k25

and D′i,k = Di,k since (E,D) ∈ p–PDBM�(Rp) from Definition 9 (2), we know26

that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore it remains valid.27

b. if xk is updated and xi, xj are not updated: D′i,j = Di,j and D′j,k = Dj,0, D′i,k = Di,028

because xk is updated. Since (E,D) ∈ p–PDBM�(Rp) from Definition 9 (2), we know29

that Di,0 ≤ Di,j +Dj,0 is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.30

c. if xj is updated and xi, xk are not updated: then D′i,k = Di,k because neither xi31

nor xk are updated; since xk is updated we have D′j,k = D0,k and D′i,j = Di,0;32

since (E,D) ∈ p–PDBM�(Rp) from Definition 9 (2), we know that Di,k ≤ Di,0 +D0,k33

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.34

d. if xj , xk are updated and xi is not updated: then D′i,k = Di,0 because xk is up-35

dated; since xj is updated we have D′i,j = Di,0 and D′j,k = D0,0; since (E,D) ∈36

p–PDBM�(Rp) from Definition 9 (2) and Lemma 31, we know that Di,0 ≤ Di,0 +D0,037

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.38

e. if xi is updated and xj , xk are not updated: then D′i,k = D0,k, D′i,j = D0,j because xi39

is updated; since xj , xk are not updated, we have D′j,k = Dj,k; since (E,D) ∈40

p–PDBM�(Rp) from Definition 9 (2), we know that D0,k ≤ D0,j +Dj,k is valid for Rp;41

therefore D′i,k ≤ D′i,j +D′j,k is valid for Rp.42

f. if xi, xk are updated and xj is not updated: we have D′i,k = (0,≤) = D0,0, D′i,j = D0,j43

and D′j,k = Dj,0 because xi, xk are updated. Since (E,D) ∈ p–PDBM�(Rp) from44

Definition 9 (2), we know that D0,0 ≤ D0,j + Dj,0 is valid for Rp; therefore, D′i,k ≤45

D′i,j +D′j,k is valid for Rp.46
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g. if xi, xj are updated and xk is not updated: we haveD′i,k = D0,k, D′i,j = (0 <≤) = D0,01

and D′j,k = D0,k because xi, xj are updated. Since (E,D) ∈ p–PDBM�(Rp) from2

Definition 9 (2) and Lemma 31, we know that D0,k ≤ D0,0 + D0,k is valid for Rp;3

therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.4

h. if xi, xj , xk are updated: we have D′i,k = D0,0, D′i,j = D0,0 and D′j,k = D0,0 be-5

cause xi, xj , xk are updated. Since (E,D) ∈ p–PDBM�(Rp) from Definition 9 (2) and6

Lemma 31, we know thatD0,0 ≤ D0,0+D0,0 is valid for Rp; therefore, D′i,k ≤ D′i,j+D′j,k7

is valid for Rp.8

5. there is at least one clock x s.t. D′x,0 = D′0,x = (0,≤).9

Therefore, (E′, D′) ∈ p–PDBM�(Rp). J10

The following lemma shows that applying a update on any open–p–PDBM transforms it11

into an open–p–PDBM respecting Definition 8 (2).12

I Lemma 33 (stability of p–PDBM�(Rp) under update). Let Rp be a parameter region and13

(E,D) ∈ p–PDBM�(Rp). Let unp be a non-parametric update. Then update((E,D), unp) ∈14

p–PDBM�(Rp).15

Proof. Most cases are similar to the proof of Lemma 32.16

The remaining cases to treat are the cases of Definition 8 (2). If i, j are different from 0,17

and18

1. if i, j are not updated then D′i,j = Di,j and since it is the case in (E,D), condition19

Definition 8 (2) holds.20

2. if j is updated and i is not updated then D′i,j = Di,0 and D′j,i = D0,i and as condition21

Definition 9 (1) holds for Di,0 and D0,i in (E,D), condition Definition 8 (2) holds22

in (E′, D′).23

3. if i is updated and j is not updated then D′i,j = D0,j and D′j,i = Dj,0 and as condition24

Definition 9 (1) holds for Dj,0 and D0,j in (E,D), condition Definition 8 (2) holds25

in (E′, D′).26

4. if i, j are updated then trivially D′i,j = D′j,i = (0,≤) and condition Definition 8 (2) holds.27

J28

.2 Proof of Lemma 1329

Theorem 13 (recalled). Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp).
Let v ∈ Rp. Let unp be a non-parametric update. For all w, w ∈ update((E, v(D)), unp)
iff w′ ∈ (E, v(D)) for some w′ s.t. w = [w′]unp

.
30

Proof. We first treat the case of the p–PDBM�(Rp) (the case of the p–PDBM�(Rp) will31

be handled similarly at the end). We also prove this lemma for a singleton update (only32

one clock, say xi) since updating several clocks can be done by applying several singleton33

updates in a 0 delay.34

.2.1 (E, D) ∈ p–PDBM�(Rp), (⇒)35

Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp. Let unp be a36

non-parametric update which updates xi to an integer n and lets the value of other clocks37

unchanged. Consider (E′, D′) = update((E, v(D)), unp) and suppose w′ ∈ (E′, D′). We want38

to construct a valuation w ∈ (E, v(D)) s.t. w′ = unp(w).39
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Let w be a clock valuation s.t. for all clock xj where i 6= j, w(xj) = w′(xj) . That means1

that for all j 6= i,2

frac(w(xj)) /j0 v(dj,0), −frac(w(xj)) /0j v(d0,j) and bw(xj)c = Ej3

hold from Definition 11 since it is the case in (E′, D′) and these values are left untouched by4

the update. Moreover for all j 6= i, k 6= i,5

frac(w(xj))− frac(w(xk)) /jk v(dj,k) and frac(w(xk))− frac(w(xj)) /kj v(dk,j)6

again hold from Definition 11 since it is the case in (E′, D′) and these values are left untouched7

by the update.8

We want a valuation for w(xi) s.t.9

frac(w(xi)) /i0 v(di,0) − frac(w(xi)) /0i v(d0,i) and bw(xi)c = Ei10

hold, and for all j 6= i, k 6= i,11

frac(w(xi))− frac(w(xj)) /ij v(di,j) and frac(w(xk))− frac(w(xi)) /ki v(dk,i) (1)12

hold. Let us prove that such a valuation w exists. We set bw(xi)c = Ei.13

The following lemma proves transitivity of constraints on clocks with respect to constraints14

in a p–PDBM.15

I Lemma 34. Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. Let16

w ∈ (E, v(D)). For all clocks i, j, k, frac(w(xj))− frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k).17

Proof. Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. Let18

w ∈ (E, v(D)).19

Since (E,D) ∈ p–PDBM(Rp), for all i, j, k we have from Definition 8 (4),20

Dj,k ≤ Dj,i +Di,k21

is valid for Rp hence since v ∈ Rp, we have v(Dj,k) ≤ v(Dj,i) + v(Di,k). Precisely that is22

(v(dj,k), /jk) ≤ (v(dj,i), /ji) + (v(di,k), /ik) i. e.,23

(v(dj,k), /jk) ≤ (v(dj,i) + v(di,k), /ji ⊕ /ik).24

For all clocks j, k satisfying constraints of (E,D),25

frac(w(xj))− frac(w(xk)) /jk v(dj,k).26

Then for all i, j, k, either:27

from Definition 7 (2a): v(dj,k) < v(dj,i) + v(di,k) and then, regardless of /jk and /ji⊕ /ik28

we have frac(w(xj))− frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k), or29

from Definition 7 (2b):30

v(dj,k) ≤ v(dj,i) + v(di,k) and /jk = <, /ji ⊕ /ik = ≤ and then we have frac(w(xj))−31

frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k), or32

v(dj,k) ≤ v(dj,i) + v(di,k) and /jk = /ji ⊕ /ik and then we have frac(w(xj)) −33

frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k) which completes the proof.34

This completes the proof of Lemma 34. J35
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For all j 6= i and k 6= i, since v(Dj,k) ≤ v(Dj,i) + v(Di,k) from Definition 8 (4), we have1

frac(w(xj))− frac(w(xk)) /jk v(dj,k) and2

frac(w(xj))− frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k)3

holds from Lemma 34. Hence4

frac(w(xj))− v(dj,i)(/ji ⊕ /ik)frac(w(xk)) + v(di,k) (2)5

holds. Note that /ji ⊕ /ik is either ≤ or <. Note the following trick is inspired by [HRSV02,6

Proof of Lemma 3.5] and [HRSV02, Proof of Lemma 3.13]. Hence7

I = {t ∈ R+ | frac(w(xj))− v(dj,i) ≤ t ≤ frac(w(xk)) + v(di,k) for all clocks j, k}8

is a non empty set. That means that choosing a frac(w(xi)) with respect to constraints (1),9

recall that they are10

frac(w(xj))− frac(w(xi)) /ji v(dj,i) and frac(w(xi))− frac(w(xk)) /ik v(di,k)11

is equivalent to choose a frac(w(xi)) s.t.12

frac(w(xj))− v(dj,i) /ji frac(w(xi)) and frac(w(xi)) /ik frac(w(xk)) + v(di,k)13

which is a nonempty set from formula (2). Finally we choose a frac(w(xi)) ∈ I, then14

w ∈ (E, v(D)) and it completes the proof.15

.2.2 (E, D) ∈ p–PDBM�(Rp), (⇐)16

Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp. Let unp be a17

non-parametric update which updates xi to an integer n and lets the value of other clocks18

unchanged. Consider (E′, D′) = update((E, v(D)), unp). Now suppose w ∈ (E, v(D)) and let19

w′ = [w]unp
.20

for xi, since unp is defined, w′(xi) = unp(xi) = E′xi
(i. e., frac(w′(xi)) = 0) by apply-21

ing update as defined in Definition 11. By applying update as defined in Definition 11,22

D′i,0 = D′0,i = (0,≤), hence23

−frac(w′(xi)) /0i v(d′0,i) and frac(w′(xi)) /i0 v(d′i,0)24

hold from Definition 11 and Lemma 32. Moreover we know that for all j 6= i25

−v(D′i,j) = −v(D′0,j) and v(D′j,i) = v(D′j,0) (3)26

holds from Definition 11, and we also know that27

frac(w′(xj))− frac(w′(xi)) = frac(w′(xj)) (4)28

since frac(w′(xi)) = 0. Hence, combining (3) and (4), clearly since29

−frac(w′(xj)) /0j v(d′0,j) and frac(w′(xj)) /j0 v(d′j,0)30

hold in (E′, D′),31

frac(w′(xj))− frac(w′(xi)) /ji v(d′j,i) and frac(w′(xi))− frac(w′(xj)) /ij v(d′i,j)32

hold.33
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for any two clocks xj , xk where unp is not defined, w(xj) = w′(xj) and w(xk) = w′(xk).1

Hence2

−v(D′0,j) /0j frac(w′(xj)) /j0 v(D′j,0)3

and4

−v(D′k,j) /kj frac(w′(xj))− frac(w′(xk)) /jk v(D′j,k)5

hold from Definition 11 and Lemma 32 since bounds remain unchanged.6

Then w′ ∈ update((E, v(D)), unp).7

This concludes the case (E,D) ∈ p–PDBM�(Rp).8

Let us now treat the case (E,D) ∈ p–PDBM�(Rp).9

.2.3 (E, D) ∈ p–PDBM�(Rp), (⇒)10

Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp. Let unp be a11

non-parametric update which updates xi to an integer n and lets the value of other clocks12

unchanged. Consider (E′, D′) = update((E, v(D)), unp) and suppose w′ ∈ (E′, D′). We want13

to construct a valuation14

w ∈ (E, v(D)) s.t. w′ = unp(w)15

Let w be a clock valuation s.t. for all clock xj where j 6= i, w(xj) = w′(xj). That means for16

all j 6= i,17

frac(w(xj)) /j0 v(dj,0), −frac(w(xj)) /0j v(d0,j) and bw(xj)c = Ej18

hold from Definition 11 since it is the case in (E′, D′) and bounds remain unchanged i. e.,19

D0,j = D′0,j and Dj,0 = D′j,0. Moreover for all k 6= i and k 6= j,20

frac(w(xj))− frac(w(xk)) /jk v(dj,k) and frac(w(xk))− frac(w(xj)) /kj v(dk,j)21

also hold from Definition 11 since it is the case in (E′, D′) and bounds remain unchanged22

i. e., Dk,j = D′k,j and Dj,k = D′j,k.23

Recall that (E,D) contains only one clock valuation for each parameter valuation v ∈ Rp.24

Let frac(w(xi)) = v(di,0) (or equivalently frac(w(xi)) = −v(d0,i) since by Definition 9 we25

have (di,0, /i0) = (−d0,i, /0i)). Then, as it is the case in (E,D),26

frac(w(xi)) /i0 v(di,0), −frac(w(xi)) /0i v(d0,i) and bw(xi)c = Ei27

hold, and for all j 6= i, k 6= i,28

frac(w(xi))− frac(w(xj)) /ij v(di,j) and frac(w(xk))− frac(w(xi)) /ki v(dk,i)29

hold, which completes the proof, as w ∈ (E, v(D)) and w′ = unp(w).30

.2.4 (E, D) ∈ p–PDBM�(Rp), (⇐)31

This case is straightforward and similar to the case (⇐) above of open–p–PDBMs.32

J33
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.3 Proof of Lemma 171

We prove our lemma for the two types of open–p–PDBMs and for point–p–PDBMs, and split2

this proof in three lemmas.3

.3.1 Definition 8 type (5a) to (5b)4

I Lemma 35 (modification of an open–p–PDBM respecting condition 5a under TE<). Let5

Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp) respecting condition 5a, then6

TE<((E,D)) ∈ p–PDBM�(Rp) respecting condition 5b.7

Proof of Lemma 35. Suppose (E,D) ∈ p–PDBM�(Rp) respects condition (5a) of Defini-8

tion 8, i. e., we have at least an x s.t. Dx,0 = D0,x = (0,≤). Since, in Rp, we know which9

parameters have the largest fractional part, we can determine LFPRp
(D) from Lemma 15. If10

more than one clock belong to LFPRp(D) then their valuations have the same fractional part.11

Indeed, from Definition 14 if xi, xj ∈ LFPRp
(D) then both (0,≤) ≤ Di,j and (0,≤) ≤ Dj,i12

are valid for Rp, and from Definition 8 (2) we must have Di,j = Dj,i = (0,≤)(?).13

Let v ∈ Rp. Assume xi ∈ LFPRp
(D) and w ∈ (E, v(D)), by letting time elapse, frac(w(xi))14

is the first that might reach 1. Moreover, for all xj ∈ X\LFPRp
(D), frac(w(xj)) cannot reach15

