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en Informatique Fondamentale
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Thomas EHRHARD Examinateur
Dan GHICA Examinateur
Giulio MANZONETTO Examinateur
Guy McCUSKER Rapporteur
Michele PAGANI Directeur de thèse
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longue pour être récitée sans oublis.

Enfin il me faut remercier ma famille et mes amis de toujours. Mes parents mais aussi mon frère
(encore merci pour l’organisation du pot) qui sont toujours là en cas de besoin. Mais aussi ceux qui
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Résumé
Disséquer les sémantiques dénotationnelles :

Du bien établiH∗ aux plus récents coeffets quantitatifs
À travers la résolution de deux problèmes ouverts bien différents, cette thèse présente quatre approches
distinctes permettant d’observer finement et de classer des modèles dénotationnels.

Dans un premier temps, l’on s’intéressera au λ-calcul non typé et à sa théorie observationnelleH∗ (en
appel de tête). Nous donnons une caractérisation, au sein d’une large classe de modèles du λ-calcul non
typé, des modèles pleinement adéquats pour H∗: un K-modèle extentionnel D est pleinement adéquat
si et seulement s’il est hyperimmune, i.e., les chaines mal fondées d’éléments de D ne sont pas cap-
turées par aucune fonction récursive. Nous allons présenter deux techniques permettant de prouver cette
même caractérisation de deux manières indépendantes: l’une purement sémantique et l’autre purement
syntaxique. La preuve sémantique consiste en l’utilisation d’un modèle syntaxique, les arbres de Böhm,
et de propriétés d’approximation filtrant le plongement de ces derniers dans nos modèles. La preuve
syntaxique consiste en l’utilisation de syntaxes sémantiques, les λ-calculs avec tests, qui transcrivent les
propriétés internes des modèles à un niveau syntaxique.

Dans un second temps, l’on s’intéressera aux BSLL, qui sont des raffinements de la logique linéaire où
les exponentielles sont paramétrées par les éléments d’un semi-anneau S. Ces semi-anneaux capturent
une notion de coeffet, i.e., les hypothèses requises par un programme sur son contexte (accessibilité
d’une ressource, prérequis sur une entrée...). Nous faisons ici la première analyse dénotationnelle de
BSLL. En particulier, nous décrivons deux manières d’extraire de tels modèles. L’une est “a priori”: il
s’agit de choisir un semi-anneau S le long duquel on va stratifier l’exponentielle usuelle de la logique
linéaire. L’autre est au contraire “a posteriori”: elle montre qu’à un modèle de la logique linéaire est
naturellement associé une sorte de semi-anneau sémantique résultant en une interprétation de BSLL.

Abstract
Dissecting denotational semantics:

From the well-establishedH∗ to the more recent quantitative coeffects
Throughout the resolution of two different open problems, this thesis presents four distinct approaches
enabling refine observations and classifications of denotational models.

First, we treat the untyped λ-calculus and its observational theory H∗ (wrt head reduction). We give
a characterization, with respect to a large class of models of untyped λ-calculus, of those models that
are fully abstract for H∗: an extensional K-model D is fully abstract if and only if it is hyperimmune,
i.e., non-well founded chains of elements of D cannot be captured by any recursive function. In fact, we
will present two different techniques leading to two different proofs of the same characterization: one
purely semantic and another one purely syntactic. The semantic proof consists in the use of a syntactical
model, the Böhm trees, together with aproximation properties that can filter their embeddings into the
considered models. The syntactic proof consists in the use of sementical calculi, the λ-calculi with tests,
which are translating the properties of the considered model at syntactical level.

In the second part of the thesis, we consider BSLL, a refinement of linear logic, where the exponential
connective is parametrized by elements of a semi-ring S. These semirings allow to express coeffects,
i.e., specific requirements of a program with respect to the environment (availability of a resource, some
prerequisite of the input, etc.). We give the fist denotational analysis of BSLL. In particular we give two
ways for extracting a model of BSLL from a model of usual linear logic. One way is “a priori”: it uses
the semi-ring S in order to impose a stratification to the usual linear logic exponential. The other way
is instead “a posteriori”: it shows that any model of linear logic is naturally associated with (kind of)
semantical semi-ring R, by which one can derive an interpretation of BSLL.
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Introduction

Content and contributions of this thesis

My research branches in two directions: the study of the untyped λ-calculus, and the study
of functional languages with quantitative operators. Despite both studies being focused on
denotational semantics, a particular attention is always given to the computational meaning of
our models.

The first topic, i.e., the untyped λ-calculus, is an old and deep subject; it is the subject of
a whole theory that is well understood and serves as a basis for the denotational semantics
of higher-order functional languages. On the contrary, the second topic, i.e., the quantitative
languages, is an emerging new topic; there, the simple notion of what is a model or not is still a
matter of debate. The fact that my work splits into these two lines actually results from a long
term strategy aiming at transferring knowledge and methods from the first line to the second.

The full abstraction of the untyped λ-calculus

My first area of expertise stems from back to the 70’s and the foundations of denotational
semantics. We aim at taking back questions from the origins of the subject and reinterpreting
them in a more modern way. This methodology has two objectives. The first one is to verify
that no shortcut nor any middling concession regarding generality has been done while the
theory was being built up. The second one is to reforge traditional tools into modern ones with
the same purpose but not the same domain of application.

Denotational semantics fundations have been much studied and is the subject of many publi-
cations. However, most of these publications focus on algebraic and categorical axiomatization
of those well known fundamentals. My approach is slightly different as it consists in finding
technical holes and misconceptions by looking at the limits of the theory.

In this thesis, my analysis more specifically concerns full abstraction, i.e., the absolute cor-
respondence between the model and the given behavior (or observation). This is the strongest
notion of adequation and is generally invoked to show that a model is “the best possible one”.

In this prospect, I reversed the usual existential approach of full abstraction to a universal
one. The usual approach is fundamentaly existential: it consists in finding a fully abstract
model for a specific calculus/theory. The universal approach consists in gathering all models
that are fully abstract for a simple calculus. I choose to work with the untyped λ-calculus with
head reducibility as observation (i.e., the theory H∗). The corresponding existential problem
has been solved in 1976 by Hyland [Hyl76] and Wadsworth [Wad76] (full abstraction of Scott’s
D∞); it is by now particularly well understood.

The universal approach already appeared in Milner’s uniqueness theorem for fully abstract
models of PCF [Mil77]. But the case of PCF is intrinsically different from the theory H∗.
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IndeedH∗ has various fully abstract but not isomorphic models. The quest for a general char-
acterization of the fully abstract models ofH∗ started by successive refinements of a sufficient
but unnecessary condition [DGFH99, X.G95, Man09], improving the proof techniques from
1976 [Hyl76, Wad76].

All along these studies, you could feel a general intuition gravitating around well founded-
ness. Indeed, for a model to be fully abstract for H∗, it seemed that it had to be stratified over
a well founded set.1 In terms of game semantics, this means that the semantics should forbid
non-productive plays with both player and opponent that keep answering questions by asking
deeper and deeper questions without any productive answer. In terms of filter models, this
means that points of the model are well (pre)ordered so that any equation α = β → γ respect
β < α and γ ≤ α (except for the bottom ω = ω→ ω).

In [Bre14], I showed that this intuition had a flaw. In fact, such degenerated models with
non-well founded chains are potentially allowed providing that those chains cannot be caught
by a recursive function (i.e. by a λ-term).

Up to restricting our study to a specific class of models,2 I even achieved a full characteriza-
tion [Bre14]: a model D is fully abstract forH∗ iff D is hyperimmune (Def. 2.1.0.1).

Hyperimmunity is the key property our study introduces in denotational semantics. This
property is reminiscent of the Post’s notion of hyperimmune sets in recursion theory. Hyper-
immunity is not only undecidable, but also surprisingly high in the hierarchy of undecidable
properties (it cannot be decided by a machine with an oracle deciding the halting problem)
[Nie09].

It results that fully abstract models forH∗ form a very strange class containing models with
weird behaviors. In fact the model is allowed to behave erratically as long as its misbehaviors
cannot be caught by the calculus. In this condition, one can question the validity of using
full abstraction as an absolute argument for the correspondence between the calculus and the
model.

The other point of my study is to introduce a new tool: the calculi with tests (Def. 2.3.1.1).
These are syntactic extensions of the λ-calculus with operators defining compact elements of
the given models. Since the model appears in the syntax, we are able to perform inductions (and
co-inductions) directly on the reduction steps of actual terms, rather than on the construction
of Böhm trees.

A calculus with tests is a sort of dual of the set of Böhm trees. While the latter constitute a
syntactical model of the λ-calculus, a calculus with tests is a semantical language of a K-model.
While Böhm trees are built upon the λ-calculus and reduce the problem of full abstraction to
the semantical level; a calculus with tests is built upon the model and reduces this problem to
the syntactical level. We claim that, regarding relations between denotational and operational
semantics, Böhm trees and λ-calculi with tests are equally powerful tools, but extend differently
to other frameworks.

The comparison between these two tools is particularly emphasized in [Bre] (the long version
of [Bre14]) and in this thesis. Indeed, the proof of the characterization is performed twice:
once in a purely semantical style, only relying on Böhm tree techniques; and once in a purely
syntactical style, relying on the λ-calculus with tests.

1The notion has been technically expressed in [Man09].
2Namely Krivine models [Kri93, Ber00] that respect the approximation property
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In a nutshell, my contributions in this area are the following:

• the characterization of full abstraction for H∗ (Th. 2.1.0.5) by an unforseen notion of
Hyperimmunity (Def. 2.1.0.1), bridging denotational semantics and the recursion theory
in yet another way,

• the developement of a new tool:3 the calculi with tests (Def.2.3.1.1), that can compete
with Böhm trees in its usefulness,

• a novel view of Böhm trees that can be themselves interpreted in different ways
in Λ-models (Def. 2.2.1.7 and Def. 2.2.1.16),

• a bypassing equivalence between the equational and inequational full abstractions forH∗

in K-models (Th. 2.1.0.5),

• and, finally, a bypassing approximation theorem applying to a large class of models
(Cor. 2.4.2.14).

Bounded type systems

My second area of expertise lies in a quantitative generalisation of Curry-Howard correspon-
dence. Some languages, logics and semantics are capable of manipulating quantitative in-
formation representing a specific physical or abstract resource (execution time, re-usability,
probability, size, scheduling...). The objective is then to trace, limit or modify this resource
consumption via a Curry Howard correspondence.

These calculi are extensions of the typed λ-calculus that represent the quantitative infor-
mation by an algebraic structure (typically a semi-ring). This structure can be modified/used
explicitly, via some (co-)effects, or implicitly, via usual operators. It can be represented either
through the operational semantics or through the type system.

The whole point of this domain is to link the concrete algebraic resources appearing in op-
erational semantics and the abstract ones appearing in type systems. The relation between
those is probably of the same nature than the relation between concrete and abstract domains
in abstract interpretation. Indeed, quantitative type systems are supposed to statically compute
quantitative information on the resource consumption via the type-checking/inference.

One can roughly distinguish two opposite poles of study for quantitative type systems. One
focuses on effects [Kat14] while the other focuses on coeffects [dLG11, GHH+13a]. The dis-
tinction is not formal and may not be universal, but we believe that such a duality is at stake
somewhere. In this thesis, we focus on the second, which is a recent field in full effervescence.

One particular example is the bounded linear logic (for short BLL) [GSS92a, DLH09], that
achieved one of the first successes of implicit complexity: a characterization of polynomial time
via a type assignment system. It consists in wisely inserting re-usability bounds for arguments
at type level. For example, 3.int→int is the type of functions that are allowed up to three usages
of their argument. This time, the resource is a more abstract notion of re-usability captured by
a structure similar to the polynomial ring4 with a notion of dependency.

3The tool already existed in a particular case [BCEM11] but I raised it in a whole new level.
4More exactly polynomials with reals as coefficients but natural conserving natural numbers.
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In this thesis, I am presenting my advancement regarding such a refinement of linear logic
where the exponential is “bounded” by a semiring S. These logics are called S-bounded logics
(for short BSLL). Appearing simultaneously in two different situations [BGMZ14, GS14],
the S-bounded logics are used as type systems recording the resource consumption. The
recorded resource can be diverse and depends on the choice of the (lax-)semiring S. Com-
putationally, the interesting point of this logic is its capability at recording requirements raised
by coeffects [BGMZ14, POM13, POM14].

A S-bounded logic can be seen as a refinement of the linear logic where the exponential
modality is parameterized by elements of a (lax-)semiring S. The idea is similar to the ap-
proach of BLL [GSS92a] with two exceptions: the parametricity over any (lax-)semiring offers
many more choices than the sole polynomial semiring used by BLL, however, the absence of
dependence considerably restricts the logical power.5

Unfortunately, very few concrete semantics have been designed to describe these bounded
logics. In fact, I know only one realisability semantics of the original BLL [HS04] and the
parameterized BSLL is only given a categorical axiomatisation [BGMZ14]. Our article [BP15]
aims at filling this lack for BSLL and the general flow of this thesis is pursuing this heading.

The S-bounded logics appear as refinements of the usual linear logics which semantics has
been intensively studied. By linking the two, we can hope to achieve two things: exporting
the huge amount of technologies developed around the semantics of linear logic and factoriz-
ing/decomposing the notion of model of linear logic in order to demystify it. Following this
path, I am about to present you two different constructions that can decompose models of linear
logic into models of BSLL.

The first construction (Def. 3.1.1.13) is rather intuitive. It starts from the remark that several
well known models of linear logic are already able to distinguish, at the semantic level, the
resource consumption which the S-bounded logics are based on. The idea is to transport the
whole structure of the linear logic exponential throughout a natural transformation

∂

I that is
parameterized by elements I of the targeted semiring S. As a result, we we get a stratification
of the original exponential in more atomic components that are more refined and that can model
BSLL for some S.

This construction is first applied on the most basic model of linear logic: the relational
model. There, we will identify S-bounded logics that can be modeled by some stratification
of the free exponential of the relational model and see that they are (roughly) as diverse as
the possible semi-rings that can be in a sense embedded to the set-theoretical lattice P(N)
(Def. 3.1.2.1). After a brief aside on other well known models such as the coherent spaces,
I will come back to the relational model, but using non-free exponentials [CES10]. We will
see in particular that for any choice of semiring S, the S-bounded logic can be modeled for a
coherent choice of exponential. In a more global picture, we show the importance of studying
non-free exponentials in order to model S-bounded logics.

The second construction (Th. 3.2.3.3) is more abstract and targets a different goal. The idea
is to start from any model of linear logic and construct, in the most natural way, a lax-semiring
that we call internal lax-semiring. My intuition is that a model of linear logic is synthesized by
its internal lax-semiring which already contains a large part of the computational content that
can be carried in the model. We will see that a model can be turned into a model of BSLL for S

5i.e., the set of programs that are typable
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the internal lax-semiring.
Moreover, the very natural character of the construction allows for a generalization at an

abstract level. Our objective, with this generalization, is to capture the the notion of dependence
of the original BLL together with the genericity of the S-bounded logics. The early results in
this directions are presented as well as their syntactical counterpart.

In a nutshell, my contributions in this area are the following:

• the concept of stratification of an exponential comonad to get a model of BSLL (Def. 3.1.1.13),

• the given of the first concrete model of BSLL, with a universal way of constructing a
model of BSLL for any semiring S (Prop. 3.1.3.13),

• the discovery of an internal lax-semiring lying over any linear6 category (Def. 3.2.2.3),

• the slicing of a linear category to get a model of BSLL, for S the corresponding internal
lax-semiring (Th. 3.2.3.3),

• the generalization of the internal lax-semiring to a dependent semiring (Def. 3.2.4.5),

• a prototype of a dependent S-bounded logic over a dependent semiring S (Def. 3.2.5.1).

Contents

This thesis is divided in three chapters: a first preliminary chapter that introduces the technical
objects of the two main chapters, and two chapters of contributions following the two main
lines above mentioned. Aside these chapters are a few appendices that recall general notions
which are not contributions.

Preliminaries. Chapter 1 presents four technical objects that are crucial in Chapters 2 and 3.
Those are the untyped λ-calculus (Sec. 1.1), the Böhm trees (Def. 1.2.2.1), the K-models
(Def. 1.2.4.3) and the S-bounded logics (Def. 1.3.1.1).

In Section 1.2, a special attention is given to models of the untyped λ-calculus, which Böhm
trees7 and K-models are part of. In Section 1.2.1, we will see that Λ-models can be described
algebraically, allowing to present the set of Böhm trees as a model (Sec. 2.2.1). Then, we will
see that in order to get interesting and well structured models (Sec. 1.2.3), it is useful to look
for more abstract and structured categorical constructions such as Cartesian closed categories,
reflexive objects and Kleisli categories. Finally, in Section 1.2.4 the K-models are presented by
means of these constructions.

Section 1.3 presents in detail the S-bounded logics (for short BSLL) for S a semiring. The
main interest of S-bounded logics arises when implemented as a type system for a program-
ming language enriched with co-effects. In fact, the scalars in the semiring S allow to write
parametrized formulas that can be seen as types expressing some co-effect (i.e. requirement)
of the programs having those types. However, our objective in this thesis being to study

6and order-enriched
7More exactly the set of all Böhm trees
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BSLL models and their relations with linear logic, we do not develop the underlying calcu-
lus. Nonetheless, Section 1.3.2 informally presents the different applications thought examples
of actual instances of the semiring S.

The characterization of H∗. Chapter 2 is structured in four sections. Section 2.1 presents
the main theorems (Theorem 2.1.0.5 and Theorem 2.1.0.5). These two theorems correspond
to the very same result: the characterization of the full abstraction with respect to H∗ by the
notion of hyperimmunity (Def. 2.1.0.1). The difference is in the point of view taken on the
result, Theorem 2.1.0.5 (and Section 2.2 that is dedicated to it) presents the result from a se-
mantical point of view, while Theorem 2.1.0.5 (and Section 2.3) has a syntactical point of view.
Section 2.4 completes the chapter by relating the two proofs and by showing the diversity of
the considered class of models.