1 before frac(w(xi)). We are going to construct a new (E′, D′) = TE<((E,D)), which will16

be an open–p–PDBM respecting condition 5b of Definition 8. While detailing the procedure17

of TE<, we are going to prove that Definition 8 (1) and (2) hold for (E′, D′). Further we18

will prove that (4) and (5b) also hold.19

.4 proof that Definition 8 (1) holds20

According to the definition of TE< (Algorithm 9), the first step is to set a new upper bound21

D′i,0 = (1, <) for all xi ∈ LFPRp
(D)22

and obviously (0,≤) ≤ D′i,0 ≤ (1,≤) is valid for Rp. Then we set new upper bounds for all23

other clock xj ∈ X \ LFPRp
(D) by setting24

D′j,0 = Dj,i + (1, <).25

Indeed, Dj,i is the constraint on the lower bound of frac(w(xj))− frac(w(xi)) and since26

the upper bound of xi has increased, this gives the new upper bound of xj . Note that since27

xi ∈ LFPRp
(D), from Definition 14 and Definition 8 (2) we have that −1 ≤ Dj,i ≤ 0 is valid28

for Rp for all clock xj . Precisely, dj,i ∈ {0,−p1, p2−p1, p1−1−p2, p1−1} for some p1, p2 ∈ P29

where p2 ≤ p1 is valid for Rp. Hence as dj,i + 1 ∈ {1, 1− p1, p2 + 1− p1, p1− p2, p1}, we have30

that d′j,0 ∈ PLT , /ji′ = /ji ⊕< = < so (0,≤) ≤ D′j,0 ≤ (1, <) is valid for Rp.31

Note that we cannot have (dj,i, /ji) = (−1, <) because even if (di,j , /ij) = (1, <),32

since (E,D) ∈ p–PDBM�(Rp) we do not have have 0 ≤ Dj,i + Di,j is valid for Rp from33

Definition 8 (4) and Lemma 30.34

Secondary we set for all clock x regardless of whether they are in LFPRp
(D)35

D′0,x = D0,x + (0, <).36

Since some time elapsed, lower bounds of all clocks are increased. Moreover, as (−1, <) ≤37

D0,x ≤ (0,≤) is valid for Rp from Definition 8 (1), (−1,≤) ≤ D′0,x ≤ (0,≤) is also valid38

for Rp.39

Therefore, Definition 8 (1) holds.40
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.5 proof that Definition 8 (2) holds1

Third we set for all clocks x, y regardless of whether they are in LFPRp
(D)2

D′x,y = Dx,y3

so as Definition 8 (2) holds in (E,D), it still does. More intuitively since no fractional part4

has reached 1, constraints on differences of clocks and integer parts remain unchanged.5

.6 proof that Definition 8 (3) holds6

For all xi:7

if xi ∈ LFPRp
(D), D′i,0 = (1, <), D′0,i = D0,i + (0, <) hence d′i,0 6= d′0,i and /i0′/0i′ = <,8

condition Definition 8 (3) holds;9

if xi ∈ X \ LFPRp(D), x ∈ LFPRp(D), D′i,0 = Di,x + (1, <), D′0,i = D0,i + (0, <) hence10

as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is valid for Rp, we have d′i,0 6= d′0,i11

and /i0′/0i′ = < and condition Definition 8 (3) holds.12

For all xi, xj :13

if xi, xj ∈ X \ LFPRp(D), D′i,j = Di,j and D′j,i = Dj,i, condition Definition 8 (3) holds as14

it holds for Di,j and Dj,i.15

if xi ∈ X \ LFPRp
(D), xj ∈ LFPRp

(D), D′i,0 = Di,j + (1, <), D′0,i = D0,i + (0, <) hence16

as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is valid for Rp, we have d′i,0 6= d′0,i17

and /i0′/0i′ = <, condition Definition 8 (3) holds. The case xj ∈ X \ LFPRp
(D),18

xi ∈ LFPRp(D) is treated similarly.19

if xi, xj ∈ LFPRp
(D), D′i,j = D′j,i = (0,≤), hence d′i,j = −d′j,i = 0 and /ij′/ji′ =≤ and20

condition Definition 8 (3) holds.21

.7 proof that Definition 8 (4) holds22

Now we prove that Definition 8 (4) holds, i. e., for all clocks xi, xj , xk, valid conditions such23

as D′i,j ≤ D′i,k + D′k,j remain valid in Rp. Indeed, when time elapses, all clocks have the24

same behavior, hence the difference between two clocks does not change without an update.25

Precisely, for all clocks xi, xj , xk, are valid for Rp:26

1. if xi, xj , xk ∈ X \ LFPRp(D): let x ∈ LFPRp(D) and27

if i, j, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;28

since (E,D) ∈ p–PDBM�(Rp) from Definition 8 (4), we know that Di,k ≤ Di,j +Dj,k29

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.30

if i, j are different from 0, k = 0, we have D′i,0 = Di,x + (1, <), D′i,j = Di,j31

and D′j,0 = Dj,x + (1, <); since (E,D) ∈ p–PDBM�(Rp) from Definition 8 (4), we32

know that Di,x ≤ Di,j +Dj,x is valid for Rp; then Di,x + (1, <) ≤ Di,j +Dj,x + (1, <)33

is valid for Rp from Lemma 29 and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.34

if i, k are different from 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,x + (1, <) and D′0,k =35

D0,k + (0, <); we claim that36

Di,k ≤ Di,x + (1, <) +D0,k + (0, <) (5)37

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈38

p–PDBM�(Rp) from Definition 8 (1), we know that39

Dx,0 ≤ (1, <); (6)40
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moreover we have1

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <) (7)2

Since (E,D) ∈ p–PDBM�(Rp) from Definition 8 (4), we know thatDx,k ≤ Dx,0+D0,k3

is valid for Rp; combining with (6) and (7) we obtain4

Dx,k ≤ (1, <) +D0,k + (0, <). (8)5

Now, since (E,D) ∈ p–PDBM�(Rp) from Definition 8 (4), we know that Di,k ≤6

Di,x + Dx,k is valid for Rp and combining with (8) we obtain (5) and therefore our7

result.8

if i is different from 0, j = k = 0, we have D′i,0 = Di,x + (1, <); from Definition 7 (2b)9

we have that10

Di,x + (1, <) ≤ Di,x + (1, <)11

is valid for Rp. Hence from Lemma 3112

D′i,0 ≤ D′i,0 +D′0,013

is valid for Rp.14

if j, k are different from 0, i = 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <)15

and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know16

that D0,k ≤ D0,j +Dj,k is valid for Rp. Moreover we have that17

D0,k + (0, <) = (d0,k, <) and D0,j + (0, <) +Dj,k = (d0,j + dj,k, <)18

so we have from Definition 7 (2b)19

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k20

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.21

if j is different from 0, i = k = 0, we have D′0,0 = (0,≤), D′0,j = D0,j + (0, <) and22

D′j,0 = Dj,x + (1, <); since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know23

that D0,x ≤ D0,j+Dj,x is valid for Rp; moreover, from Definition 7 (2b) and Lemma 29,24

D0,x + (0, <) ≤ D0,j + (0, <) +Dj,x25

is valid for Rp. Recall that from Lemma 30 (0,≤) ≤ D0,x +Dx,0 is valid for Rp and26

since Dx,0 ≤ (1, <) from Definition 8 (1), we have27

(0,≤) ≤ D0,x + (1, <)28

is valid for Rp. As we have (1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <), we obtain that29

D0,x + (1, <) ≤ D0,j +Dj,x + (1, <)30

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.31

if k is different from 0, i = j = 0, we have D′0,k = D0,k + (0, <); From Definition 7 (2b)32

and Lemma 29 we have that33

D0,k + (0, <) ≤ D0,k + (0, <)34

is valid for Rp. Hence from Lemma 3135

D′0,k ≤ D′0,0 +D′0,k36

is valid for Rp.37
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if i = j = k = 0, from Definition 8 (4) and Lemma 31 we trivially have1

D′0,0 ≤ D′0,0 +D′0,02

is valid for Rp.3

2. if xk ∈ LFPRp
(D) and xi, xj ∈ X \ LFPRp

(D): k 6= 0 and4

if i, j are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;5

since (E,D) ∈ p–PDBM�(Rp) from Definition 8 (4), we know that Di,k ≤ Di,j +Dj,k;6

therefore, D′i,k ≤ D′i,j +D′j,k.7

if i 6= 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,k + (1, <) and D′0,k = D0,k + (0, <); we8

claim that Di,k ≤ Di,k + (1, <) +D0,k + (0, <) is valid for Rp, i. e.,9

(0,≤) ≤ (1, <) +D0,k + (0, <) (9)10

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. We have11

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <). (10)12

Since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know that (0,≤) ≤ D0,k +13

Dk,0 is valid for Rp and from Definition 8 (1) that Dk,0 ≤ (1, <) is valid for Rp;14

combining with (9) and (10) we obtain our result.15

if i = 0, j 6= 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;16

since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know that D0,k ≤ D0,j+Dj,k.17

Moreover we have that18

D0,k + (0, <) = (d0,k, <) and D0,j + (0, <) +Dj,k = (d0,j + dj,k, <)19

so we have from Definition 7 (2b)20

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k21

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.22

if i = j = 0, from Definition 8 (4) and Lemma 31 we trivially have23

D′0,k ≤ D′0,0 +D′0,k24

is valid for Rp.25

3. if xj ∈ LFPRp
(D) and xi, xk ∈ X \ LFPRp

(D): j 6= 0 and26

if i, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;27

since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know that Di,k ≤ Di,j +Dj,k28

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.29

if i 6= 0, k = 0, we have D′i,0 = Di,j + (1, <), D′i,j = Di,j and D′j,0 = (1, <); From30

Definition 7 (2b) we trivially have that Di,j + (1, <) ≤ Di,j + (1, <) is valid for Rp31

and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.32

if i = 0, k 6= 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;33

since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know that D0,k ≤ D0,j+Dj,k34

is valid for Rp. Moreover we have that35

D0,k + (0, <) = (d0,k, <) and D0,j + (0, <) +Dj,k = (d0,j + dj,k, <)36

so we have from Definition 7 (2b) and Lemma 2937

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k38

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.39
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if i = k = 0, we have D′0,0 = (0,≤), D′0,j = D0,j + (0, <) and D′j,0 = (1, <);1

since (E,D) ∈ p–PDBM�(Rp), from Lemma 30 we know that (0,≤) ≤ D0,j +Dj,0 is2

valid for Rp, and since from Definition 8 (1) Dj,0 ≤ (1,≤) is valid for Rp, that means3

(0,≤) ≤ D0,j + (1, <) is valid for Rp. As we have4

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)5

we obtain that6

(0,≤) ≤ D0,j + (0, <) + (1, <)7

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.8

4. if xj , xk ∈ LFPRp
(D) and xi ∈ X \ LFPRp

(D): j 6= 0, k 6= 0 and9

if i is different from 0, we haveD′i,k = Di,k, D′i,j = Di,j andD′j,k = Dj,k; since (E,D) ∈10

p–PDBM�(Rp), from Definition 8 (4) we know that Di,k ≤ Di,j + Dj,k; therefore,11

D′i,k ≤ D′i,j +D′j,k.12

if i = 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;13

since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know that D0,k ≤ D0,j+Dj,k.14

Moreover we have that15

D0,k + (0, <) = (d0,k, <) and D0,j + (0, <) +Dj,k = (d0,j + dj,k, <)16

so we have from Definition 7 (2b) and Lemma 2917

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k18

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.19

5. if xi ∈ LFPRp
(D) and xj , xk ∈ X \ LFPRp

(D): i 6= 0 and20

if j, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;21

since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know that Di,k ≤ Di,j +Dj,k;22

therefore, D′i,k ≤ D′i,j +D′j,k.23

if j 6= 0, k = 0, we have D′i,0 = (1, <), D′i,j = Di,j and D′j,0 = Dj,i + (1, <); from24

Definition 8 (4) and Lemma 30 we know that (0,≤) ≤ Di,j +Dj,i is valid for Rp. Since,25

from Definition 7 (2b) (1, <) ≤ (1, <) is valid for Rp, then from Lemma 2926

(1, <) ≤ Di,j +Dj,i + (1, <)27

is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.28

if j = 0, k 6= 0, we have D′i,k = Di,k, D′i,0 = (1, <) and D′0,k = D0,k + (0, <); we claim29

that30

Di,k ≤ (1, <) +D0,k + (0, <)31

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈32

p–PDBM�(Rp) from Definition 8 (4), we know that Di,k ≤ Di,0 +D0,k is valid for Rp;33

moreover, from Definition 8 (1), we know that Di,0 ≤ (1, <) is valid for Rp. We have34

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)35

so we obtain that36

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)37

is valid for Rp and therefore our result.38
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if i is different from 0, j = k = 0, we have D′i,0 = (1, <), D′0,0 = (0,≤); from1

Definition 7 (2b) we have that2

(1, <) ≤ (1, <)3

is valid for Rp. Hence from Lemma 314

D′i,0 ≤ D′i,0 +D′0,05

is valid for Rp.6

6. if xi, xk ∈ LFPRp(D) and xj ∈ X \ LFPRp(D): i 6= 0, k 6= 0 and7

if j 6= 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈8

p–PDBM�(Rp), from Definition 8 (4) we know that Di,k ≤ Di,j + Dj,k; therefore,9

D′i,k ≤ D′i,j +D′j,k is valid for Rp.10

if j = 0, we have D′i,k = Di,k, D′i,0 = (1, <) and D′0,k = D0,k + (0, <); we claim that11

Di,k ≤ (1, <) +D0,k + (0, <)12

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈13

p–PDBM�(Rp) from Definition 8 (4), we know that Di,k ≤ Di,0 +D0,k is valid for Rp;14

moreover, from Definition 8 (1), we know that Di,0 ≤ (1, <) is valid for Rp. We have15

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)16

so we obtain that17

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)18

is valid for Rp and therefore our result.19

7. if xi, xj ∈ LFPRp
(D) and xk ∈ X \ LFPRp

(D): i 6= 0, j 6= 0 and20

if k 6= 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈21

p–PDBM�(Rp), from Definition 8 (4) we know that Di,k ≤ Di,j + Dj,k is valid22

for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.23

if k = 0, we have D′i,0 = (1, <), D′i,j = Di,j = (0,≤) since both xi, xj ∈ LFPRp(D)24

(cf.(?)) and D′j,0 = (1, <); then (1, <) ≤ (0,≤) + (1, <) is valid for Rp and therefore,25

D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.26

8. if xi, xj , xk ∈ LFPRp
(D): i, j, k are different from 0, we have D′i,k = Di,k, D′i,j =27

Di,j and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know28

that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.29

.8 proof that Definition 8 (5b) holds30

Finally, for xi ∈ LFPRp
(D), D′i,0 = (1, <) and for all clock j s.t. D′0,j = (0, /0j′), then we31

have /0j′ = <. Condition Definition 8 (5b) is satisfied.32

We denote by (E,D′) the obtained p–PDBM and (E,D′) ∈ p–PDBM�(Rp).33

J34
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.8.1 Definition 8 type 5b to (5a)1

I Lemma 36. Let (E,D) ∈ p–PDBM�(Rp); let xi ∈ LFPRp
(D), xj ∈ X \ LFPRp

(D). If2

(di,j , /ij) = (0, /), then / = <3

Proof. Let xi ∈ LFPRp
(D), xj ∈ X \ LFPRp

(D). Suppose (di,j , /ij) = (0,≤). From4

Definition 8 (2) we should have that (dj,i, /ji) = (0,≤) so Lemma 30 is satisfied, and5

then xj ∈ LFPRp
(D). J6

I Lemma 37 (modification of an open–p–PDBM respecting condition 5b under TE=). Let7

Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp) respecting condition 5b, then8

TE=(E,D) ∈ p–PDBM�(Rp) respecting condition 5a.9

Proof. Suppose (E,D) ∈ p–PDBM�(Rp) respects condition (5a) of Definition 8 i. e., we10

have at least an x s.t. Dx,0 = (1, <) and for all other j s.t. D0,j = (0, /0j), /0j = <.11

First we can determine LFPRp
(D). Let x ∈ LFPRp

(D). If more than one clock belong12

to LFPRp(D) then their valuations have the same fractional part. Indeed, from Definition 1413

if xi, xj ∈ LFPRp
(D) then both (0,≤) ≤ Di,j and (0,≤) ≤ Dj,i are valid for Rp, and from14

Definition 8 (2) we must have Di,j = Dj,i = (0,≤).15

Let v ∈ Rp. Let xi ∈ LFPRp
(D) and w ∈ (E, v(D)). By letting time elapse, frac(w(x))16

is the first to actually reach 1. Moreover, for all xj ∈ X \ LFPRp
(D), frac(w(xj)) cannot17

reach 1 before frac(w(xi)). We are going to construct a new (E′, D′) = TE=((E,D)) which18

is an open–p–PDBM respecting condition 5b. While detailing the procedure of TE=, we are19

going to prove that Definition 8 (1) and (2) hold for (E′, D′). Further we will prove that (4)20

and (5a) also hold.21

.9 proof that Definition 8 (1) holds22

According to the definition of TE= (Algorithm 15), the first step is to fix the value of frac(xi)23

to 0 by setting24

D′i,0 = (0,≤) and D′0,i = (0,≤) for all xi ∈ LFPRp
(D).25

Indeed, when frac(xi) reaches 1, in the constraints expressed by (E, v(D)) we have to26

increase the integer part by 1 and set the new constraints on the fractional part to 0.27

Secondary we set new upper and lower bound for all other clock xj ∈ X \ LFPRp(D)28

D′0,j = Di,j + (−1,≤) and D′j,0 = Dj,i + (1,≤).29

We have to force now upper and lower bounds for other clocks since we know the interval of30

time that elapsed when xi reached 1.31

Note that since xi ∈ LFPRp
(D), xj ∈ X\LFPRp

(D) from Definition 14 we have that (0,≤32

) ≤ Di,j ≤ (1, <) is valid for Rp for all clock xj . Nonetheless, since xj ∈ X \ LFPRp(D),33

we even have Di,j 6= (0,≤): suppose (di,j , /ij) = (0,≤): from Definition 8 (2) we should34

have that (dj,i, /ji) = (0,≤) so Lemma 30 is satisfied, and then xj ∈ LFPRp
(D). The same35

reasoning leads to Dj,i 6= (0,≤).36

Obviously, we have Di,j 6= (0, <): suppose Di,j = (0, <), since xi ∈ LFPRp
(D) then from37

Definition 14 (0,≤) ≤ Di,j should be valid for Rp, which is not from Definition 7 (2b).38

Precisely, di,j∈{1, 1 − p1, p2 + 1 − p1, p1 − p2, p1} for any two p1, p2 ∈ P where p2 ≤ p139

is valid for Rp. Hence as −1 + di,j∈{0,−p1, p2 − p1, p1 − 1 − p2, p1 − 1}, we have that40

D′0,j ∈ PLT and (−1, <) ≤ D′0,j ≤ (0,≤) is valid for Rpfrom Lemma 36.41
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Also note that since xi ∈ LFPRp(D), from Definition 14 and Definition 8 (2) we have1

that (−1, <) ≤ Dj,i ≤ (0,≤) is valid for Rp for all clock xj . Precisely, dj,i ∈ {0,−p1, p2 −2

p1, p1 − 1 − p2, p1 − 1} for some p1, p2 ∈ P where p2 ≤ p1 is valid for Rp. Hence as3

dj,i+1 ∈ {1, 1−p1, p2+1−p1, p1−p2, p1}, we have that d′j,0 ∈ PLT and (0,≤) ≤ D′j,0 ≤ (1, <)4

is valid for Rp.5

Clearly Definition 8 (1) holds.6

.10 proof that Definition 8 (2) holds7

Third we set for all two clocks i, j where xi ∈ LFPRp
(D), xj ∈ X \ LFPRp

(D)8

D′i,j = D′0,j and D′j,i = D′j,0,9

for all two clocks xj , xk ∈ X \ LFPRp
(D)10

D′j,k = Dj,k11

and for all two clocks x, y ∈ LFPRp
(D)12

D′x,y = D′y,x = (0,≤).13

Here as we have already proven above that (−1, <) ≤ D′0,j ≤ (0,≤) and (0,≤) ≤ D′0,j ≤ (1, <)14

are valid for Rp, Definition 8 (2) holds.15

.11 proof that Definition 8 (3) holds16

For all xi:17

if xi ∈ LFPRp
(D), D′i,0 = (0,≤), D′0,i = (0,≤) hence d′i,0 = −d′0,i and /i0′/0i′ = ≤,18

condition Definition 8 (3) holds;19

if xi ∈ X \ LFPRp(D), x ∈ LFPRp(D), D′i,0 = Di,x + (1,≤), D′0,i = Dx,i + (−1,≤) as20

condition Definition 8 (3) holds for Di,x and Dx,i and /ij⊕ ≤= /ij , /ji⊕ ≤= /ji, condition21

Definition 8 (3) holds for D′i,0 and D′0,i.22

For all xi, xj :23

if xi, xj ∈ X \ LFPRp
(D), D′i,j = Di,j and D′j,i = Dj,i, condition Definition 8 (3) holds as24

it holds for Di,j and Dj,i.25

if xi ∈ X \ LFPRp
(D), xj ∈ LFPRp

(D), D′i,j = Di,j + (1,≤), D′j,i = Dj,i + (−1,≤)26

condition Definition 8 (3) holds for Di,j and Dj,i and /ij⊕ ≤= /ij , /ji⊕ ≤= /ji, condition27

Definition 8 (3) holds for D′i,j and D′j,i. The case xj ∈ X \ LFPRp
(D), xi ∈ LFPRp

(D) is28

treated similarly.29

if xi, xj ∈ LFPRp(D), D′i,j = D′j,i = (0,≤), hence d′i,j = −d′j,i = 0 and /ij′/ji′ =≤ and30

condition Definition 8 (3) holds.31

.12 proof that Definition 8 (4) holds32

Now we prove that Definition 8 (4) holds, i. e., for all clocks xi, xj , xk, valid conditions such33

as D′i,j ≤ D′i,k +D′k,j remain valid in Rp. This is not trivial since, in this construction some34

clocks have been updated. Precisely, for all clocks xi, xj , xk, are valid for Rp:35

1. if xi, xj , xk ∈ X \ LFPRp
(D): let x ∈ LFPRp

(D) and36
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if i, j, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;1

since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know that Di,k ≤ Di,j +Dj,k2

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.3

if i, j are different from 0, k = 0, we have D′i,0 = Di,x + (1,≤), D′i,j = Di,j4

and D′j,0 = Dj,x + (1,≤); since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4)5

we know that Di,x ≤ Di,j +Dj,x is valid for Rp; then from Lemma 29 Di,x + (1,≤) ≤6

Di,j +Dj,x + (1,≤) is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp .7

if i, k are different from 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,x + (1,≤) and D′0,k =8

Dx,k + (−1,≤); we claim that9

Di,k ≤ Di,x + (1,≤) +Dx,k + (−1,≤) (11)10

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. We have11

(1,≤) + (−1,≤) = (1 +−1,≤ ⊕ ≤) = (0,≤) (12)12

Since (E,D) ∈ p–PDBM�(Rp) from Definition 8 (4), we know that Di,k ≤ Di,x+Dx,k13

is valid for Rp; combining with (12) and since Dx,k + (0,≤) = Dx,k, we obtain (11)14

and therefore our result.15

if i is different from 0, j = k = 0, we have D′i,0 = Di,x + (1,≤), D′j,k = D′0,0 = (0,≤);16

we have from Definition 7 (2b) that17

Di,x + (1,≤) ≤ Di,x + (1,≤)18

is valid for Rp. Hence Lemma 31 gives that19

D′i,0 ≤ D′i,0 +D′0,020

is valid for Rp.21

if j, k are different from 0, i = 0, we have D′0,k = Dx,k + (−1,≤), D′0,j = Dx,j + (−1,≤)22

and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know23

that Dx,k ≤ Dx,j +Dj,k is valid for Rp. Moreover we have that24

(−1,≤) ≤ (−1,≤)25

is valid for Rp so we have from Definition 7 (2b) and Lemma 2926

Dx,k + (−1,≤) ≤ Dx,j + (−1,≤) +Dj,k27

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.28

if j is different from 0, i = k = 0, we haveD′0,j = Dx,j+(−1,≤) andD′j,0 = Dj,x+(1,≤);29

since (E,D) ∈ p–PDBM�(Rp), from Lemma 30 we know that (0,≤) ≤ Dx,j +Dj,x is30

valid for Rp; moreover, we have that31

(1,≤) + (−1,≤) = (1 +−1,≤ ⊕ ≤) = (0,≤)32

and Dj,x + (0,≤) = Dj,x. Then we have from Lemma 2933

(0,≤) ≤ Dx,j + (−1,≤) +Dj,x + (1,≤)34

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.35
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if k is different from 0, i = j = 0, we have D′0,k = Dx,k + (−1,≤), D′i,j = D′0,0 = (0,≤);1

we have from Definition 7 (2b) that2

Dx,k + (−1,≤) ≤ Dx,k + (−1,≤)3

is valid for Rp. Hence, as Dx,k + (−1,≤) + (0,≤) = Dx,k + (−1,≤) we have4

D′0,k ≤ D′0,0 +D′0,k5

is valid for Rp.6

if i = j = k = 0, we trivially have from Definition 8 (4) and Lemma 317

D′0,0 ≤ D′0,0 +D′0,08

is valid for Rp.9

2. if xk ∈ LFPRp
(D) and xi, xj ∈ X \ LFPRp

(D): k 6= 0 and10

if i, j are different from 0, we have D′i,k = D′i,0 = Di,k + (1,≤), D′i,j = Di,j and D′j,k =11

D′j,0 = Dj,k + (1,≤); since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know12

that Di,k ≤ Di,j +Dj,k is valid for Rp; moreover, since we have (1,≤) ≤ (1,≤) is valid13

for Rp then from Lemma 2914

Di,k + (1,≤) ≤ Di,j +Dj,k + (1,≤)15

is valid for Rp, therefore we have D′i,k ≤ D′i,j +D′j,k is valid for Rp.16

if i 6= 0, j = 0, we have D′i,k = D′i,0 = Di,k + (1,≤), D′i,0 = Di,k + (1,≤) and D′0,k =17

(0,≤); clearly18

(1,≤) ≤ (1,≤) + (0,≤)19

and20

Di,k ≤ Di,k21

are valid for Rp, then from Lemma 29 we obtain D′i,k ≤ D′i,0 +D′0,k is valid for Rp.22

if i = 0, j 6= 0, we have D′0,k = (0,≤), D′0,j = Dk,j + (−1,≤) and D′j,k = D′j,0 =23

Dj,k + (1,≤); since (E,D) ∈ p–PDBM�(Rp), from Lemma 30 we know that (0,≤) ≤24

Dk,j +Dj,k is valid for Rp. Moreover we have that25

(1,≤) + (−1,≤) = (1 +−1,≤ ⊕ ≤) = (0,≤)26

so we have from Lemma 2927

(0,≤) ≤ Dk,j +Dj,k + (0,≤)28

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.29

if i = j = 0, we trivially have from Definition 8 (4) and Lemma 3130

D′0,k ≤ D′0,0 +D′0,k31

is valid for Rp.32

3. if xj ∈ LFPRp
(D) and xi, xk ∈ X \ LFPRp

(D): j 6= 0 and33
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if i, k are different from 0, we have D′i,k = Di,k, D′i,j = D′i,0 = Di,j + (1,≤) and D′j,k =1

D′0,k = Dj,k + (−1,≤); since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know2

that Di,k ≤ Di,j +Dj,k is valid for Rp; moreover, since we have3

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)4

then as Di,j +Dj,k + (0,≤) = Di,j +Dj,k, clearly D′i,k ≤ D′i,j +D′j,k is valid for Rp.5

if i 6= 0, k = 0, we have D′i,0 = Di,j + (1,≤), D′i,j = D′i,0 = Di,j + (1,≤) and D′j,0 =6

(0,≤); From Definition 7 (2b) we trivially have that Di,j + (1,≤) ≤ Di,j + (1,≤) is7

valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.8

if i = 0, k 6= 0, we have D′0,k = Dj,k + (−1,≤), D′0,j = (0,≤) and D′j,k = D′0,k = Dj,k +9

(−1,≤); since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4) we know that D0,k ≤10

D0,j+Dj,k is valid for Rp. From Definition 7 (2b) we trivially have thatDj,k+(−1,≤) ≤11

Dj,k+(−1,≤) is valid for Rp. As (−1,≤)+(0,≤) = (−1,≤), we haveD′0,k ≤ D′0,j+D′j,k12

is valid for Rp.13

if i = k = 0, we have D′0,j = (0,≤) and D′j,0 = (0,≤); As we have14

(0,≤) + (0,≤) = (0,≤)15

we clearly have that D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.16

4. if xj , xk ∈ LFPRp(D) and xi ∈ X \ LFPRp(D): j 6= 0, k 6= 0 and17

if i is different from 0, we haveD′i,k = D′i,0 = Di,k+(−1,≤), D′i,j = D′i,0 = Di,k+(−1,≤18