The semantic point of view (Sec. 2.2) is built around the intensively studied notion of Böhm
trees. Following a notion of model for coinductive terms developed in Appendix A.2.1, we
generalize the notion of interpretation from λ-terms to Böhm trees. There are several such inter-
pretations, and we are studying one in particular: the quasi-finite interpretation (Def. 2.2.1.16).
The key notion is the quasi-approximation (Def. 2.2.1.17) that states that the quasi-finite in-
terpretation factors the interpretation of any λ-term. We show the equivalence between the
notion of hyperimmunity, the notion of quasi-approximation and the full abstraction for H∗

(Theorems 2.2.2.8, 2.2.2.10 and 2.2.3.1).
The syntactic point of view (Sec. 2.3) is built around the notion of λ-calculus with tests. This

notion is new and quite a lot of technicalities have to be achieved, such as confluence (Theo-
rem 2.3.1.26) or standardization (Theorem 2.3.1.29). The λ-calculus with tests is a powerful
tool that we use to prove Theorem 2.1.0.6 without any call to the notion of Böhm trees. The
idea is, for any model D, to extent the λ-calculus with some tests that are defining elements of
D. This results in a calculus D is fully abstract for. Once noticed that the interpretation over the
λ-calculus with D-tests factors the interpretation over the λ-calculus, only remains a syntactical
study to determind whether the head-observational equivalence over lambda-calculus and that
over the calculus with tests concide (Theorem 2.3.2.4 and Theorem 2.3.3.5).

The study over models for BSLL. Chapter 2 is structured in two sections. Each of these
sections presents a general construction aiming at transforming a linear category into a model
of BSLL. However, the two constructions follow different directions and different goals. The
first construction (described in Section 3.1) is a kind of “external” interpretation: it starts from a
semiring R and analyses the properties that R should satisfy in order to transform a model of LL
into a model of BSLL. The second construction (described in Section 3.2) instead is “internal”,
it tries to recover from a model of LL an associated semiring which gives a model of BSLL.
Moreover, the “external” construction aims for simple (but potentially ad hoc) models; while
the “internal” one aims at a natural (but potentially complex) model from which should emerge
some natural generalization of bounded logics.

Section 3.1 presents the notion of bounded exponential situation of Brunel et al [BGMZ14]
(Def. 3.1.1.2) that is a categorical axiomatization for models of BSLL. Theorem 3.1.1.16 shows
that a stratification over the exponential of a linear category (Def. 3.1.1.13) leads to such a
bounded exponential situation. Such a theorem is similar to saying that the codomain of a group
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by a surjective semigroup morphism is a group: it does not provide any actual example. The
remaining of the section focuses on applying the theorem over several concrete semantics to get
a better understanding of the situation. Section 3.1.2 presents the stratifications of the relational
model with the free exponential (Appendix A.3.3), but also sketches some stratifications over
coherent and Scott’s semantics. Section 3.1.3 develops the stratifications of relational models
for non-free exponentials.

Section 3.2 is built around the notion of internal semiring (Def. 3.2.2.1). In Section 3.2.2,
Theorem 3.2.2.2 and Theorem 3.2.2.4 are expliciting this internal (lax-)semiring that is hidden
in the axiomatization of linear category. In Section 3.2.3, we show that by slicing a linear
category, we get a bounded exponential situation parameterized by its internal lax-semiring.
Finally, in Section 3.2.4 and Section 3.2.5, we present early results concerning a semantic-
oriented and dependent extension of the bounded logics.

The technical appendices. Appendix A.1 introduces all the technical definitions over cate-
gory theory in the straight form of a dictionary. There, we present not only the basic definitions
over categories, but several more advanced definitions such as adjunctions or (co)algebras as
well the notion of 2-categories.8

Appendix A.2 collects several syntactical notions over term constructions and term rewriting.
A special attention is given to the notion of structural coinduction. It is known that coinductive
proofs have to be productive. However, in the same way that structural induction does not
require a certificate of well-ordering, structural coinduction does not require any certificate
of productivity. This concept is not central along the contributions. However, the notion is
implicitly used in the way Böhm trees are treated (Sec 2.2.1) and in some proofs of divergence
(Sec 2.3.3).

Appendix A.3 is treating the linear logic and its models. We define the intuitionistic linear
logic and develop the notion of linear category which axiomatizes it. We also give the definition
of a recollection of well known models of linear logic: the relational category Rel, the category
Coh of coherent spaces (with both set and multiset exponentials) and the linear Scott model
ScottL.

Finally, Appendix A.4 gathers basic definitions as well as several examples of semirings
and lax-semirings. These examples are used as references for the Section 3, but none of them
amounts to much novelty (even if some proofs are given they are quite straightforward).

8Notice that 2-categories are not used in all their generality, but only under an order-degeneration; nonetheless,
the general case is also mentioned in the thesis.
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Böhm trees and full abstraction . . . . . . . . . . . . . . . . . . . . . 31

1.2.3. How to get a Λ-model? . . . . . . . . . . . . . . . . . . . . . . . . . . 32
From CCCs to Λ-models . . . . . . . . . . . . . . . . . . . . . . . . . 32
From linear categoriess to CCCs . . . . . . . . . . . . . . . . . . . . . 33

1.2.4. K-models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
The category ScottL! . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
An algebraic presentation of K-models . . . . . . . . . . . . . . . . . 35
Interpretation of the λ-calculus . . . . . . . . . . . . . . . . . . . . . . 37
Intersection types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.3. S-Bounded logics BSLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.3.1. The logic BSLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2. Characterization of full abstraction of H∗ 45
2.1. The theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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Subclasses of Böhm trees . . . . . . . . . . . . . . . . . . . . . . . . . 53
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1. Preliminaries

In this preliminary chapter we introduce the fundamental and historic notions regarding the two
main chapters of the thesis:

Section 1.1 and Section 1.2 introduce the objects of Chapter 2. Section 1.1 defines the un-
typed λ-calculus: reduction and theories. In Section 1.2, we define the notion of Λ-model, both
algebraically and categorically. We illustrate these approaches by two examples of importance
for Chapter 2: the Böhm trees and the K-models.

Section 1.3 introduces the logics bounded by semirings, which are the object of Chapter 3,
and gives some examples. The relative shortness of the preliminaries for Chapter 3 traduces
the youthfulness of the topic.

1.1. The untyped λ-calculus

A higher order grammar

The set of λ-terms is defined by the following grammar [Bar84] (with x, y, z... in a given a set
Var of variables):

(λ-terms) Λ M,N ::= x | λx.M | M N

Terms are denoted “à la Barendregt” which means that application is left-associative (i.e.,
M1 M2 M2 denotes (M1 M2) M2), and that nested abstractions of the form λx1 . . . λxk.M are
abbreviated into λx1 . . . xn.M or into λ~x.M .

Definition 1.1.0.1. The set FV(M) of free variables of a λ-term M is defined by induction:

FV(x) := {x}, FV(λx.M) := FV(M) − {x}, FV(M N) := FV(M) ∪ FV(N)

A variable x ∈ FV(M) is called free variable of M. A term M with an empty set of free
variables is said to be closed. The set of all closed λ-terms is denoted Λo.

Definition 1.1.0.2. Given two λ-terms M and N, we define the capture free substitution
M[N/x] by induction on M:1

• x[N/x] := N,

• y[N/x] := y for y , x,

• (λx.M)[N/x] := λx.M,
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• (λy.M)[N/x] := λy.M[N/x] for y , x and y < FV(N),
• (M1 M2)[u/x] := M1[N/x] M2[N/x]).

Definition 1.1.0.3. The α-equivalence is the smallest congruence (Def. A.2.1.25) such that
λx.M ≡α λy.M[y/x] for any x ∈ Var, any M and any y < FV(M).

The λ-terms are defined up-to α-equivalence so that we write M = N when M ≡α N. Remark
that the substitution becomes a total operation on α-equivalence classes.

The β-reduction

The λ-terms are subject to β-reduction which is generated by the axiom:

(β) (λx.M) N
β
→ M[N/x]

A context C is a λ-term with possibly some occurrences of a hole, i.e.:

(contexts) Λ(|·|) C ::= (|.|) | x | λx.C | C1 C2

The writing C(|M|) denotes the term obtained by filling the holes of C by M. Remark that the
free variables of a term M can be captured by a context C in C(|M|).

A redex in a term M is a sub-term of the form (λx.N1) N2.
The small step reduction → is the closure of (β) by any context, i.e., its contextual closure

(Def. A.2.1.25). The transitive reduction→∗ is the reflexive transitive closure of→.
The normal forms are terms without redexes, i.e., of the form λx1...xn.y M1 · · ·Mk with

M1, ...,Mk themselves in normal form.
The big step reduction, denoted M⇓N , is M →∗ N for N in normal form. We write M⇓ for

the convergence, i.e., whenever there is N such that M ⇓ N, and we write M⇑ for the divergence
(i.e., the negation of convergence).

Example 1.1.0.4. • The identity term I := λx.x is such that:

I M → M.

• The nth Church numeral, denoted by n , and the successor function, denoted by S , are defined by

n := λ f x. f ( f · · · f ( f︸         ︷︷         ︸
n times

x) · · · ), S := λu f x.u f ( f x).

Together they provide a suitable encoding for natural numbers.