) and D′j,k = (0,≤); we have that (−1,≤) + (0,≤) = (−1,≤) and19

Di,k + (−1,≤) ≤ Di,k + (−1,≤)20

holds from Definition 7 (2b). Therefore, D′i,k ≤ D′i,j +D′j,k.21

if i = 0, we have D′0,k = (0,≤), D′0,j = (0,≤) and D′j,k = (0,≤); since (E,D) ∈22

p–PDBM�(Rp) from Definition 8 (4), we know that D0,k ≤ D0,j +Dj,k. As we have23

(0,≤) + (0,≤) = (0,≤)24

we clearly have that D′0,k ≤ D′0,j +D′j,k is valid for Rp.25

5. if xi ∈ LFPRp
(D) and xj , xk ∈ X \ LFPRp

(D): i 6= 0 and26

if j, k are different from 0, we have D′i,k = D′0,k = Di,k + (−1,≤), D′i,j = D′0,j =27

Di,j + (−1,≤) and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 8 (4)28

we know that Di,k ≤ Di,j +Dj,k is valid for Rp; moreover, since we have29

(−1,≤) ≤ (−1,≤)30

is valid for Rp then from Lemma 29 we have D′i,k ≤ D′i,j +D′j,k is valid for Rp.31

if j 6= 0, k = 0, we have D′i,0 = (0,≤), D′i,j = D′0,j = Di,j + (−1,≤) and D′j,0 =32

Dj,i + (1,≤); from Lemma 30 we know that (0,≤) ≤ Di,j + Dj,i is valid for Rp.33

Moreover, we have34

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)35

then36

(0,≤) ≤ Di,j +Dj,i + (0,≤)37

is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.38
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if j = 0, k 6= 0, we have D′i,k = Di,k, D′i,0 = (1,≤) and D′0,k = Di,k + (−1,≤); we have1

that2

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)3

and from Definition 7 (2b) that4

Di,k ≤ Di,k + (0,≤)5

is valid for Rp, which gives us our result.6

if i is different from 0, j = k = 0, we have D′i,0 = (0,≤), D′j,k = D′0,0 = (0,≤); we have7

from Definition 7 (2b) that8

(0,≤) ≤ (0,≤)9

is valid for Rp. Hence10

D′i,0 ≤ D′i,0 +D′0,011

is valid for Rp.12

6. if xi, xk ∈ LFPRp(D) and xj ∈ X \ LFPRp(D): i 6= 0, k 6= 0 and13

if j 6= 0, we have D′i,k = (0,≤), D′i,j = D′0,j = Di,j + (−1,≤) and D′j,k = D′j,0 =14

Dj,i + (1,≤); since (E,D) ∈ p–PDBM�(Rp), from Lemma 30 we know that (0,≤) ≤15

Di,j +Dj,i is valid for Rp; we have16

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)17

and therefore from Lemma 29, D′i,k ≤ D′i,j +D′j,k is valid for Rp.18

if j = 0, we have D′i,k = (0,≤), D′i,0 = (0,≤) and D′0,k = (0,≤); we have that19

(0,≤) + (0,≤) = (0,≤) and from Definition 7 (2b)20

(0,≤) ≤ (0,≤)21

is valid for Rp. Therefore we obtain our result.22

7. if xi, xj ∈ LFPRp(D) and xk ∈ X \ LFPRp(D): i 6= 0, j 6= 0 and23

if k 6= 0, we have D′i,k = D′0,k = Di,k + (−1,≤), D′i,j = (0,≤) and D′j,k = D′0,k =24

Di,k + (−1,≤); we have that25

Di,k ≤ Di,k26

is valid for Rp and from Lemma 2927

(−1,≤) ≤ (−1,≤)28

is valid for Rp. Therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.29

if k = 0, we have D′i,0 = (0,≤), D′i,j = (0,≤) and D′j,0 = (0,≤); we have that30

(0,≤) + (0,≤) = (0,≤) and from Definition 7 (2b)31

(0,≤) ≤ (0,≤)32

is valid for Rp: therefore D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.33

8. if xi, xj , xk ∈ LFPRp
(D): i, j, k are different from 0, we have D′i,k = (0,≤), D′i,j = (0,≤)34

and D′j,k = (0,≤); we have that (0,≤) + (0,≤) = (0,≤) and from Definition 7 (2b)35

(0,≤) ≤ (0,≤)36

is valid for Rp: therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.37
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.13 proof that Definition 8 (5a) holds1

Finally, there is at least one clock xi ∈ LFPRp
(D) s.t. D0,i = Di,0 = (0,≤). Hence condition2

Definition 8 (5a) holds.3

Finally, we set E′i = Ei + 1 if xi ∈ LFPRp
(D) and E′j = Ej if xj ∈ X \ LFPRp

(D) We4

denote by (E,D′) the obtained p–PDBM and (E′, D′) ∈ p–PDBM�(Rp).5

J6

.13.1 Definition 9 to Definition 8 type (5a)7

I Lemma 38 (p–PDBM�(Rp) becomes p–PDBM�(Rp) after TE<). Let Rp be a parameter8

region and (E,D) ∈ p–PDBM�(Rp), then TE<

(
(E,D)

)
∈ p–PDBM�(Rp) respecting9

condition 5b.10

Proof. Suppose (E,D) ∈ p–PDBM�(Rp). Since, in Rp, we know which parameters have11

the largest fractional part, we can determine LFPRp
(D) from Lemma 15. If more than one12

clock belong to LFPRp(D) then their valuations have the same fractional part.13

Indeed, from Definition 14 if xi, xj ∈ LFPRp
(D) then both (0,≤) ≤ Di,j and (0,≤) ≤ Dj,i14

are valid for Rp, and from Definition 8 (2) we must have Di,j = Dj,i = (0,≤).15

Let v ∈ Rp. Let xi ∈ LFPRp
(D) and w ∈ (E, v(D)). By letting time elapse, frac(w(xi))16

is the first that might reach 1. Moreover, for all xj ∈ X \ LFPRp
(D), frac(w(xj)) cannot17

reach 1 before frac(w(xi)). We are going to construct a new (E′, D′) = TE<(E,D)) which18

is an open–p–PDBM respecting condition 5b. While detailing the procedure of TE<, we are19

going to prove that Definition 8 (1) and (2) hold for (E′, D′). Further we will prove that (4)20

and (5b) also hold.21

.14 proof that Definition 8 (1) holds22

According to the definition of TE< (Algorithm 9), the first step is to set a new upper bound23

D′i,0 = (1, <) for all xi ∈ LFPRp
(D)24

and obviously (0,≤) ≤ D′i,0 ≤ (1, <) is valid for Rp. Then we set new upper bounds for all25

other clock xj ∈ X \ LFPRp(D) by setting26

D′j,0 = Dj,i + (1, <).27

Indeed, Dj,i is the constraint on the lower bound of w(xj)− w(xi) and since the upper28

bound of xi has increased, this gives the new upper bound of xj . Note that since xi ∈29

LFPRp
(D), from Definition 14 we have for all clock xj that (−1, <) ≤ Dj,i ≤ (0,≤) is valid30

for Rp. Precisely, dj,i ∈ {0,−p1, p2−p1, p1−1−p2, p1−1} for some p1, p2 ∈ P where p2 ≤ p131

is valid for Rp. Hence as dj,i+1 ∈ {1, 1−p1, p2 +1−p1, p1−p2, p1}, we have that d′j,0 ∈ PLT ,32

/j0′ = /j0′ ⊕ < = < and (0,≤) ≤ D′j,0 ≤ (1, <) is valid for Rp. Note that we cannot have33

(dj,i, /ji) = (−1, <) because even if (di,j , /ij) = (1, <), since (E,D) ∈ p–PDBM�(Rp) we34

do not have have 0 ≤ Dj,i +Di,j is valid for Rp from Definition 8 (4) and Lemma 30.35

Secondary we set for all clock x regardless of whether they are in LFPRp(D)36

D′0,x = D0,x + (0, <).37

Since some time elapsed, lower bounds of all clocks are increased. Moreover, from Defini-38

tion 9 (1) as (−1, <) ≤ D0,x ≤ (0,≤) is valid for Rp, (−1, <) ≤ D′0,x ≤ (0,≤) is also valid39

for Rp.40
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.15 proof that Definition 8 (2) holds1

Third we set for all clocks x, y regardless of whether they are in LFPRp
(D)2

D′x,y = Dx,y3

since no fractional part has reached 1, constraints on differences of clocks and integer parts4

remain unchanged. As it is the case in (E,D), Definition 8 (2) holds.5

.16 proof that Definition 8 (3) holds6

For all xi:7

if xi ∈ LFPRp
(D), D′i,0 = (1, <), D′0,i = D0,i + (0, <) hence d′i,0 6= d′0,i and /i0′/0i′ = <,8

condition Definition 8 (3) holds;9

if xi ∈ X \ LFPRp(D), x ∈ LFPRp(D), D′i,0 = Di,x + (1, <), D′0,i = D0,i + (0, <) hence10

as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is valid for Rp, we have d′i,0 6= d′0,i11

and /i0′/0i′ = < and condition Definition 8 (3) holds.12

For all xi, xj :13

if xi, xj ∈ X \ LFPRp(D), D′i,j = Di,j and D′j,i = Dj,i, condition Definition 8 (3) holds as14

it holds for Di,j and Dj,i.15

if xi ∈ X \ LFPRp
(D), xj ∈ LFPRp

(D), D′i,0 = Di,j + (1, <), D′0,i = D0,i + (0, <) hence16

as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is valid for Rp, we have d′i,0 6= d′0,i17

and /i0′/0i′ = <, condition Definition 8 (3) holds. The case xj ∈ X \ LFPRp
(D),18

xi ∈ LFPRp(D) is treated similarly.19

if xi, xj ∈ LFPRp
(D), D′i,j = D′j,i = (0,≤), hence d′i,j = −d′j,i = 0 and /ij′/ji′ =≤ and20

condition Definition 8 (3) holds.21

.17 proof that Definition 8 (4) holds22

Now we prove that Definition 8 (4) holds, i. e., for all clocks xi, xj , xk valid conditions such23

as D′i,j ≤ D′i,k + D′k,j remain valid in Rp. Indeed, when time elapses, all clocks have the24

same behavior, hence the difference between two clocks does not change without an update.25

Precisely, for all clocks xi, xj , xk, are valid for Rp:26

1. if xi, xj , xk ∈ X \ LFPRp(D): let x ∈ LFPRp(D) and27

if i, j, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;28

since (E,D) ∈ p–PDBM�(Rp) from Definition 9 (2), we know that Di,k ≤ Di,j +Dj,k29

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.30

if i, j are different from 0, k = 0, we have D′i,0 = Di,x + (1, <), D′i,j = Di,j31

and D′j,0 = Dj,x + (1, <); since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2)32

we know that Di,x ≤ Di,j +Dj,x is valid for Rp; then from Lemma 29 Di,x + (1, <) ≤33

Di,j +Dj,x + (1, <) is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.34

if i, k are different from 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,x + (1, <) and D′0,k =35

D0,k + (0, <); we claim that36

Di,k ≤ Di,x + (1, <) +D0,k + (0, <) (13)37

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈38

p–PDBM�(Rp), from Definition 9 (1) we know that39

Dx,0 ≤ (1, <) (14)40
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is valid for Rp; moreover we have1

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <). (15)2

Since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we know thatDx,k ≤ Dx,0+D0,k3

is valid for Rp; combining with (14) and (15) we obtain Dx,k ≤ (1, <) +D0,k + (0, <)4

is valid for Rp. As Di,x ≤ Di,x is valid for Rp, using Lemma 29 we obtain5

Di,x +Dx,k ≤ Di,x + (1, <) +D0,k + (0, <) (16)6

is valid for Rp. Now, since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we know7

that Di,k ≤ Di,x +Dx,k is valid for Rp and combining with (16) we obtain (13) and8

therefore our result.9

if i is different from 0, j = k = 0, we have D′i,0 = Di,x + (1, <), D′j,k = D′0,0 = (0,≤);10

we have from Definition 7 (2b) that11

Di,x + (1, <) ≤ Di,x + (1, <)12

is valid for Rp. Hence13

D′i,0 ≤ D′i,0 +D′0,014

is valid for Rp.15

if j, k are different from 0, i = 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <)16

and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we know17

that D0,k ≤ D0,j +Dj,k is valid for Rp. Moreover we have that18

D0,k + (0, <) = (d0,k, <) and D0,j + (0, <) +Dj,k = (d0,j + dj,k, <)19

so we have from Lemma 2920

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k21

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.22

if j is different from 0, i = k = 0, we have D′i,k = D′0,0 = (0,≤), D′0,j = D0,j + (0, <)23

and D′j,0 = Dj,x + (1, <); since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we24

know that D0,x ≤ D0,j +Dj,x is valid for Rp; moreover from Lemma 29,25

D0,x + (0, <) ≤ D0,j + (0, <) +Dj,x26

is valid for Rp. As we have27

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)28

we obtain from Lemma 29 that29

D0,x + (1, <) ≤ D0,j +Dj,x + (1, <)30

is valid for Rp. Recall that from Lemma 30 (0,≤) ≤ D0,x +Dx,0 is valid for Rp. Since31

from Definition 9 (1) Dx,0 ≤ (1, <) is valid for Rp, we have (0,≤) ≤ D0,x + (1, <) is32

valid for Rp. Therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.33
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if k is different from 0, i = j = 0, we have D′i,k = D′j,k = D′0,k = D0,k + (0, <),1

D′i,j = D′0,0 = (0,≤); we have from Definition 7 (2b) that2

D0,k + (0, <) ≤ D0,k + (0, <)3

is valid for Rp. Hence from Lemma 314

D′0,k ≤ D′0,0 +D′0,k5

is valid for Rp.6

if i = j = k = 0, we trivially have7

D′0,0 ≤ D′0,0 +D′0,08

is valid for Rp.9

2. if xk ∈ LFPRp
(D) and xi, xj ∈ X \ LFPRp

(D): k 6= 0 and10

if i, j are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;11

since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we know that Di,k ≤ Di,j +Dj,k12

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.13

if i 6= 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,k + (1, <) and D′0,k = D0,k + (0, <); we14

claim that Di,k ≤ Di,k + (1, <) +D0,k + (0, <), i. e.,15

0 ≤ (1, <) +D0,k + (0, <) (17)16

is valid for Rp, which is from Lemma 29 equivalent to D′i,k ≤ D′i,0 + D′0,k is valid17

for Rp. We have18

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <). (18)19

Since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we know that 0 ≤ D0,k +Dk,020

is valid for Rp and from Definition 9 (1) that Dk,0 ≤ (1, <) is valid for Rp; combining21

with (18) we obtain (17) and therefore our result.22

if i = 0, j 6= 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;23

since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we know that D0,k ≤ D0,j+Dj,k24

is valid for Rp. Moreover we have that (0, <) ≤ (0, <) is valid for Rp so we have from25