• The looping term Ω := (λx.xx) (λx.xx) infinitely reduces into itself. Notice that Ω is an example
of diverging term:

Ω → (x x)[λx.x x/x] = Ω → Ω → · · · .

1This can be done as a coinductive procedure in a generalization to coinductive representation.
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• The Turing fixpoint combinator Θ := (λuv.v (u u v)) (λuv.v (u u v)) is a term that computes the
least fixpoint of its argument (if it exists):

Θ M → (λv.v ((λuv.v (u u v)) (λuv.v (u u v))v)) M

= (λv.v (Θ v)) M

→ M (Θ M).

Remark that a fixpoint combinator alone (without argument) always diverges (i.e., Θ⇑):

Θ →∗ λu.u (Θ u) →∗ λu.u (u (Θ u)) → · · ·

In the last two items of Example 1.1.0.4, the combination of β-reduction on self-application
gives rise to fancy computations.

The following proposition, relating recursiveness and λ-definability, provides further evi-
dences on the computational power of the λ-calculus.

Proposition 1.1.0.5 ([Bar84, Proposition 8.2.2] 2).
Let (Mn)n∈N be a sequence of terms such that:

• ∀n ∈ N,Mn ∈ Λ0,

• (n 7→ Mn) is recursive,

then there exists F such that:
∀n, F n →∗ Mn.

Head reduction

The head reduction→h is the closure of (β) by the rules:

M →h M′

λx.M →h λx.M′

M →h M′ M is an application
M N →h M′ N

The transitive reduction→∗h is the reflexive transitive closure of→h.
The head-normal forms are the terms where no head reduction can apply. They correspond

to the terms of the form λx1...xn.y M1 · · ·Mk, for M1, ...,Mk any terms.
The big step head reduction, denoted M⇓hN , is M →∗h N for N in head-normal form. We

write M⇓h for the head convergence, i.e., whenever there is N such that M⇓hN, and we write
M⇑h for the divergence.

Occasionally, we will also use the notation→+
h :=→h→

∗
h as well as→ 6h:= (→) − (→h) and its

reflexive transitive closure→∗
6h.

Example 1.1.0.6. The fixpointΘ is head converging (it is a head-normal form after reducing the single
redex), and this despite the fact that Θ ⇑.

Henceforth, convergence of a λ-term means head convergence (except when specified other-
wise).

2This is not the original statement. We remove the dependence on ~x that is empty in our case and we replace the
β-equivalence by a reduction since the proof of Barendregt [Bar84] works as well with this refinement.
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Theories

Denotational semantics usually equates not only convertible terms, but also terms having the
same “behavior” (for example, the same input-output graph or even the same internal represen-
tation after compiling). In order to consider all the possible “behaviors”, we use the notion of
theory that subsumes all possible ways of equating terms.

We consider also inequational theories: one program may be strictly “more defined” or
“more interesting” than another one. For example, the program that computes the division
of two numbers and diverges if the divisor is 0 may be considered less defined than a program
that raises an error on 0.

Remark 1.1.0.7. In the following, we introduce the notion of C-theory generalizing that of λ-theory.
Indeed, some important notions like the one of sensibility or of observational equivalence, generalize
over other kind of “calculi” (or any abstract rewriting system Def. A.2.1.29). In particular, we will use
these notions for the calculi with tests in Section 2.3.

Definition 1.1.0.8. A C-theory T for a calculus (C,→) is a congruence ≡T over C
(Def. A.2.1.25) that contains→:

M → N ⇒ M ≡T N.

In particular, the smallest theory is the symmetric, reflexive, transitive and contextual closure
of→.

An inequational C-theory T for a calculus (C,→) is an inequational congruence vT over
C (Def. A.2.1.25) that contains the symmetric closure of→:

M → N ⇒ M vT N and M wT N.

In particular, the congruence induced by an inequational theory vT is a theory denoted ≡T .
Equational and inequational theories are ordered by inclusion (of their graphs).

Example 1.1.0.9. A λ-theory is theory for the λ-calculus.
The set of all λ-theories forms a complete lattice which is 2ω-wide and ω-high, meaning that there is

a continuum of incomparable λ-theory and a denumerable infinity of theory forming a strict chain.
Here are a few λ-theories:

β : The symmetric closure of the transitive relation→∗ is called the β-equivalence and is denoted ≡β .
It corresponds to the smallest λ-theory denoted β. Remarks that, due to the confluence, we have
M ≡β N iff they have a common redex M →∗ L∗ ←N.

> : The relation ≡> equating every λ-term is the biggest λ-theory, denoted >. This theory is definitely
non interesting, and we call coherent any λ-theory that is different from >.

Ω : For any term M ∈ Λ, the minimal λ-theory equating Ω (Ex. 1.1.0.4) with M is coherent.

“Reasonable” theories should take into account computationally relevant features like diver-
gence:
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Definition 1.1.0.10. A C-theory is sensible if all the diverging terms form an equivalent class:

∀M⇑,∀N⇑, M ≡ N and ∀M⇑,∀N⇓, M . N.

An inequational C-theory is sensible if all the diverging terms are minimal:

∀M⇑,∀N, M v N.

Example 1.1.0.11. We have seen two different notions of convergence for the λ-calculus, leading to
two different notions of sensibility. However, the sensibility for the full convergence ⇓ is impossible.
Indeed, in a theory sensible for ⇓, we have Θ ≡ Ω and, by contextual closure, Θ (λxy.y) ≡ Ω (λxy.y),
but the left term is converging and the right one is not (contradicting the sensibility).

Thus, by sensibility for the λ-calculus, we now refer exclusively to the sensibility for the head reduc-
tion. Here are some examples of sensible λ-theories:

H : The least sensible λ-theory is called H . A remarkable property is that any coherent λ-theory
aboveH is sensible, i.e., if all diverging terms are in the same equivalence class, then either they
are alone or there is a single equivalence class. Indeed, if a converging term M⇓h is equivalent
to Ω, then its head normal form λx1...xk.xi M1 · · ·Mn (with i ≤ k) is also equivalent to Ω and for
any N we have:

N ≡β (λx1...xk.xi M1 · · ·Mn) (λy1...yn.N) · · · (λy1...yn.N)︸                             ︷︷                             ︸
k times

by right-to-left β-reduction

≡ Ω (λy1...yn.N) · · · (λy1...yn.N) by contextual closure

≡H Ω.

BT : We will see in Section 2.2.1 a λ-theory BT obtained by comparing Böhm trees, this theory is
sensible by construction.

Besides sensibility, another significant property of λ-theories is extensionality, stipulating
that two terms having the same applicative behavior are equivalent.

Definition 1.1.0.12. A λ-theory is extensional if:

(∀L ∈ Λo,M L ≡ N L) ⇒ M ≡ N

for all terms M and N. The extensional closureTω of a λ-theoryT is the smallest extensional
λ-theory that contains it.

Similarly, an inequational λ-theory is extensional if:

(∀L ∈ Λo,M L v N L) ⇒ M v N

for all terms M and N.

Example 1.1.0.13.
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ω : The λ-theory ω is the extensional completion of β (and thus the smallest extensional λ-theory).

βη : We call η-reduction the reflexive transitive contextual closure of the relation:

λx.M x �η M for x < FV(M)

The λ-theory βη is the smallest congruence ≡ηβ containing both ≡β and �η. If (M x) ≡βη (N x) for
some fresh variable x, then M ≡βη (λx.M x) ≡βη (λx.N x) ≡βη N. However, although ω includes
the βη λ-theory ((λx.M x) ≡ω M for x fresh), the converse fails: M L ≡βη N L for any closed L
does not imply (M x) ≡βη (N x).

More generally we denote T η the smallest λ-theory containing both T and �η.

Among the C-theories, the observational equivalences are particularly compelling. They
stipulate that two terms are equivalents if, when embedded in any context, they provide the
same observations.

Definition 1.1.0.14. The observational equivalence is given by:

M ≡o N iff ∀C ∈ C(|.|),C(|M|)⇓ ⇔ C(|M|)⇓.

The observational equivalence is contextually closed (and is thus a C-theory) whenever

∀C ∈ C(|.|), M → N ⇒ (C(|M|) ⇓ ⇔ C(|N|) ⇓). (1.1)

Under the same condition (Eq. 1.1), the observational preorder is the inequational theory
defined by:

M vo N iff ∀C ∈ C(|.|),C(|M|)⇓ ⇒ C(|M|)⇓.

Remark 1.1.0.15. The observational equivalence is the contextual coclosure of the following relation
(called observation):

M 'o N iff M⇓ ⇔ N⇓.

This means that it is the largest contextually closed equivalence that is contained in 'o.

Example 1.1.0.16. We have seen that sensibility only makes sense with respect to the head reduction.
This time, the two different reductions for the λ-calculus define two different observational equivalences:

H∗ : The observational equivalence for ⇓h defined by M ≡H∗ N iff:

∀C ∈ Λ(|·|), C(|M|)⇓h ⇔ C(|N |)⇓h

TNF : The observational equivalence for ⇓ defined by M ≡TNF N iff:

∀C ∈ Λ(|·|), C(|M|)⇓ ⇔ C(|N |)⇓

The theory H∗ is coarser than TNF . Indeed, if M ≡TNF N and if C(|M|)⇓h (we can assume that C(|M|) is
closed) then there is a normal form C(|M|)→∗h λ~x

n.xi M1 · · ·Mk so that the following converges for→:

C~M� (λ~yk+1.yk+1) · · · (λ~yk+1.yk+1)︸                              ︷︷                              ︸
n times

→∗ yk+1,
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however, C(|N |)⇑h so that
C~N� (λ~yk+1.yk+1) · · · (λ~yk+1.yk+1)︸                              ︷︷                              ︸

n times

head diverges and, in particular, also diverges for→.

1.2. Λ-models

λ-theories may be extremely complex, for instance, the observational equivalence is defined
by a quantification over all contexts. This is why λ-theories are generally studied via models,
which have a natural mathematical status.

1.2.1. Definition of Λ-models

The historical algebraic models of the λ-calculus are the Λ-algebras [Bar84, Definition 5.2.2].
They were promarily designed as models of Curry’s combinatory logic, and provide models of
the λ-calculus via a translation of the latter into the former.

An alternative, more direct, approach is due to Salibra and Pigozzi [PS95, MS10], who
defined the notion of λ-abstraction algebra. Salibra and Goldblatt [SG99] showed that Baren-
dregt’s Λ-algebras can be seen as functional λ-abstraction algebras and that any λ-abstraction
algebras is the sub-algebra of a functional λ-abstraction algebra.

Definition 1.2.1.1. A λ-abstraction algebra is given by a setM, by an element x̃ ∈ M and a
function λx̃ : M → M for each x ∈ Var and by an applicative function • : M×M → M
such that:

(β1) (λx̃.x̃) • M = M (β2) (λx̃.ỹ) • M = ỹ
(β3) (λx̃.M) • x̃ = M (β4) (λx̃x̃.M) • N = λx̃.M

(β5) (λx̃.M • N) • L = (λx̃.M) • L • ((λx̃.N) • L)
(β6) (λx̃ỹ.M) • ((λx̃.N) • L) = λỹ.(λx̃.M) • ((λỹ.N) • z)
(α′) λx̃.(λỹ.M) • z = λỹ.(λx̃.M)((λỹ.N) • M

where L,M,N ∈ M and where x, y, z ∈ Var are different.
By abuse of notation, we will call Λ-model a λ-abstraction algebra.

An ordered Λ-model is a modelM endowed with an order ≤ for which λx̃ and • are mono-
tone.

Definition 1.2.1.2. The λ-calculus being an inductive object, the interpretation ~.� : Λ→M

in a Λ-model is unique (Def. A.2.1.13).3This interpretation is the following one:

~x� := x̃ ~λx.M� := λx̃.~M� ~M N� := ~M� • ~N�.
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It is clear that any λ-theory defines a Λ-model, but the converse is also true. Notice, however,
that this is not an isomorphism (models are richer than theories).

Proposition 1.2.1.3. Given a Λ-model M, the following defines a Λ-theory called the in-
duced λ-theory:

M ≡ N iff ~M� = ~N�.

The key notions relating Λ-models and λ-theories are adequacy and completeness:

Definition 1.2.1.4 (Adequacy). A Λ-model is adequate for a Λ-theory T iff for all M,N:

~M� = ~N� ⇒ M ≡T N

An ordered Λ-model is adequate for an inequational Λ-theory T iff for all M,N:

~M� ≤ ~N� ⇒ M vT N

Definition 1.2.1.5 (Completeness). A Λ-model is complete for a Λ-theory T iff:

~M� = ~N� ⇐ M ≡T N

An ordered Λ-model is complete for an inequational Λ-theory T iff:

~M� ≤ ~N� ⇐ M vT N

Definition 1.2.1.6 (Full abstraction). An (ordered) Λ-model is fully abstract for an
(in)equational theory T iff it is both adequate and complete for T .

The adequacy is often regarded as the minimal requirement when working on a specific
equational theory. In fact, one of the main interests of denotational models is to supply tools
for proving equivalence between terms.

Despite the full abstraction not being strictly needed, it is often looked at. Indeed, since it
is the strongest possible property, it is invoked to show the perfection of a model. One of the
goals of Chapter 2 is to explain that full abstraction is not omnipotent. We will see that it can
screen unnatural and unwanted behaviors in its non-recursive fragment (i.e. for elements of the
model that play no role in the interpretation).

Finally, we define new notions of sensibility and extensionality for models:

3Notice that non-inductive structures such as Böhm trees may have several or none interpretations.
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Definition 1.2.1.7. A Λ-modelM is sensible if there is an element ⊥ ∈ M that interpret the
diverging terms:

∀M, M⇑h ⇔ ~M� ∈ ⊥.

An ordered Λ-model is sensible if moreover ⊥ is its least element.

Remark 1.2.1.8. A Λ-model is sensible iff its induced λ-theory is sensible.
The sensibility of an ordered Λ-model implies the sensibility of its induced inequational λ-theory.

However, the converse does not hold since arbitrary non-definable elements may exist below the inter-
pretation of diverging terms.

Sensibility is a nice way to prove the adequation for observational equivalences:

Lemma 1.2.1.9. If a model M is sensible with respect to ⇓, then M is adequate for the
equational theory T defined as the corresponding observational equivalence:

M ≡T N
de f
⇐⇒ ∀C ∈ Λ(|.|), (C(|M|)⇓ iff C(|N|)⇓).

Proof. Let M and N be such that ~M� = ~N� then for all C ∈ Λ(|.|), necessarily ~C(|M|)� = ~C(|N |)� and
then C(|M|) converges iff (sensibility) ~C(|M|)� , ⊥ iff (congruence) ~C(|N|)� , ⊥ iff (sensibility) C(|N |)
converges. �

Lemma 1.2.1.10. If an ordered model M is sensible with respect to ⇓, then M is inequa-
tionally adequate for the inequational theory T defined as the corresponding observational
order:

M vT N
de f
⇐⇒ ∀C ∈ Λ(|.|), (C(|M|)⇓ ⇒ C(|N|)⇓).

Proof. Let M and N such that ~M� ≤M ~N� then for all C ∈ Λ(|.|), necessarily ~C(|M|)� ≤M ~C(|N|)�.
Thus if C(|M|) converges, the sensibility gives ~C(|M|)� , ⊥, in particular, ⊥ <M ~C(|M|)� ≤M ~C(|N |)�,
so that N converges by sensibility. �

Although the notion of sensibility for models roughly corresponds to the sensibility of its
induced theory, this is not the case for the extensionality:

Definition 1.2.1.11. A Λ-modelM is extensional if:

∀a, b ∈ M, (∀c, a • c = b • c) ⇒ a = b.

Similarly, an ordered Λ-modelM is extensional if:

∀a, b ∈ M, (∀c, a • c ≤ b • c) ⇒ a ≤ b.
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Proposition 1.2.1.12. If an (ordered) Λ-model is extensional then it is complete for βη, i.e.
~λxy.x y� = ~λx.x�.

Proof. IfM is a extensional Λ∗-model then ~λy.x y�•a = ~x�•a thus ~λy.x y� = ~x� and, by contextual
closure, ~λxy.x y� = ~λx.x�. �

Remark 1.2.1.13. Remark, however, that the extensionality ofM does not imply the extensionality of
its induced theory. Indeed, if ~M L� = ~N L� for all L, the model may still contain some non-definable
element so that ~M� • a , ~N� • a.

In fact, for all the classes of models present in this thesis, extensional Λ∗-models correspond exactly to
models that are complete for βη. This is a general situation which explanation is still an open question.

1.2.2. Böhm trees

Basic definitions

The Böhm trees provide one of the simplest semantic for the λ-calculus:

Definition 1.2.2.1. The set of Böhm trees is the co-inductive structure generated by the gram-
mar:

(Böhm trees) BT U,V ::= Ω | λx1...xn.y U1 · · ·Uk ,∀n,∀k ≥ 0

The Böhm tree of a λ-term M (i.e., its interpretation), is defined by co-induction:

• If M head diverges, then BT(M) = Ω,

• if M →∗h λx1...xn.y N1 · · ·Nk then

BT(M) = λx1...xn.y BT(N1) · · · BT(Nk).

Notice that a Böhm tree can be described as a finitely branching tree (of possibly infinite
height) where nodes are labeled either by a constant Ω, or by a list of abstractions and by a
head variable.

Capital final Latin letters U,V,W... will range over Böhm trees.

Example 1.2.2.2. The Böhm trees BT(λx.x (λy.x y)), BT(x (I I) (yΘ I)),Θ and BT(Θ (λuxy.y(u x)) z)
are described in Figure 1.1.

There exist Böhm trees that do not come from terms:

Example 1.2.2.3. A Böhm tree with infinitely many free variables (such as the first one below) cannot
be obtained from λ-terms that have finitely many free variables. Worse, if g : N → N is non recursive,
then the second Böhm tree below does not come from any term (otherwise it would be possible to compute
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BT(λx.x (λy.x y)):

λx.x .

|

λy.x .

|

y

BT(x (I I) (y Θ I)):

x . .

y .

Ω

λx.x

Θ:

λ f . f .

|

f .

|

f .
...

BT(Θ (λuxy.y(u x)) z):

λy1.y1 .

|

λy2.y2 .

|

λy3.y3 .