Lemma 2926

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k27

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.28

if i = j = 0, from Definition 9 (2) we trivially have29

D′0,k ≤ D′0,0 +D′0,k30

is valid for Rp.31

3. if xj ∈ LFPRp
(D) and xi, xk ∈ X \ LFPRp

(D): j 6= 0 and32

if i, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;33

since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we know that Di,k ≤ Di,j +Dj,k34

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.35

if i 6= 0, k = 0, we have D′i,0 = Di,j + (1, <), D′i,j = Di,j and D′j,0 = (1, <); from36

Definition 7 (2b) we trivially have that Di,j + (1, <) ≤ Di,j + (1, <) is valid for Rp37

and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.38



XX:38 Parametric updates in parametric timed automata

if i = 0, k 6= 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;1

since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we know that D0,k ≤ D0,j+Dj,k2

is valid for Rp. Moreover we have that (0, <) ≤ (0, <) is valid for Rp so we have3

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k4

holds from Definition 7 (2b). Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.5

if i = k = 0, we have D′0,j = D0,j + (0, <) and D′j,0 = (1, <); since (E,D) ∈6

p–PDBM�(Rp), from Lemma 30 we know that 0 ≤ D0,j +Dj,0 is valid for Rp, from7

Definition 9 (1) we know that Dj,0 ≤ 1 is valid for Rp which means 0 ≤ D0,j + (1, <)8

is valid for Rp. As we have9

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)10

we obtain that11

(0,≤) ≤ D0,j + (0, <) + (1, <)12

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.13

4. if xj , xk ∈ LFPRp
(D) and xi ∈ X \ LFPRp

(D): j 6= 0, k 6= 0 and14

if i is different from 0, we haveD′i,k = Di,k, D′i,j = Di,j andD′j,k = Dj,k; since (E,D) ∈15

p–PDBM�(Rp), from Definition 9 (2) we know that Di,k ≤ Di,j +Dj,k is valid for Rp;16

therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.17

if i = 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;18

since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we know that D0,k ≤ D0,j+Dj,k19

is valid for Rp. Moreover we have that (0, <) ≤ (0, <) is valid for Rp so we have from20

Lemma 2921

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k22

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.23

5. if xi ∈ LFPRp(D) and xj , xk ∈ X \ LFPRp(D): i 6= 0 and24

if j, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;25

since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we know that Di,k ≤ Di,j +Dj,k26

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.27

if j 6= 0, k = 0, we have D′i,0 = (1, <), D′i,j = Di,j and D′j,0 = Dj,i + (1, <);28

since (E,D) ∈ p–PDBM�(Rp), from Lemma 30 we know that 0 ≤ Di,j +Dj,i. Then29

from Lemma 2930

(1, <) ≤ Di,j +Dj,i + (1, <)31

is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.32

if j = 0, k 6= 0, we have D′i,k = Di,k, D′i,0 = (1, <) and D′0,k = D0,k + (0, <); we claim33

that34

Di,k ≤ (1, <) +D0,k + (0, <)35

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈36

p–PDBM�(Rp) from Definition 9 (2), we know that Di,k ≤ Di,0 +D0,k is valid for Rp;37

moreover, from Definition 9 (1), we know that Di,0 ≤ (1, <) is valid for Rp. We have38

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)39
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We obtain that1

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)2

is valid for Rp and therefore our result.3

if i is different from 0, j = k = 0, we have D′i,0 = (1, <), D′j,k = D′0,0 = (0,≤); from4

Definition 7 (2b) we have that5

(1, <) ≤ (1, <)6

is valid for Rp. Hence7

D′i,0 ≤ D′i,0 +D′0,08

is valid for Rp.9

6. if xi, xk ∈ LFPRp(D) and xj ∈ X \ LFPRp(D): i 6= 0, k 6= 0 and10

if j 6= 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈11

p–PDBM�(Rp), from Definition 9 (2) we know that Di,k ≤ Di,j + Dj,k is valid12

for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.13

if j = 0, we have D′i,k = Di,k, D′i,0 = (1, <) and D′0,k = D0,k + (0, <); we claim that14

Di,k ≤ (1, <) +D0,k + (0, <)15

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈16

p–PDBM�(Rp) from Definition 9 (2), we know that Di,k ≤ Di,0 +D0,k is valid for Rp;17

moreover, from Definition 9 (1), we know that Di,0 ≤ (1, <) is valid for Rp. We have18

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)19

We obtain that20

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)21

is valid for Rp and therefore our result.22

7. if xi, xj ∈ LFPRp(D) and xk ∈ X \ LFPRp(D): i 6= 0, j 6= 0 and23

if k 6= 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈24

p–PDBM�(Rp), from Definition 9 (2), we know that Di,k ≤ Di,j + Dj,k is valid25

for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.26

if k = 0, since both xi, xj ∈ LFPRp
(D) we have D′i,j = Di,j = (0,≤), D′i,0 = (1, <)27

and D′j,0 = (1, <); trivially (1, <) ≤ (0,≤) + (1, <) is valid for Rp and therefore,28

D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.29

8. if xi, xj , xk ∈ LFPRp
(D): i, j, k are different from 0, we have D′i,k = Di,k, D′i,j =30

Di,j and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 9 (2) we know31

that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.32

.18 proof that Definition 8 (5b) holds33

Finally, for xi ∈ LFPRp
(D), D′i,0 = (1, <) and for all clock j s.t. D′0,j = (0, /), then we34

have / = <. Condition Definition 8 (5b) is satisfied.35

We set E′ = E and denote by (E,D′) the obtained p–PDBM, which is (E,D′) ∈36

p–PDBM�(Rp).37

J38
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.19 Proof of Proposition 181

Proposition 18 (recalled). Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp).
Let v ∈ Rp. There exists w′ ∈ TE((E, v(D))) iff there exist w ∈ (E, v(D)) and a delay δ
s.t. w′ = w + δ.

2

Proof. Note that this proof is inspired by [HRSV02, Proof of Lemma 3.13]3

I Lemma 39. Let (E,D) ∈ p–PDBM�(Rp). If (E,D) satisfies condition Definition 8 (5b)4

it has been obtained after applying Algorithm 9 on another open–p–PDBM satisfying condition5

Definition 8 (5a) or a point–p–PDBM.6

Let (E,D) ∈ p–PDBM�(Rp). If (E,D) satisfies condition Definition 8 (5a) it has7

been obtained after applying Algorithm 15 on another open–p–PDBM satisfying condition8

Definition 8 (5b) or after a non-parametric update applied on another open–p–PDBM or a9

point–p–PDBM.10

Proof. Let (E,D) ∈ p–PDBM�(Rp) and suppose (E,D) satisfies condition Definition 8 (5b).11

Since for all y, if d0,y = 0 we have /0y = <, from Lemma 32 and Lemma 33 it cannot be12

the result of a non-parametric update where there is at least a clock x update and Dx,0 =13

D0,x = (0,≤). From Lemma 37 it cannot be the result of Algorithm 15, as there must be14

at least a clock x s.t. Dx,0 = D0,x = (0,≤). Then it is the result either from Lemma 35 of15

Algorithm 9 applied on an open–p–PDBM satisfying condition Definition 8 (5a), or from16

Lemma 38 of Algorithm 9 applied on a point–p–PDBM.17

Let (E,D) ∈ p–PDBM�(Rp) and suppose (E,D) satisfies condition Definition 8 (5a).18

Since there is at least a clock y s.t. Dy,0 = D0,y = (0,≤), from Lemma 35 and Lemma 38 it19

cannot be the result of Algorithm 9, as for all x, if d0,x = 0 we must have /ox = <. Then it is20

the result of either from Lemma 37 of Algorithm 15 applied on an open–p–PDBM satisfying21

condition Definition 8 (5b) or from Lemma 32 and Lemma 33 of Algorithm 1 applied on an22

open–p–PDBM or a point–p–PDBM. J23

Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp). We have to consider two24

different cases: (E,D) ∈ p–PDBM�(Rp) and (E,D) ∈ p–PDBM�(Rp).25

I Lemma 40. Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp.26

There is w′ ∈ TE((E, v(D))) iff there is w ∈ (E, v(D)) and a delay δ s.t. w′ = w + δ.27

Proof. Let Rp a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp.28

=⇒ .19.0.1 open–p–PDBM respecting Definition 8 (5a)29

Let v ∈ Rp. Consider (E′, D′) = TE((E,D)) respecting condition Definition 8 (5a),30

i. e., suppose there is xi s.t. D′i,0 = −D′0,i = (0,≤). Let w′ ∈ (E′, v(D′)), for this xi we31

have w′(xi) = 0. We need to find a value δ s.t. w′ − δ ∈ (E, v(D)) which is equivalent32

to prove for all xi, xj33

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i)34

and35

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j)36

and37

−frac(w′(xj)) + δ /0j v(d0,j) and frac(w′(xj))− δ /j0 v(dj,0).38
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In this proof we are going to define a δ which is different from 0, and give it an upper1

bound in order to show that constraints in (E,D) are satisfied while going backward2

of δ units of time from w′.3

First we will prove that for all clock j, its constraints of lower bound D0,j and up-4

per bound Dj,0 are satisfied. Second we will prove that for all i, bounds on their5

difference Di,j and Dj,i are also satisfied.6

We want to show that we have to go a little backward in time from w′ to ensure the7

upper bounds Dj,0 of (E,D) hold. For this purpose, we are going to prove that for8

all xj9

Dj,0 ≤ D′j,010

is valid for Rp. Intuitively this means upper bounds of clocks in (E′, D′) are greater11

than in (E,D), which is consistent as time is elapsing.12

As (E′, D′) respects Definition 8 (5a) and precisely (E′, D′) = TE=((E,D)), we13

know (E,D) is respecting condition Definition 8 (5b) from Lemma 35. As frac(w′(xi)) =14

0 it was in (E,D) a clock with the largest fractional part, i. e., xi ∈ LFPRp
(D) and15

Di,0 = (1, <).16

By definition of TE< (cf. Algorithm 9), in (E,D) which is the open–p–PDBM obtained17

after the application of TE< on another p–PDBM (see Lemma 39), for each xj ∈18

X \ LFPRp
(D), Dj,0 = Dj,i + (1, <) and for all xj ∈ X, we have Dj,0 is of the form19

(dj,0, <) for some dj,0.20

By definition of TE= applied to (E,D) (cf. Algorithm 15), in (E′, D′), for each xj ∈21

X \ LFPRp
(D), D′j,0 = Dj,i + (1,≤), i. e., dj,0 = d′j,0. Hence by Definition 7 (2b) and22

as /j0′ is either ≤ or <, we have23

(dj,0, <) = Dj,0 ≤ D′j,0 = (dj,0, /j0′)24

is valid for Rp. Next we define the largest amount of time so that all upper bounds of25

(E,D) are satisfied.26

We claim that for all xj , frac(w′(xj))− v(dj,0) ≤ 0. Indeed, remark that by applying27

Algorithm 9 then Algorithm 15, constraints on upper bounds of clocks in (E,D)28

and (E′, D′) differ only by their /. As for i ∈ LFPRp
(D) and j ∈ X \ LFPRp

(D) it we29

have Dj,0 = Dj,i + (1, <) in (E,D) and D′j,0 = Dj,i + (1,≤) in (E′, D′), so dj,0 = d′j,0.30

Since for any x, its fractional part is less or equal to its upper bound in D and therefore31

in D′, any difference between a fractional part and its upper bound is either negative or32

null. For all x, since frac(w′(x)) /x0′ v(d′x,0) we have frac(w′(x))− v(d′x,0) /x0′ 0. Since33

v(d′x,0) = v(dx,0), frac(w′(x))− v(dx,0) /x0′ 0, therefore we have our result.34

Now we claim that we have to go at least an ε > 0 backward in time to ensure all35

bounds of (E,D) are met. Let xj ∈ X \ LFPRp
(D). As36

frac(w′(xj)) /j0′ v(dj,0)37

we have38

either /j0′ = < and we already have frac(w′(xj)) < v(dj,0),39

or /j0′ = ≤ and for any ε > 0 we have frac(w′(xj))− ε < v(dj,0).40

It is also true for each xi ∈ LFPRp
(D): after applying TE< recall that we have Di,0 =41

(1, <). We can take ε > 0 and define frac(w(xi)) = 1−ε, so we have frac(w(xi)) < v(di,0).42

Now that we know we have to go a little backward in time (at least an ε > 0) so upper43

bounds of (E,D) are satisfied, we are going to give an upper bound to ε so that all44

lower bounds D0,j of (E,D) are also satisfied.45
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Let1

t1 = min
x∈X
{frac(w′(x)) + v(d0,x)}2

We want to prove that t1 > 0.3

Let us prove that for all xj , D′0,j ≤ D0,j is valid for Rp. Recall that for xi ∈ LFPRp
(D),4

we have that Di,0 = (1, <). Moreover, from Definition 8 (4) Di,j ≤ Di,0 +D0,j is valid5

for Rp, then we have6

Di,j ≤ (1, <) +D0,j7

is valid for Rp. Recall that after applying Algorithm 15, D′0,j = Di,j + (−1,≤). By8

Definition 7 (2b) we have (−1,≤) ≤ (−1,≤). We invoke Lemma 29 which gives9

Di,j + (−1,≤) ≤ (1, <) +D0,j + (−1,≤) = D0,j + (0, <) is valid for Rp. (19)10

As, from Definition 7 (2b) we have D0,j + (0, <) ≤ D0,j is valid for Rp, we infer (19)11

and it gives12

D′0,j ≤ D0,j is valid for Rp.13

Since w′ ∈ (E′, v(D′)) we have −frac(w′(xj)) /0j′ v(d′0,j),14

0 /0j′ frac(w′(xj)) + v(d′0,j).15

Then we have that16

0 /0j′ frac(w′(xj)) + v(d′0,j) ≤ frac(w′(xj)) + v(d0,j)17

where ,18

either from Definition 7 (2a) d′0,j < d0,j ;19

or from Definition 7 (2b), d′0,j ≤ d0,j and then /0j′ = /0j = <. Indeed as D′0,j ≤ D0,j20

is valid for Rp, and since (E,D) is the open–p–PDBM obtained after the application21

of TE< (cf. Algorithm 9) on another p–PDBM (see Lemma 39), we have /0j = <.22

To conclude we have that for all xj either23

0 /0j′ frac(w′(xj)) + v(d′0,j) < frac(w′(xj)) + v(d0,j)24

or25

0 < frac(w′(xj)) + v(d′0,j) ≤ frac(w′(xj)) + v(d0,j).26

As t1 is by definition the minimum value of an expression frac(w′(xj)) + v(d0,j) for a27

given xj , which as we just proved are all strictly positive, we have that for all xj28