. . .

Figure 1.1.: Some examples of Böhm trees.

g from this term).

u0 . λx1.x0 x0 · · ·
g(0)

x0 .

| |

u1 . λx2.x1 x1 · · ·
g(1)

x1 .

| |

u2 . λx3.x2 x2 · · ·
g(2)

x2 .

| |

...
. . .

A suitable model?

A major weakness of this model is to be a “syntactical” model, in the sense that (to my knowl-
edge) the most elegant definitions of the application of two Böhm trees is the normal-form of
the reduction of U V in an infinitary calculus (and with a possibly infinite number of steps)...

A more semantical definition would be to define U •V co-inductively in parallel with U[V/x]
by:

• For U • V:

– If U = Ω then U • V = Ω.

– If U = x U1 · · ·Un then U • V = x U1 · · ·Un V .

– If U = λx.U′ then U • V = U′[V ′/x].

• For U[V/x]:

– If U = Ω then U[V/x] = Ω.

– If U = λ~y.z U1 · · ·Un with z , x then U[V/x] = λ~y.z U1[V/x] · · ·Un[V/x].

– If U = λ~y.x U1 · · ·Un then U[V/x] = λ~y.V • U1[V/x] • · · · • Un[V/x].
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However, in both definitions the third item is non productive, for instance, the auto-application
of BT(Θ (λux.x u)) should reduce to Ω, but is undefined here.

Therefore, Böhm trees do not make an interesting model in themselves. However, they con-
stitute a very powerful tool to link semantic and syntax. Indeed, our proof of Theorem 2.1.0.5
relies strongly on subtle properties of Böhm trees.

Properties

This model carries several interesting properties for the study of the untyped λ-calculus. By
construction, it is sensible for the head reduction, and, moreover, it is adequate for TNF and
for H∗ which is coarser.Moreover, those properties extend to inequations using the following
natural notion of inclusion on Böhm trees:

Definition 1.2.2.4. The inclusion of Böhm trees U ⊆ V is co-inductively defined by:

• Ω ⊆ V for all V

• If for all i ≤ k, Ui ⊆ Vi, then

(λx1...xn.y U1 · · ·Uk) ⊆ (λx1...xn.y V1 · · ·Vk).

For readability, we denote ⊆BT the order induced by Böhm trees (defined by M ⊆BT N iff
BT(M) ⊆ BT(N)).

The lower bounds of a Böhm tree U are obtained by replacing (possibly infinitely many)
subtrees of U by Ω.

Example 1.2.2.5. We have the inclusion

Θ (λuxy.x (u y) Ω) ⊆BT Θ (λuxy.x (u y) (J x))

λx0x1.x0 . . λx0x1.x0 . .

λx2.x1 . . Ω ⊆ λx2.x1 . . λy1.x1 .

λx3.x2 . . Ω λx3.x2 . . λy1.x2 . λy2.y1 .
... Ω

...
. . .

. . .
. . .

. . .

Proposition 1.2.2.6 ([Bar84, Proposition 16.4.7]). Böhm trees are inequationally adequate
(Def. 1.2.1.4) for TNF and forH∗:

if M ⊆BT N then M vTNF N and M vH∗ N

The converse does not hold (⊆BT is not extensional, Def. 1.2.1.11), so that we do not have
full abstraction, but rather a new (inequational) λ-theory called BT .
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Forcefully adding the extensionality in BT , we obtain the theory BTη witch is conjectured
to be the same as TNF and is definitely different fromH∗:

Example 1.2.2.7. The term J = Θ (λuxy.x (u y)) defines the following Böhm tree:

λx0x1.x0 .

|

λx2.x1 .

|

λx3.x2 .

. . .

The behavior of this term is the same as the identity, so that we have J ≡H∗ I, but their Böhm trees are
distinct and they are not η-convertible, so that J .BTη I.

Böhm trees and full abstraction

We have seen that BT is not fully abstract forH∗ since it is not extensional; however, there are
refinements using the notion of infinite η expansion that permit to say something about the full
abstraction (Proposition 1.2.2.12).

Definition 1.2.2.8. We write by �η the η-reduction on Böhm trees, that is U �η V if U = V =

Ω or U = λx...xn+m.y V1 · · ·Vk xn+1 · · · xn+m and V = λx...xn.y V1 · · ·Vk (for xn+1, ...., xn+m <
FV(V1, ....,Vk).

Definition 1.2.2.9. We write by �η∞ the co-inductive version of �η, that is the coinductive
relation generated by:

(η∞ω)
Ω �η Ω

∀i ≤ k, Ui �η∞ Vi ∀i ≤ m, Uk+i �η∞ xn+i
(η∞@)

λx1...xn+m.y U1 · · ·Uk+m �η∞ λx1...xn.y V1 · · ·Vk

By abuse of notations, given two λ-terms M and N, we say that M infinitely η-expands N,
written M �η∞ N, if BT(M) �η∞ BT(N).

Example 1.2.2.10. We have the inequations:

BT(I) �η∞ BT(J) �η∞ BT(Θ (λuxyz.x (u y) (u z)))

λx0.x0 λx0x1.x0 . λx0x1y1.x0 . .

�η∞ λx2.x1 . �η∞ λx2y2.x1 . . λy2z2.y1 . .

λx3.x2 . λx3y3.x2 . . λy3z3.y2 . .
...
. . .

...
...
. . .

...
. . .

...
. . .
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Remark 1.2.2.11. The η-reduction on Böhm trees is not directly related to the η-reduction on λ-terms.
For example Θ (λuzx.x (yz)) 6�η λx.Θ (λuzx.x (yz)) x (since the x was not free, however this reduction
hold at level of Böhm trees. Conversely, Θ (λuz.z (u z)) �η Θ (λuzx.z (u z) x) while the Böhm trees are
fairly different.

However, the η-reduction on λ-terms is directly implied by the infinite η reduction.

Using this notation we can characterize the notion of observational equivalence (i.e.,H∗)

Proposition 1.2.2.12 ([Bar84, Theorem 19.2.9]). For any terms M,N ∈ Λ, M vH∗ N iff there
exist two Böhm trees U,V such that:

BT(M) �η∞ U ⊆ V �η∞ BT(N).

Example 1.2.2.13. InH∗, we have the equivalence:

J ≡H∗ Θ (λuxyz.x y (u z))

λx0x1.x0 . λx0x1y1.x0 . . λx0x1y1.x0 x1 .

λx2.x1 . �η∞ λx2.x1 . λx2y2.x1 x2 . �η∞ λx2y2.x1 x2 .

λx3.x2 . λx3.x2 . λx3y3.x2 x3 λx3y3.x2 x3 .

...
...

...
...

The following trivial corollary will be rather useful for proving observational equivalences:

Corollary 1.2.2.14. For all M,N ∈ Λ,

M �η∞ N ⇒ M ≡H∗ N.

Proof. By Proposition 1.2.2.12 and since BT(M) �η∞ BT(M) ⊆ BT(M) �η∞ BT(N). �

1.2.3. How to get a Λ-model?

Now that we have a defined notion of Λ-model, we should be able to find models of interest.
However, as it appers, the whole world of Λ-models is far too vast and contains many models
which computational meaning is inexistent or inintelligible.

Resonable instances of Λ-models are to be found inside cartesian closed categories.

From CCCs to Λ-models

The Curry-Howard correspondence between LJ and the simply typed λ-calculus transports any
model of LJ into a model of the simply typed λ-calculus. This means that Cartesian closed
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categories (Def. A.1.0.19) are categorical models of the simply typed λ-calculus. However,
this does not extend directly to the untyped λ-calculus that is much larger.

In order to get a Λ-model, we need a reflexive object in such a CCC.

Definition 1.2.3.1. Let C be a CCC (Def. A.1.0.19). A reflexive object is an object D of C
endowed with two morphisms:

app : D→ (D⇒ D) abs : (D⇒ D) → D

such that abs; app = idD⇒D.

The idea of modelling the λ-calculus by a reflexive object is very similar to the idea of typing
the λ-calculus with a unique type ∗ = ∗ ⇒ ∗ so that any term M ∈ Λ defines a single proof
derivation of ∗, ..., ∗ ` ∗ in LJ.

Theorem 1.2.3.2 ([BEM07]). Any CCC C with a reflexive object D defines a λ-abstraction
algebra (Def. 1.2.1.1) inside the disjoint union of hom-set C[DV ,D] for V ⊆ f Var:⊎

V⊆ f Var

C[DV ,D] := {(V, φ) | V ⊆ f Var, φ ∈ C[DV ,D]}

quotiented by the following equivalence that morally equilizes modulo weakening of unused
variables:

(U, φ) ≡ (V, ψ) iff πU∪V
U ; φ = πU∪V

V ;ψ.

Due to this quotient, the interpretation ~M�V of a term M is defined modulo a set of variables
V containing FV(M).4

The interpretation of a term M is a morphism ~M� ∈ C[DFV(M),D] defined by:

~x�V := DV D

~λx.M�V := DV DV−x D⇒ D D

~M N�V := DV D × D D × (D⇒ D) D

πx

πV−x Λx(~M�V∪{x}) abs

〈~N�V , ~M�V 〉 idD × app eval

From linear categoriess to CCCs

The linear logic (Def. A.3.1.1) is known (in particular) to be a rafinment of the intuisionis-
tic lojec LJ. The most studied encoding is transporting the intuisionistic implication into a

4In fact, the definition is automatically extended to sets V of variables that may not contain some “unused”
variables of FV(M).
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composition of the exponential and the linear application:5

A⇒ B := !A( B

The translation applies also to models via the notion of Kleisli categories.