0 < t1 ≤ frac(w′(xj)) + v(d0,j).29

We proved that t1 > 0, so we can set δ = t1
2 (therefore δ > 0).30

More intuitively δ is the value right in the middle of the least and the largest amount31

of time s.t. we can go backward in time from w′ and respect all constraints defined32

in (E, v(D)).33
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Now we are going to prove that for any clock xj , its constraints on lower and upper1

bounds are satisfied, i. e.,2

−v(d0,j) /0j frac(w′(xj))− δ /j0 v(dj,0).3

First as δ < t1, we have4

−frac(w′(xj))+δ < −frac(w′(xj))+t1 ≤ −frac(w′(xj))+frac(w′(xj))+v(d0,j) = v(d0,j)5

which is −v(d0,j) < frac(w′(xj))− δ. Since (E,D) is the open–p–PDBM obtained after6

the application of TE< (cf. Algorithm 15) on another p–PDBM (see Lemma 39), we7

have /0j = < so −v(d0,j) /0j frac(w′(xj))− δ. Secondary as 0 < δ, we have8

frac(w′(xj))− δ < frac(w)′(xj)− 0 ≤ frac(w′(xj))− frac(w′(xj)) + v(dj,0) = v(dj,0)9

which is frac(w′(xj))− δ < v(dj,0). Since (E,D) is the open–p–PDBM obtained after10

the application of TE< (cf. Algorithm 15) on another p–PDBM (see Lemma 39), we11

have /j0 = < so frac(w′(xj))− δ /j0 v(dj,0)12

Now we prove that constraints defined in (E,D) on differences of clocks are also satisfied13

by going back of δ units of time from w′.14

Recall that in (E′, D′) we have for all clock xj ,15

D′j,i = D′j,0 = Dj,i + 1 and D′i,j = D′0,j = −1 +Di,j .16

In addition by definition of TE=, for xi ∈ LFPRp
(D), Exi

= E′xi
− 1 and for xj ∈17

X \ LFPRp(D), Exj = E′xj
.18

We already treated the case whether i or j are 0, now suppose i, j are both different19

from 0.20

if xi, xj ∈ X \ LFPRp
(D): let x ∈ LFPRp

(D) and recall that after applying Algo-21

rithm 15, D′i,j = Di,j , D′j,i = Dj,i; we have that frac(w′(xj))− frac(w′(xi)) /ij′ d′j,i =22

dj,i, and therefore frac(w′(xj))− δ − frac(w′(xi)) + δ /ji dj,i.23

We also have that frac(w′(xi))− frac(w′(xj)) /ij′ d′i,j = di,j , therefore frac(w′(xi))−24

δ − frac(w′(xj)) + δ /ij di,j ;25

if xi ∈ LFPRp
(D) and xj ∈ X \ LFPRp

(D): recall that after applying Algorithm 15,26

D′j,0 = Dj,i + (1,≤), and D′0,j = Di,j + (−1,≤). Observe that as we added ≤ which27

is the neutral element of the addition ⊕ between two operators /, we have /j0′ = /ji28

and /0j′ = /ij . Note that as xi ∈ LFPRp(D), in (E′, D′) we have D′0,i = (0,≤) = D′i,029

which means frac(w′(xi)) = 0. Going backward in time of δ units of time from w′(xi)30

means that frac(w(xi)) = 1− δ.31

We have that32

frac(w′(xj)) /j0′ v(d′j,0) = v(dj,i) + 133

hence frac(w′(xj))− 1 /ji v(dj,i) which is equivalent to34

frac(w′(xj))− δ − 1 + δ /ji v(dj,i).35

The same way we have36

−frac(w′(xj)) /0j′ v(d′0,j) = v(di,j)− 137

hence 1− frac(w′(xj)) /ij v(di,j) which is equivalent to38

1− δ − frac(w′(xj)) + δ /ij v(di,j).39
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To conclude, we define for all xj s.t. D′0,j 6= (0,≤) and D′j,0 6= (0,≤)1

w(xj) = w′(xj)− δ2

and for all xi s.t. D′0,i = (0,≤) = D′i,03

w(xi) = (w′(xi)− 1) + 1− δ4

and clearly, w ∈ (E, v(D)).5

=⇒ .19.0.2 open–p–PDBM respecting Definition 8 (5b)6

Let v ∈ Rp. Consider (E′, D′) = TE((E,D)) respecting condition Definition 8 (5b),7

i. e., suppose there is at least an xi s.t. D′i,0 = (1, <) and for all j s.t. D0,j = (0, /0j),8

then we have /0j = <. Let w′ ∈ (E′, v(D′)).9

We need to find a value δ s.t. w′ − δ ∈ (E, v(D)) which is equivalent to prove for10

all xi, xj11

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i)12

and13

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j)14

and15

−frac(w′(xj)) + δ /0j v(d0,j) and frac(w′(xj))− δ /j0 v(dj,0).16

As done previously we are going to define a δ which is different from 0 so we satisfy17

condition Definition 8 (5a), and show that constraints in (E,D) are satisfied while going18

backward of δ units of time from w′.19

We define the largest and the least amount of time so that all upper bounds of (E,D)20

are satisfied. Let21

t0 = max
x∈X
{0, frac(w′(x))− v(dx,0)}22

and23

t1 = min
x∈X
{frac(w′(x)) + v(d0,x)}.24

We want to prove that t0 = t1 > 0. For this purpose, let us first show that for all i, j we25

have frac(w′(xj))− v(d′j,0) ≤ frac(w′(xi)) + v(d′0,i), which is t0 ≤ t1.26

First note that for all i, j27

frac(w′(xj))− frac(w′(xi)) /ji′ v(d′j,i).28

By applying TE< (Algorithm 9) to (E,D), we have that D′j,i = Dj,i, i. e., (di,j , /ij) =29

(d′i,j , /ij′), and from Definition 8 (4) we have that Dj,i ≤ Dj,0 +D0,i is valid for Rp.30

Hence, we have from Definition 7 (2b) that either v(dj,i) < v(dj,0) + v(d0,i) or v(dj,i) ≤31

v(dj,0) + v(d0,i) and /ji = /j0 ⊕ /0i or /ji = < and /j0 ⊕ /0i = ≤.32

We can then write that33

frac(w′(xj))− frac(w′(xi))(/j0 ⊕ /0i)v(dj,0) + v(d0,i)34
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which is equivalent to1

frac(w′(xj))− v(dj,0)(/j0 ⊕ /0i)frac(w′(xi)) + v(d0,i)2

so we obtain our result, as (/j0 ⊕ /0i) is either ≤ or <.3

Now, recall that (E,D) respects condition Definition 8 (5a) so we have at least an x s.t.4

Dx,0 = D0,x = (0,≤).5

For this clock x we have that frac(w′(x)) = frac(w′(x)) − v(dx,0) ≤ t0 and that t1 ≤6

frac(w′(x)) + v(d0,x) = frac(w′(x)).7

Hence t0 = t1 = frac(w′(x)).8

As /x0 = ≤, we have (/x0 ⊕ /0i) = /0i and (/j0 ⊕ /0x) = /j0, which gives9

frac(w′(x)) = frac(w′(x))− v(dx,0) /0i frac(w′(xi)) + v(d0,i)10

and11

frac(w′(xj))− v(dj,0) /j0 frac(w′(x)) + v(d0,x) = frac(w′(x)).12

Moreover in (E′, D′) we have that frac(w′(x)) /0x′ v(d′0,x). Since (E′, D′) respects13

condition Definition 8 (5b), if D′0,x = (0, /0x′) then /0x′ = <. Hence 0 < frac(w′(x))14

and15

0 < t0 = t1.16

Let δ = t0 = t1. More intuitively δ is the value right in the middle of the least and17

the largest amount of time s.t. we can go backward in time from w′ and respect all18

constraints defined in (E, v(D)).19

First we have20

−frac(w′(xj))+δ ≤ −frac(w′(xj))+t1/j0−frac(w′(xj))+frac(w′(xj))+v(d0,j) = v(d0,j)21

which is −v(d0,j) /j0 frac(w′(xj))− δ.22

Secondary we have23

frac(w′(xj))− δ ≤ frac(w)′(xj)− t0 /0j frac(w′(xj))− frac(w′(xj)) + v(dj,0) = v(dj,0)24

which is frac(w′(xj))− δ /0j v(dj,0).25

Now we prove that constraints defined in (E,D) on differences of clocks are also satisfied26

by going back of δ units of time from w′27

Recall that in (E′, D′) from the definition of Algorithm 9 we have for all clocks xi, xj ,28

D′j,i = Dj,i and D′i,j = Di,j .29

Since we already treated the case whether i or j are 0, now suppose i, j are both different30

from 0. We have that frac(w′(xj))− frac(w′(xi)) /ji′ v(d′j,i) = v(dj,i), and therefore as31

/ji′ = /ji,32

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i).33

We also have that frac(w′(xi))− frac(w′(xj))/ij′ v(d′i,j) = v(di,j), therefore as /ij′ = /ij ,34

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j).35

To conclude, we define for all xj36

w(xj) = w′(xj)− δ37

and clearly, w ∈ (E, v(D)).38

Conversely, let w ∈ (E, v(D)),39
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⇐= .19.0.3 open–p–PDBM respecting Definition 8 (5b)1

Suppose in (E,D) there is at least an xi s.t. Di,0 = (1, <) and for all j s.t. D0,j = (0, /),2

we have / = <. Let xi be such a clock and v ∈ Rp.3

Now consider (E′, D′) = TE((E,D)). We need to find a value δ s.t. w+ δ ∈ (E′, v(D′)).4

which is equivalent to prove for all xi, xj5

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i)6

and7

frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j)8

and9

−frac(w(xj))− δ /0j′ v(d′0,j) and frac(w(xj)) + δ /j0′ v(d′j,0).10

As done previously we are going to define a δ which is different from 0, and show that11

constraints in (E,D) are satisfied while going forward of δ units of time from w.12

Recall that xi ∈ LFPRp(D) and let δ = 1− frac(w(xi) which we will prove is the exact13

amount of time so that all upper bounds of (E′, D′) are satisfied. Let14

t0 = max
x∈X
{−frac(w(x))− frac(v(d′0,x))}15

and16

t1 = min
x∈X
{frac(v(d′x,0))− frac(w(x))}.17

Recall that since (E,D) respects condition Definition 8 (5b), for all j s.t. D0,j = (0, /0j),18

we have /0j = <. Hence as −frac(w(xi) < v(d0,j), frac(w(xi)) 6= 0. Using the same19

reasoning as before, we are going to prove that t0 ≤ δ ≤ t1.20

First we will prove that t0 ≤ δ. Consider xi ∈ LFPRp
(D). For all clock xj , since w ∈21

(E, v(D)) we have frac(w(xi))− frac(w(xj)) /ij frac(v(di,j)).22

From Algorithm 15 applied to (E,D) and since xi ∈ LFPRp
(D) we obtain in (E′, D′)23

that D′0,j = Di,j + (−1,≤). Clearly we have /0j′ = /ij ⊕≤ = /ij . It gives that24

frac(w(xi))− frac(w(xj))− 1(/ij⊕ ≤)frac(v(di,j))− 125

which is equivalent to frac(w(xi))− frac(w(xj))− 1 /0j′ frac(v(d′0,j)) which is equivalent26

to27

frac(w(xi))− 1 /0j′ frac(v(d′0,j)) + frac(w(xj)).28

This gives us our first result.29

Second we will prove that δ ≤ t1. Consider xi ∈ LFPRp(D). For all clock xj , from30

Definition 8 (4) we have frac(w(xj))− frac(w(xi)) /ji frac(v(dj,i)). We have31

frac(w(xj))− frac(w(xi)) + 1 /ji frac(v(dj,i)) + 1.32

From Algorithm 15 applied to (E,D) and since xi ∈ LFPRp(D) we obtain in (E′, D′)33

that D′j,0 = Dj,i + (1,≤). Clearly we have /j0′ = /ji⊕ ≤= /ji. Then we can write that34

frac(w(xj))− frac(w(xi)) + 1 /j0′ frac(v(d′j,0)) which is equivalent to35

1− frac(w(xi)) /j0′ frac(v(d′j,0))− frac(w(xj)).36
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This gives us our second result.1

Now for all clock xj , we obtain two results. First we have2

−frac(w(xj))−δ/0j′−frac(w(xj))−t1 ≤ −frac(w(xj))+frac(w(xj))+v(d′0,j) = v(d′0,j)3

which is −v(d′0,j) /0j′ frac(w(xj)) + δ.4

Secondary we have5

frac(w(xj)) + δ /j0′ frac(w(xj)) + t0 ≤ frac(w(xj))− frac(w(xj)) + v(d′j,0) = v(d′j,0)6

which is frac(w(xj)) + δ /j0′ v(d′j,0).7

Since we already treated the case whether i or j are 0, now suppose i, j are both different8

from 0.9

Note that if both xi, xj ∈ LFPRp(D), as frac(w(xi)) = frac(w(xj)), Di,j = D′i,j = (0,≤)10

and Dj,i = D′j,i = (0,≤) from Definition 14. Hence frac(w(xi)) + δ − frac(w(xj)) −11

δ /ij′ frac(v(d′i,j)) and frac(w(xj)) + δ − frac(w(xj))− δ /ji′ frac(v(d′j,i)).12

The same way, if both xi, xj 6∈ LFPRp
(D) we have Di,j = D′i,j and Dj,i = D′j,i and13

again our result. If either xi or xj is in LFPRp(D), the case is similar to D′0,j or D′i,0.14

Finally, we define w′ = w + δ and w′ ∈ (E′, v(D′)).15

⇐= .19.0.4 open–p–PDBM respecting Definition 8 (5a)16

Suppose in (E,D) there is at least an xj s.t. Dj,0 = D0,j = (0,≤) Let v ∈ Rp,17

and xi ∈ LFPRp
(D).18

Now consider (E′, D′) = TE((E,D)). We need to find a value δ s.t. w+ δ ∈ (E′, v(D′)).19

which is equivalent to prove for all xi, xj20

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i)21

and22

frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j)23

and24

−frac(w(xj))− δ /0j′ v(d′0,j) and frac(w(xj)) + δ /j0′ v(d′j,0).25

As done previously we are going to define a δ which is different from 0, and show that26

constraints in (E,D) are satisfied while going forward of δ units of time from w.27