Proposition 1.2.3.3. For any linear category L (Sec. A.3.2) with Cartesian products and
coproducts, the Kleisli category L! over the exponential comonad is a Cartesian closed cate-
gory:

• objects are the objects of L,

• morphisms are defined by L![a, b] := L[!a, b],

• composition and identity are defined by:

φ ;! ψ := pdom(φ) ; !φ ; ψ id!
a := da

• Cartesian product is the Cartesian product of L,

• the exponential object is defined by: a⇒ b := !a( b

In particular, any reflexive object in L! is a model of the pure λ-calculus.

1.2.4. K-models

We introduce here the main object of Chapter 2: extensional K-models [Kri93][Ber00]. This
class of models of the untyped λ-calculus is a subclass of filter models [CDHL84] containing
many extensional models from the continuous semantics, like Scott’s D∞ [Sco72].

The category ScottL!

Extensional K-models correspond to the extensional reflexive Scott domains that are prime
algebraic complete lattices and whose application embeds prime elements into prime elements
[Hut94, Win99]. However we prefer to exhibit K-models as the extensional reflexive objects of
the category ScottL! (Prop. 1.2.4.4) which is itself the Kleisli category over the linear category
ScottL (Prop. A.3.4.6).

In the following we use notations and definitions from Section A.3.4.

Definition 1.2.4.1. We define the Cartesian closed category ScottL! [Hut94, Win99, Ehr12]:

• objects are partially ordered sets.

• morphism from D to E are a Scott-continuous function between the complete lattices
I(D) and I(E).

5notice that this is not the only encoding. This particular choice is most suited to encode call-by name imple-
mentation while other encoding can be used for call-by-value, call-by-need...
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The Cartesian product is the disjoint sum of posets. The terminal object > is the empty poset.
The exponential object D⇒E isA f (D)op×E. Notice that an element of I(D⇒E) is the graph
of a morphism from D to E (see Equation (A.3)). This construction provides a natural iso-
morphism between I(D⇒E) and the corresponding homset. Notice that if ' denotes the
isomorphism in ScottL!, then:

D⇒ D⇒ · · · ⇒ D ' (A f (D)op)n × D. (1.2)

For example D⇒ (D⇒ D) ' A f (D)op × (A f (D)op × D) = (A f (D)op)2 × D.

Remark 1.2.4.2. In the literature (e.g. [Hut94, Win99, Ehr12]), objects are preodered sets and the
exponential object D⇒ D is defined by using finite subsets (or multisets) instead of the finite antichains.
Our presentation is the quotient of the usual one by the equivalence relation induced by the preorder.
The two presentations are equivalent (in terms of equivalence of category) but our choice simplifies the
definition of hyperimmunity (Definition 2.1.0.1).

An algebraic presentation of K-models

Definition 1.2.4.3 ([Kri93]). An extensional K-model is a pair (D, iD) where:

• D is a poset.

• iD is an order isomorphism between D⇒D and D.

By abuse of notation we may denote the pair (D, iD) simply by D when it is clear from the
context we are referring to an extensional K-model.

Proposition 1.2.4.4. Extensional K-models correspond exactly to extensional reflexive ob-
jects of ScottL!, i.e., an object D endowed with an isomorphism absD : (D ⇒ D) → D
(and appD := abs−1

D ).

Proof. Given a K-model (D, iD), the isomorphism between D⇒D and D is given by:

∀A ∈ I(D⇒D), appD(A) = {iD(a, α) | (a, α) ∈ A},

∀B ∈ I(D), absD(B) = {(a, α) | iD(a, α) ∈ B}.

Conversely given an extensional reflexive object (D, appD, absD) of ScottL!:
First, remark that since absD is a monotone bijection with a monotone inverse, it is linear (preserves all
sups). For all (a, α) ∈ D⇒D, we have ↓(a, α) = abs(app(↓(a, α))) =

⋃
β∈app(↓(a,α)) abs(↓β). Thus there

is β ∈ app(↓(a, α) such that (a, α) ∈ abs(↓β), and since abs(↓β) ⊆ ↓(a, α), this is an equality. Thus there
is a unique β such that appD(a, α) = ↓β, this is iD(a, α). �

In the following we will not distinguish between a K-model and its associated reflexive
object, which is a model of the pure λ-calculus.
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Definition 1.2.4.5. An extensional partial K-model is a pair (E, jE) where E is an object of
ScottL! and jE is a partial function from E⇒E to E that is an order isomorphism between
Dom( jE) and E.

E
jE
←→ Dom( jE) ⊆ (E ⇒ E)

Definition 1.2.4.6. The completion of a partial K-model (E, jE) is the union (Ē, jĒ) =

(
⋃

n∈N En,
⋃

n∈N jEn) of partial completions (En, jEn) that are extensional partial K-model de-
fined by induction on n. (E0, jE0) = (E, jE) and:

• |En+1| = |En| ∪ (|En ⇒ En| − Dom( jEn))

• jEn+1 = jEn ∪ id|En⇒En |−Dom( jEn )

• ≤En+1 is given by jEn+1(a, α) ≤En+1 (b, β) iff a ≥A f (En) b and α ≤En β.

Remark that En+1 corresponds to En ⇒ En up to isomorphism, what leads to the equivalent
definition:

Remark 1.2.4.7. The completion of an extensional partial K-model (E, jE) is the smallest extensional
K-model Ē containing E.

Remark 1.2.4.8. Any extensional K-model D is the extensional completion of itself: D = D̄.

Example 1.2.4.9.

1. Scott’s D∞ [Sco72] is the extensional completion of

|D| = {∗}, ≤D = id, jD = {(∅, ∗) 7→ ∗}.

The completion is a triple (|D∞|,≤D∞ , jD∞) where |D∞| is generated by:

|D∞| α, β ::= ∗ | a→α
|!D∞| a, b ∈ A f (|D∞|)

except that ∅→∗ < |D∞|; jD∞ is defined by jD∞(∅, ∗) = ∗ and jD∞(a, α) = a→α for (a, α) , (∅, ∗).

2. Park’s P∞ [Par76] is the extensional completion of

|P| = {∗}, ≤P = id, jP = {({∗}, ∗) 7→ ∗};

i.e., |P∞| is defined by the previous grammar except that ({∗}→∗) < |P∞| while ∅→∗ ∈ |P∞|.

3. Norm or D∗∞ [CDCZ87] is the extensional completion of

|E| = {p, q}, ≤E = id ∪ {p < q},

jE = {({p}, q) 7→q, ({q}, p)7→p}.
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~xi�
~x
D = {(~a, α) | α ≤ β ∈ ai} ~λy.M�~xD = {(~a, (b→α)) | (~ab, α) ∈ ~M�~xy

D }

~M N�~xD = {(~a, α) | ∃b, (~a, (b→α)) ∈ ~M�~xD ∧ ∀β∈b, (~a, β) ∈ ~N�~xD}

Figure 1.2.: Direct interpretation of Λ in D

4. Well-stratified K-models [Man09] are the extensional completions of some E respecting

∀(a, α)∈Dom( jE), a=∅.

5. The inductive ω is the extensional completion of

|E| = N, ≤E = id, jE = {({k | k < n}, n)7→n | n ∈ N}.

6. The co-inductive Z is the extensional completion of

|E| = Z, ≤E = id , jE = {({n}, n + 1)7→n+1 | n ∈ Z}.

7. Functionals H f (given f : N→ N) are the extensional completions of:

|E| = {∗} ∪ {αn
j | n ≥ 0, 1 ≤ j ≤ f (n)}, ≤E = id,

jE =
{
(∅, ∗) 7→ ∗

}
∪

{
(∅, αn

j+1) 7→ αn
j | 1 ≤ j < f (n)

}
∪

{
({αn+1

1 }, ∗) 7→ αn
f (n) | n ∈ N

}
,

where (αn
j)n, j is a family of atoms different from ∗.

For the sake of simplicity, from now on we will work with a fixed extensional K-model D.
Moreover, we will use the notation a→α := iD(a, α) . Notice that, due to the injectivity of iD,
any α ∈ D can be uniquely rewritten into a→α′, and more generally into a1→· · ·→an→αn for
any n.

Remark 1.2.4.10. Using this notations, the model H f can be summarized by writing, for each n:

αn
1 = ∅→ · · ·→∅︸       ︷︷       ︸

f (n)

→{αn+1
0 }→∗

Interpretation of the λ-calculus

The Cartesian closed structure of ScottL! endowed with the isomorphism appD and absD of the
reflexive object induced by D (Proposition 1.2.4.4) defines a standard model of the λ-calculus.

A term M with at most n free variables x1, . . . , xn is interpreted as the graph of a morphism
~M�x1...xn

D from Dn to D (when D is obvious, we can use ~.�x̄ ). By Equations (A.3) and (1.2)
we have:

~M�x1...xn
D ⊆ (D⇒· · · ⇒ D⇒ D) ' (A f (D)op)n × D.