Let28

t0 = max
x∈X
{0,−frac(w(x))− frac(v(d′0,x))}29

and30

t1 = min
x∈X
{frac(v(d′x,0))− frac(w(x))}.31

We want to prove that t0 ≤ t1. For this purpose, we are going to prove for all clocks i, j32

that −frac(w(xj))− v(d′j,0) ≤ v(d′0,i)− frac(w(xi)).33

First note that34

frac(w(xj))− frac(w(xi)) /ji v(dj,i)35
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By definition of TE< applied to (E,D), we have that D′j,i = Dj,i, and from Defini-1

tion 8 (4) we have that D′j,i ≤ D′j,0 +D′0,i.2

Hence, we have from Definition 7 (2b) that either d′j,i < d′j,0 + d′0,i or d′j,i = d′j,0 + d′0,i3

and /ji′ = /j0′ ⊕ /0i′ or /ji′ = < and /j0′ ⊕ /0i′ = ≤.4

We can then write that5

frac(w(xj))− frac(w(xi))(/j0′ ⊕ /0i′)v(d′j,0) + v(d′0,i)6

which is equivalent to7

−frac(w(xi))− v(d′0,i)(/j0′ ⊕ /0i′)v(d′j,0)− frac(w(xj))8

Now we prove that t0 = 0. Clearly from Definition 8 for any clock i we have that9

−frac(w(xi)) /0i v(d0,i) which is equivalent to −frac(w(xi))− v(d0,i) /0i 0.10

Hence if as (E,D) there is at least an xj s.t. Dj,0 = D0,j = (0,≤), for this clock j we11

have −frac(w(xj))− v(d0,j) = 0.12

By definition of TE< applied to (E,D), we have that D′0,i = D0,i + (0, <). In order to13

respect the constraint −frac(w(xi))−δ/0i′v(d′0,i) which is, as /0i′ =<, −frac(w(xi))−δ <14

v(d′0,i) and especially for j where v(d′0,j) = 0 we have to find a δ > 0.15

In order to find an upper bound for δ, we are going to prove that t1 > 0. From16

Definition 8 (4) we have in (E,D) that for any clocks i, j Dj,0 ≤ Dj,i +Di,0. Let xi ∈17

LFPRp(D). From Definition 8 (1), we have that Di,0 ≤ (1, <). This gives that Dj,i +18

Di,0 ≤ Dj,i + (1, <).19

By definition of TE< applied to (E,D), we have that D′j,0 = Dj,i + (1, <). Hence we20

have Dj,0 ≤ D′j,0.21

Now as frac(w(xi))/i0 v(di,0) we can write frac(w(xi))/i0′ v(d′i,0) and then 0/i0′ v(d′i,0)−22

frac(w(xi)) where /i0′ =<, which prove our result.23

We define δ = t1
2 , therefore t0 < δ < t1. Now for all clock xj , we obtain two results.24

First we have25

−frac(w(xj))−δ < −frac(w(xj))−t1/0j′−frac(w(xj))+frac(w(xj))+v(d′0,j) = v(d′0,j)26

which is −v(d′0,j) /0j frac(w(xj)) + δ as /0j′ = <.27

Secondary we have28

frac(w(xj)) + δ < frac(w(xj)) + t0 /j0′ frac(w(xj))− frac(w(xj)) + v(d′j,0) = v(d′j,0)29

which is frac(w(xj)) + δ /j0 v(d′j,0) as /0j′ = <.30

Now we prove that constraints defined in (E′, D′) on differences of clocks are also31

satisfied by going forward of δ units of time from w32

Recall that in (E′, D′) from the definition of Algorithm 9 we have for all clock xj ,33

D′j,i = Dj,i and D′i,j = Di,j .34

Since we already treated the case whether i or j are 0, now suppose i, j are both different35

from 0. We have that frac(w(xj)) − frac(w(xi)) /ji v(dj,i) = v(d′j,i), and therefore as36

/ji′ = /ji,37

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i).38

We also have that frac(w(xi))− frac(w(xj)) /ij v(di,j) = v(d′i,j), therefore as /ij′ = /ij ,39

frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j).40

Finally, we define w′ = w + δ and w′ ∈ (E′, v(D′)).41
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J1

I Lemma 41. Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp.2

There is w′ ∈ TE((E, v(D))) iff there is w ∈ (E, v(D)) and a delay δ s.t. w′ = w + δ.3

Proof. ⇐= .19.0.5 p–PDBM�(Rp)4

Let v ∈ Rp. Consider (E′, D′) = TE((E,D)) respecting condition Definition 8 (5b), i. e.,5

suppose there is at least an xi s.t. D′i,0 = (1, <) and for all j s.t. D0,j = (0, /0j), then we6

have /0j = <. Let w′ ∈ (E′, v(D′)).7

We need to find a value δ s.t. w′− δ ∈ (E, v(D)) which is equivalent to prove for all xi, xj8

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i)9

and10

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j)11

and12

−frac(w′(xj)) + δ /0j v(d0,j) and frac(w′(xj))− δ /j0 v(dj,0).13

As done previously we are going to define a δ which is different from 0, and show that14

constraints in (E,D) are satisfied while going backward of δ units of time from w′.15

We define the largest and the least amount of time so that all upper bounds of (E,D)16

are satisfied. Let17

t0 = max
x∈X
{0, frac(w′(x))− v(dx,0)}18

and19

t1 = min
x∈X
{frac(w′(x)) + v(d0,x)}.20

We want to prove that t0 = t1 > 0. For this purpose, let us first show that for all i, j we21

have frac(w′(xj))− v(d′j,0) ≤ frac(w′(xi)) + v(d′0,i), which is t0 ≤ t1.22

First note that for all i, j23

frac(w′(xj))− frac(w′(xi)) /ji′ v(d′j,i).24

By applying TE< (Algorithm 9) to (E,D), we have that D′j,i = Dj,i, i. e., (di,j , /ij) =25

(d′i,j , /ij′), and from Definition 9 (2) we have that Dj,i ≤ Dj,0 +D0,i is valid for Rp.26

Hence, we have from Definition 7 (2b) that either v(dj,i) < v(dj,0) + v(d0,i) or v(dj,i) ≤27

v(dj,0) + v(d0,i) and /ji = /j0 ⊕ /0i or /ji = < and /j0 ⊕ /0i = ≤.28

We can then write that29

frac(w′(xj))− frac(w′(xi))(/j0 ⊕ /0i)v(dj,0) + v(d0,i)30

which is equivalent to31

frac(w′(xj))− v(dj,0)(/j0 ⊕ /0i)frac(w′(xi)) + v(d0,i)32

so we obtain our result, as (/j0 ⊕ /0i) is either ≤ or <.33

Now, recall that in (E,D) for all x we have d0,x = −dx,0 and /0x = /x0.34



XX:50 Parametric updates in parametric timed automata

For any clock x we have that frac(w′(x)) − v(dx,0) ≤ t0 and that t1 ≤ frac(w′(x)) +1

v(d0,x) = frac(w′(x))− v(dx,0).2

Hence t0 = t1.3

As for all x, /x0 = ≤, we have for all i, j that (/x0 ⊕ /0i) = /0i and (/j0 ⊕ /0x) = /j0,4

which gives5

t1 /0i frac(w′(xi)) + v(d0,i)6

and7

frac(w′(xj))− v(dj,0) /j0 t0.8

Moreover in (E′, D′) we have that frac(w′(x)) /0x′ v(d′0,x). From Lemma 39, (E′, D′) is9

obtained after applying Algorithm 9 and therefore /0x′ = <. Hence 0 < frac(w′(x)) and10

0 < t0 = t1.11

Let δ = t0 = t1. More intuitively δ is the value right in the middle of the least and12

the largest amount of time s.t. we can go backward in time from w′ and respect all13

constraints defined in (E, v(D)).14

First we have15

−frac(w′(xj))+δ ≤ −frac(w′(xj))+t1/j0−frac(w′(xj))+frac(w′(xj))+v(d0,j) = v(d0,j)16

which is −v(d0,j) /j0 frac(w′(xj))− δ.17

Secondary we have18

frac(w′(xj))− δ ≤ frac(w)′(xj)− t0 /0j frac(w′(xj))− frac(w′(xj)) + v(dj,0) = v(dj,0)19

which is frac(w′(xj))− δ /0j v(dj,0).20

Now we prove that constraints defined in (E,D) on differences of clocks are also satisfied21

by going back of δ units of time from w′22

Recall that in (E′, D′) from the definition of Algorithm 9 we have for all clocks xi, xj ,23

D′j,i = Dj,i and D′i,j = Di,j .24

Since we already treated the case whether i or j are 0, now suppose i, j are both different25

from 0. We have that frac(w′(xj))− frac(w′(xi)) /ji′ v(d′j,i) = v(dj,i), and therefore as26

/ji′ = /ji,27

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i).28

We also have that frac(w′(xi))− frac(w′(xj)) /ij′ v(d′i,j) = v(di,j), therefore as /ij′ = /ij ,29

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j).30

To conclude, we define for all xj31

w(xj) = w′(xj)− δ32

and clearly, w ∈ (E, v(D)).33
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=⇒ .19.0.6 p–PDBM�(Rp)1

Assume in (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp, and xi ∈ LFPRp
(D).2

Now consider (E′, D′) = TE((E,D)). We need to find a value δ s.t. w + δ ∈ (E′, v(D′)).3

which is equivalent to prove for all xi, xj4

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i)5

and6

frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j)7

and8

−frac(w(xj))− δ /0j′ v(d′0,j) and frac(w(xj)) + δ /j0′ v(d′j,0).9

As done previously we are going to define a δ which is different from 0, and show that10

constraints in (E,D) are satisfied while going forward of δ units of time from w.11

Let12

t0 = max
x∈X
{0,−frac(w(x))− frac(v(d′0,x))}13

and14

t1 = min
x∈X
{frac(v(d′x,0))− frac(w(x))}.15

We prove that t1 ≤ t0. for any clock i we have that Di,0 = (frac(p),≤) and Di,0 =16

(−frac(p),≤) i. e., d0,i = −di,0 for some p, hence −frac(w(xi))− v(d0,i) = −frac(w(xi)) +17

v(di,0).18

By definition of TE< applied to (E,D), we have that D′0,i = D0,i + (0, <). In order to19

respect the constraint −frac(w(xi))−δ/0i′ v(d′0,i) which is, as /0i′ =<, −frac(w(xi))−δ <20

v(d′0,i), we have to find a δ > 0.21

In order to find an upper bound for δ, we are going to prove that t1 > 0. From22

Definition 9 (2) we have in (E,D) that for any clocks i, j Dj,0 ≤ Dj,i +Di,0. Let xi ∈23

LFPRp(D). From Definition 9 (1), we have thatDi,0 ≤ (1, <). This gives thatDj,i+Di,0 ≤24

Dj,i + (1, <).25

By definition of TE< applied to (E,D), we have that D′j,0 = Dj,i + (1, <). Hence we26

have Dj,0 ≤ D′j,0.27

Now as frac(w(xi)) /i0 v(di,0) we can write frac(w(xi)) /i0′ v(d′i,0) and then 0 /i0′ v(d′i,0)−28

frac(w(xi)) where /i0′ =<, which prove our result.29

We define δ = t1
2 , therefore t0 < δ < t1. Now for all clock xj , we obtain two results. First30

we have31

−frac(w(xj))−δ < −frac(w(xj))−t1 /0j′−frac(w(xj))+ frac(w(xj))+v(d′0,j) = v(d′0,j)32

which is −v(d′0,j) /0j frac(w(xj)) + δ as /0j′ = <.33

Secondary we have34

frac(w(xj)) + δ < frac(w(xj)) + t0 /j0′ frac(w(xj))− frac(w(xj)) + v(d′j,0) = v(d′j,0)35

which is frac(w(xj)) + δ /j0 v(d′j,0) as /0j′ = <.36

Now we prove that constraints defined in (E′, D′) on differences of clocks are also satisfied37

by going forward of δ units of time from w38
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Recall that in (E′, D′) from the definition of Algorithm 9 we have for all clock xj ,1

D′j,i = Dj,i and D′i,j = Di,j .2

Since we already treated the case whether i or j are 0, now suppose i, j are both different3

from 0. We have that frac(w(xj)) − frac(w(xi)) /ji v(dj,i) = v(d′j,i), and therefore as4

/ji′ = /ji,5

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i).6

We also have that frac(w(xi))− frac(w(xj)) /ij v(di,j) = v(d′i,j), therefore as /ij′ = /ij ,7

frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j).8

Finally, we define w′ = w + δ and w′ ∈ (E′, v(D′)).9

J10

J11

A Argument of the claim on parametric guards12

Argument. As before we use a projection on parameters and eliminate clocks variables. For13

some set of clocks I ⊆ X and i ∈ I, suppose we have the constraints frac(xi) /k frac(pk)14

and −frac(xi) /l −frac(pl) in g.15

When eliminating xi in any constraint of the form frac(xi)− frac(xj)/i,j v(di,j), it is clear16

that we proceed on PLT to the operation (−frac(pl), /l) + (di,j , /i,j) = (−frac(pl) +di,j , /l⊕17

/i,j). In any constraint of the form frac(xj) − frac(xi) /j,i v(dj,i), we proceed on PLT to18

the operation (frac(pk), /k) + (dj,i, /j,i) = (frac(pk) + dj,i, /k ⊕ /j,i). We get the following19

constraints: −frac(xj)(/l⊕/i,j)v(di,j)−frac(v(pl)) and frac(xj)(/k⊕/j,i)frac(v(pk))+v(dj,i).20

Moreover, in (E, v(D)) we have the constraints frac(xj) /j,0 v(dj,0) and −frac(xj) /0,j21

v(d0,j). From Definition 6 we can perform comparisons between elements of PLT , therefore22

in Rp we can define min = min(frac(v(pk)) + v(dj,i), v(dj,0)) and max = max(v(di,j) −23

frac(v(pl)), v(d0,j)).24

In order to eliminate xj , we have to decide whether min ≤ max . Four cases show up which25

are comparisons between elements of PLT , as frac(pl),−frac(pk), frac(pl)− frac(pk) ∈ PLT :26

min = frac(v(pk)) + v(dj,i) and max = v(di,j) − frac(v(pl)). Then we obtain the27

constraint 0((/l ⊕ /i,j)⊕ (/k ⊕ /j,i))v(di,j)− frac(v(pl)) + frac(v(pk)) + v(dj,i). This is28

equivalent to frac(v(pl))− frac(v(pk))((/l ⊕ /i,j)⊕ (/k ⊕ /j,i))v(di,j) + v(dj,i), which is a29

constraint already belonging to Rp.30

min = frac(v(pk)) + v(dj,i) and max = v(d0,j). Then we obtain the constraint 0(/0,j ⊕31

(/k ⊕ /j,i))v(d0,j) + frac(v(pk)) + v(dj,i). This is equivalent to −frac(v(pk))(/0,j ⊕ (/k ⊕32

/j,i))v(d0,j) + v(dj,i), which is a constraint already belonging to Rp.33

min = v(dj,0) and max = v(di,j)− frac(v(pl)). Then we obtain the constraint 0(/j,0 ⊕34

(/i,j ⊕ /l))v(dj,0) + v(di,j) − frac(v(pl)). This is equivalent to frac(v(pl))(/j,0 ⊕ (/i,j ⊕35

/l))v(dj,0) + v(di,j), which is a constraint already belonging to Rp.36

min = v(dj,0) and max = v(d0,j). Then we obtain the constraint 0(/j,0 ⊕ /0,j)v(dj,0) +37

v(d0,j) which is a constraint of Rp.38

In the case where xj is also in I, suppose we have the constraints frac(xj) /m frac(pm)39

and −frac(xj) /n −frac(pn) in g. Then we can eliminate xj in the three last cases above40

with these constraints, and we obtain comparisons between elements of PLT , as frac(pm)−41

frac(pn), frac(pm)− frac(pl), frac(pk)− frac(pn) ∈ PLT :42
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min = frac(v(pk))+v(dj,i) and max = v(−frac(pn)). Then we obtain the constraint 0(/n⊕1

(/k ⊕ /j,i))frac(v(pk)) − frac(v(pn)) + v(dj,i), which is a constraint already belonging2

to Rp.3

min = frac(v(pm)) and max = v(di,j)−frac(v(pl)). Then we obtain the constraint 0(/m⊕4

(/i,j ⊕ /l))frac(v(pm)) + v(di,j) − frac(v(pl)), which is a constraint already belonging5

to Rp.6

min = frac(v(pm)) and max = v(−frac(pn)). Then we obtain the constraint 0(/m ⊕7

/n)frac(v(pm))− frac(v(pn)), which is a constraint of Rp.8

Hence it does not create new inequalities not belonging to Rp. J9

A.1 Proof of Proposition 2510

Proposition 25 (recalled). Let Rp be a parameter region. Let A be an R-U2P-PTA
and R(A) its parametric region automaton over Rp. There is a run σ : (l0, (E0, D0)) e0−→
(l1, (E1, D1)) e1−→ · · · (lf−1, (Ef−1, Df−1)) ef−1−→ (lf , (Ef , Df )) in R(A) iff for all v ∈ Rp
there is a run ρ : (l0, w0) e0−→ (l1, w1) e1−→ · · · (lf−1, wf−1) ef−1−→ (lf , wf ) in v(A) s.t. for
all 0 ≤ i ≤ f , wi ∈ (Ei, v(Di)).

11

Proof. ⇐ By induction on the length of the run.12

Let v ∈ Rp. As the basis for the induction, in the initial location (l0, {0}H) the only13

valuation is reachable by an empty run of v(A). Moreover {0}H∈(E0, v(D0)) the initial14

p–PDBM containing only 0. Therefore the initial location (l0, (E0, v(D0))) is reachable15

by an empty run of R(A).16

For the induction step, suppose for all v, there is run in v(A) of length f − 1 we have our17

result.18

Let v ∈ Rp and ρ = (l0, w0) e0−→ · · · ef−2−→ (lf−1, wf−1) ef−1−→ (lf , wf ) be a run of v(A)19

of length f . By induction hypothesis, there is a run σ = (l0, (E0, D0)) e0−→ · · · ef−2−→20

(lf−1, (Ef−1, Df−1)) in R(A) and for all 0 ≤ i ≤ f − 1, wi ∈ (Ei, v(Di)).21

Consider ef−1. By Definition 24 of the parametric region automaton, it is also in its set22

of edges ζ ′. Three cases show up:23

If ef−1 = 〈lf−1, a, g, unp, lf 〉 contains no parametric guard nor parametric update.24

Using Definition 2 there is a delay δ (possibly 0) s.t. (lf−1, wf−1) δ7→ (lf−1w
′
f−1) ef−17→25

(lf , wf ) where w′f−1 |= g and wf = [w′f−1]unp
. As wf−1 ∈ (Ef−1, v(Df−1)) there26

is (E′f−1, D
′
f−1) ∈ Succ((Ef−1, Df−1)) s.t. from Proposition 18 we have w′f−1 ∈27

(E′f−1, v(D′f−1)). As w′f−1 |= g by construction of our p–PDBMs (see Section 3.1.3)28

any other clock valuation belonging to (E′f−1, v(D′f−1)) satisfies g. Therefore v ∈29

guard∀(g,E′f−1, D
′
f−1) and from Lemma 21, Rp ⊆ guard∀(g,E′f−1, D

′
f−1). Now,30

as wf = [w′f−1]unp consider the open–p–PDBM (Ef , Df ) = update((E′f−1, D
′
f−1), unp);31

from Lemma 13 we have wf ∈ (Ef , v(Df )). Finally there is an edge (lf−1, (Ef−1, Df−1)) ef−1−→32

(lf , (Ef , Df )).33

If ef−1 = 〈lf−1, a, g, u, lf 〉 contains a parametric guard and a parametric update.34

Using Definition 2 there is a delay δ (possibly 0) s.t. (lf−1, wf−1) δ7→ (lf−1, w
′
f−1) ef−17→35

(lf , wf ) where w′f−1 |= v(g) and wf = [w′f−1]v(u). As wf−1 ∈ (Ef−1, v(Df−1)) there36

is (E′f−1, D
′
f−1) ∈ Succ((Ef−1, Df−1)) s.t. from Proposition 18 we have w′f−1 ∈37

(E′f−1, v(D′f−1)). As w′f−1 |= v(g), v ∈ p-guard∃(g,E′f−1, D
′
f−1) and from Lemma 22,38

Rp ⊆ p-guard∃(g,E′f−1, D
′
f−1). Now, as wf = [w′f−1]v(u) consider the point–p–PDBM39

(Ef , Df ) = update((E′f−1, D
′
f−1), u); (Ef , v(Df )) contains only one clock valuation,40



XX:54 Parametric updates in parametric timed automata

precisely defined by the fully parametric update v(u) so we have wf ∈ (Ef , v(Df )).1

Finally there is an edge (lf−1, (Ef−1, Df−1)) ef−1−→ (lf , (Ef , Df )).2

The case where ef−1 contains a non parametric guard and a parametric update is3

similar to the previous one.4

Finally, there is a run σ′ = σ
ef−1−→ (lf , (Ef , Df )) of length f in R(A) s.t. for all 0 ≤ i ≤ f ,5

wi ∈ (Ei, v(Di)).6

⇒ By induction on the length of the run.7

Let v ∈ Rp. As the basis for the induction, the initial location (l0, (E0, v(D0))) is reachable8

by an empty run of R(A). Moreover, as {0}H∈(E0, v(D0)), the initial location (l0, {0}H)9

is reachable by an empty run of v(A).10

For the induction step, suppose it is true for all run in R(A) of length f − 1.11

Let v ∈ Rp and σ = (l0, (E0, D0)) e0−→ · · · ef−2−→ (lf−1, (Ef−1, Df−1)) ef−1−→ (lf , (Ef , Df ))12

be a run of R(A) of length f . Consider ef−1. By Definition 24 of the parametric region13

automaton, it is also in the set of edges ζ of A. Two cases show up:14

If ef−1 = 〈lf−1, a, g, unp, lf 〉 contains no parametric guard nor parametric update. By15

induction hypothesis, there is a run ρ = (l0, w0) e0−→ · · · ef−2−→ (lf−1, wf−1) of v(A) of16

length f − 1 s.t. for all 0 ≤ i ≤ f − 1, wi ∈ (Ei, v(Di)). Using Definition 24 there17

is (E′f−1, D
′
f−1) ∈ Succ((Ef−1, Df−1)), Rp ⊆ guard∀(g,E′f−1, D

′
f−1) and (Ef , Df ) =18

update((E′f−1, D
′
f−1), unp). From Proposition 18 we have w′f−1 ∈ (E′f−1, v(D′f−1))19

and a delay δ s.t. w′f−1 = wf−1 + δ. As Rp ⊆ guard∀(g,E′f−1, D
′
f−1) from Lemma 2120

we have v ∈ guard∀(g,E′f−1, D
′
f−1) and w′f−1 |= g. Moreover, since (Ef , Df ) =21

update((E′f−1, D
′
f−1), unp), we define wf = [w′f−1]unp

and therefore from Lemma 13,22

wf ∈ (Ef , v(Df )). Finally there is an edge (lf−1, wf−1) ef−1−→ (lf , wf ) and a run ρ′ =23

ρ
ef−1−→ (lf , wf ) in v(A) of length f s.t. for all 0 ≤ i ≤ f , wi ∈ (Ei, v(Di)).24

If ef−1 = 〈lf−1, a, g, u, lf 〉 contains a parametric guard and a parametric update. Using25

Definition 24 there is (E′f−1, D
′
f−1) ∈ Succ((Ef−1, Df−1)), Rp ⊆ p-guard∃(g,E′f−1, D

′
f−1)26

and (Ef , Df ) = update((E′f−1, D
′
f−1), u). From Lemma 22 we can take w′f−1 ∈27

(E′f−1, v(D′f−1)) s.t. w′f−1 |= v(g). Let wf = [w′f−1]v(u). Clearly, (Ef , Df ) =28

update((E′f−1, D
′
f−1), u) is a point–p–PDBM; as (Ef , v(Df )) contains only one clock29

valuation precisely defined by the fully parametric update v(u), we have wf ∈30

(Ef , v(Df )). From Proposition 18 as w′f−1 ∈ (E′f−1, v(D′f−1)) there is a delay δ31

and a wf−1 ∈ (Ef−1, v(Df−1)) s.t. w′f−1 = wf−1 + δ. Using the induction hypothesis,32

there is a run ρ = (l0, w0) e0−→ · · · ef−2−→ (lf−1, wf−1) of v(A) of length f − 1 s.t. for33

all 0 ≤ i ≤ f − 1, wi ∈ (Ei, v(Di)). Finally there is an edge (lf−1, wf−1) ef−1−→ (lf , wf )34

and a run ρ′ = ρ
ef−1−→ (lf , wf ) in v(A) of length f s.t. for all 0 ≤ i ≤ f , wi ∈ (Ei, v(Di)).35

The case where ef−1 contains a non parametric guard and a parametric update is36

similar to the previous one.37

J38

A.2 Proof of Theorem 2639

Theorem 26 (recalled). Let A be an R-U2P-PTA. Let Rp be a parameter region
and v ∈ Rp. If there is a run ρ = (l0, w0) e0−→ · · · ei−1−→ (li, wi) in v(A), then for all
v′ ∈ Rp there is a run ρ′ = (l0, w′0) e0−→ · · · ei−1−→ (li, w′i) in v′(A) such that for all i,
(wi, v) l (w′i, v′).
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Proof. Let v ∈ Rp and ρ a run of v(A) reaching (li, wi). From Proposition 25, there is a run1

σ in R(A) s.t. each clock valuation at a location in ρ is in the p–PDBM at the same location2

in σ. Still from Proposition 25, for all v′ ∈ Rp there is a run ρ′ in v′(A) reaching (li, w′i) s.t.3

each clock valuation at a location in ρ′ is in the p–PDBM at the same location in σ (note4

that possibly v = v′). Therefore, we have for all 0 ≤ j ≤ i that (wi, v) l (w′i, v′) and the5

expected result.6

J7

A.3 Proof of Theorem 278

Theorem 27 (recalled). The EF-emptiness problem is PSPACE-complete for
bounded R-U2P-PTAs.

9

I Lemma 42. There is a finite number of p–PDBMs.10

Proof. Let (E,D) ∈ p–PDBM(Rp) and consider PLT : D is a (H + 1)2 matrix composed11

of pairs (d, /) where d ∈ PLT and / ∈{≤, <}. Hence the number of possible D is bounded12

by (2× (2 +M(3M−1
2 + 4)))(H+1)2 . Moreover the number of E is bounded since clocks have13

a maximal value: it is a finite set of integer vectors of NH . J14

I Lemma 43. There is a finite number of Precise Parametric regions.15

Proof. Consider PLT \ {0, 1}. Each constraint is a comparison ({≤, <}) of plt1 and plt2 ∈16

PLT . Hence the number of possible constraints is bounded by 2 × (2 + M(3M−1
2 + 4))3.17

Moreover, the number of P-region Rp is bounded since they have a maximal value: indeed,18

since P-region are constructed as clocks regions of [AD94], it is bounded by M ! × 2M ×19 ∏
p∈P(2M + 2) J20

Proof. Since a TA is a special case of R-U2P-PTA we have the PSPACE-hardness [AD94].21

Now, let G be a set of goal locations of A. We build a non-deterministic Turing machine22

that:23

1. takes A, G and K as input24

2. non-deterministically “guesses” a parameter region Rp25

3. takes v ∈ Rp and writes it to the tape26

4. overwrite on the tape each parameter p by v(p), giving the updatable TA v(A)27

5. solves reachability in v(A) for G28

6. accepts iff the result of the previous step is “yes”.29

The machine accepts iff there is an integer valuation v bounded by K and a run in v(A)30

reaching a location l ∈ G.31

The size of the input is |A|+ |G|+ |K|, using |.| to denote the size in bits of the different32

objects. Moreover, the number of parameter regions is bounded (M is the number of33

parameters in A) by
(
M !× 2M ×

∏
p∈P(2M + 2)

)
×
(
2× (2 +M(3M−1

2 + 4))3) since they are34

constructed as the clock regions of [AD94], the second part being the maximal number of35

constraints in a parameter region. Picking v at step iii) uses a PSPACE linear programming36

algorithm (e. g., [Kar84]). Storing the valuation at step iv) uses at most M × |K| additional37

bits, which is polynomial w.r.t. the size of the input. Step v) also needs polynomial space38

from [BDFP04]. So globally this non-deterministic machine runs in polynomial space. Finally,39

by Savitch’s theorem we have PSPACE = NPSPACE [Sav70], and the expected result.40

J41
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A.4 Proof of Corollary 281

The procedure to obtain synthesis is as follows. We assume an R-U2P-PTA A and a goal2

location l.3

1. enumerate all parameter regions (of which there is a finite number)4

2. for each Rp, pick a parameter valuation we pick v ∈ Rp (e. g., using a linear programming5

algorithm [Kar84])6

3. test the reachability of l in the updatable timed automaton v(A), which is decid-7

able [BDFP04]8

4. if l is reachable in v(A), add Rp to the list of synthesized regions9

We finally return the union of all regions Rp that reach l.10

The correctness immediately comes from Theorems 26 and 27.11
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