In Figure 1.2, we explicit the interpretation ~M�x1...xn
D by structural induction on M.
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α ∈ a
x : a ` x : α

Γ ` M : α
Γ, x : a ` M : α

Γ ` M : β α ≤ β

Γ ` M : α

Γ, x : a ` M : α
Γ ` λx.M : a→α

Γ ` M : a→α ∀β ∈ a, Γ ` N : β
Γ ` M N : α

Figure 1.3.: Intersection type system computing the interpretation in D

Example 1.2.4.11.

~λx.y�yD = {((a), b→α) | α ≤D β ∈ a},

~λx.x�yD = {((a), b→α) | α ≤D β ∈ b},

~I�D = {a→α | α ≤D β ∈ a},

~1�D = {a→b→α | ∃c, c→α ≤D β ∈ a, c ≤A f (D) b}.

In the last two cases, terms are interpreted in an empty environment. We then omit the empty sequence
associated with the empty environment, e.g., a→b→α stands for ((), a→b→α).
We can verify that extensionality holds, indeed ~1�D = ~I�D, since c→α ≤D β ∈ a, c ≤A f (D) b means
that b→α ≤D β ∈ a, and since any element of D is of the form α→β.

Intersection types

It is well known that the interpretation of the λ-calculus into a given K-model D is characterized
by a specific intersection type system. In fact any element α ∈ D can be seen as an intersection
type

α1 ∧ · · · ∧ αn → β given by α = {α1, . . . , αn}→β.

In Figure 1.3, we give the intersection-type assignment corresponding to the K-model induced
by D.

Proposition 1.2.4.12. Let M be a term of Λ, the following statements are equivalent:

• (~a, α) ∈ ~M�~xD,

• the type judgment ~x : ~a ` M : α is derivable by the rules of Figure 1.3.

Proof. By structural induction on the grammar of Λ. �

1.3. S-Bounded logics BSLL

Various systems have been recently proposed based on a notion of parameterized exponential
comonad [BGMZ14, GS14] in linear logic. The idea is to parameterize the of-course modality !
with elements taken from a semiring S. The multiplicative monoid of S describes how the
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parameters interact under the comonad structure of ! (i.e. dereliction and digging) while the
additive monoid of S gives the interaction under the monoidal structure of ! (i.e. weakening
and contraction). The axioms of the semiring allow to define a parameterized version of the
usual rules of cut-elimination, preserving the confluence property (see Figure 3.2).

This approach is related to Girard, Scedrov and Scott’s bounded linear logic (BLL)
[GSS92a], and thus we refer to it as BSLL. It is in some sense both a generalization and a
restriction of BLL. It is a generalization because it allows to choose any semiring, as a param-
eter, while BLL is given with respect to a fixed notion of parameters. On the other hand, BSLL
is a significant restriction because its parameters are just elements of the semiring S while BLL
deals with first-class terms extending polynomials and allowing dependencies.

The interest of BSLL is to offer a logical ground to the design of type systems allowing to
express various co-effects, that is requirements of a program with respect to the environment.
For example, in [GS14] a semiring based on contractive affine transformations has been used
to design a type system with annotations on the scheduling of processes; in [BGMZ14], the
semiring of non-negative real numbers is used to express the expected value of the number
of times a probabilistic program calls its input during the evaluation. We briefly recall these
examples in Section 1.3.2. The interesting point is that although these type systems model quite
different co-effects, their soundness is rooted in the same logical framework, that is BSLL.

Notice that Appendix A.4 is a collection of semiring-related definitions to which we will
refer freely in this section.

1.3.1. The logic BSLL

Definition 1.3.1.1. Given an ordered lax-semiring6S (called bounding semiring), we call
linear logic bounded by S-exponentials, BSLL , the logic given by:

• the formulas defined by the grammar:
(formulas) A, B,C := α | A ⊗ B | A( B | AJ where J ∈ S,

• the sequent calculus given in Figure 1.4 modulo the equations of Figure 1.5,

• and the cut-elimination procedure defined by the usual rules of multiplicative linear
logic of Figure 1.6 plus the rules of Figure 1.8 (and the minor rules of Figure 1.7).

Remark 1.3.1.2. One can add the additive connectives without any effort. Nonetheless, we prefer
to omit their account because irrelevant for our results. In [BGMZ14], the authors use a term calculus
instead of logical sequent system: the two presentations are clearly interchangeable via a Curry-Howard
correspondence.

Remark 1.3.1.3. The derivation rules contain two different notions of weakening, Weak and Sweak.
The first, called structural weakening, requires a null quantity of a fresh resource. The second, called
resource weakening, requires to increase the amount of a resource already present in the context.

6See Definition A.4.1.1
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AxA ` A
Γ, A, B ` C

⊗L
Γ, A ⊗ B ` C

Γ ` A ∆ ` B
⊗R

Γ,∆ ` A ⊗ B

Γ ` A ∆, A ` B
Cut

Γ,∆ ` B
Γ ` A ∆, B ` C

( L
Γ,∆, A( B ` C

Γ, A ` B
( R

Γ ` A( B

Γ ` B I ≥ 0
Weak

Γ, AI ` B
Γ, A ` B I ≥ 1

Der
Γ, AI ` B

Γ, AI , AJ ` B K ≥ I+J
Contr

Γ, AK ` B

A1
I1 , · · · , An

In ` B (Ki ≥ Ii·J)
Prom

A1
K1 , · · · An

Kn ` BJ
Γ, AI ` B J ≥ I

Sweak
Γ, AJ ` B

Figure 1.4.: The sequent calculus of BSLL. In a sequent Γ ` A, Γ is supposed to be a multiset
of formulas (no implicit contraction rule is admitted).

Π
Γ ` C I ≥ 0

Weak
Γ, AI ` C J ≥ 0

Weak
Γ, AI , BJ ` C

≡

Π
Γ ` C J ≥ 0

Weak
Γ, BJ ` C I ≥ 0

Weak
Γ, AI , BJ ` C

Π

Γ, AI , AJ , BI′ , BJ′ ` C K ≥ I + J
Contr

Γ, AK , BI′ , BJ′ ` C K′ ≥ I′ + J′
Contr

Γ, AI+J , BK′ ` C

≡

Π

Γ, AI , AJ , BI′ , BJ′ ` C K′ ≥ I′ + J′
Contr

Γ, AI , AJ , BK′ ` C K ≥ I + J
Contr

Γ, AK , BK′ ` C

Figure 1.5.: Equations-modulo between proofs of LL.

Π1
Γ, A ` B

( R
Γ ` A( B

Π2
Σ ` A

Π3
∆, B ` C

( L
Σ,∆, A( B ` C

Cut
Γ,Σ,∆ ` C

−→

Π2
Σ ` A

Π1
Γ, A ` B

Cut
Γ,Σ ` B

Π3
∆, B ` C

Cut
Γ,Σ,∆ ` C

Π1
Γ ` A

Π2
∆ ` B

⊗R
Γ,∆ ` A ⊗ B

Π3
Σ, A, B ` C

⊗L
Σ, A ⊗ B ` C

Cut
Γ,∆,Σ ` C

−→
Π1

Γ ` A

Π2
∆ ` B

Π3
Σ, A, B ` C

Cut
∆, A,Σ ` C

Cut
Γ,∆,Σ ` C

Figure 1.6.: Cut-elimination rules (multiplicative only).
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A ` A
Π

Γ, A ` B
Cut

Γ, A ` B
−→

Π
Γ, A ` B

Π
Γ, A ` B B ` B

Cut
Γ, A ` B

−→
Π

Γ, A ` B

Π1

∆ ` A′

Π2

Γ, A′, A, B ` C
⊗L

Γ, A′, A ⊗ B ` C
Cut

Γ,∆, A ⊗ B ` C

−→

Π1

∆ ` A′
Π2

Γ, A′, A, B ` C
Cut

Γ,∆, A, B ` C
⊗L

Γ,∆, A ⊗ B ` C

Π1

Σ ` A′

Π2

A′,Γ ` A
Π3

∆ ` B
⊗R

A′,Γ,∆ ` A ⊗ B
Cut

Σ,Γ,∆ ` A ⊗ B

−→

Π1

Σ ` A′
Π2

A′,Γ ` A
Cut

Σ,Γ ` A
Π3

∆ ` B
⊗R

Σ,Γ,∆ ` A ⊗ B

Π1

Σ ` A′

Π2
Γ ` A

Π3

A′,∆ ` B
⊗R

A′,Γ,∆ ` A ⊗ B
Cut

Σ,Γ,∆ ` A ⊗ B

−→
Π2

Γ ` A

Π1

Σ ` A′
Π3

A′,∆ ` B
Cut

Σ,∆ ` B
⊗R

Σ,Γ,∆ ` A ⊗ B

Π1

Σ ` A′

Π2

A′,Γ ` A
Π3

∆, B ` C
( L

A′,Γ,∆, A( B ` C
Cut

Σ,Γ,∆, A( B ` C

−→

Π1

Σ ` A′
Π2

A′,Γ ` A
Cut

Σ,Γ ` A
Π3

∆, B ` C
( L

Σ,Γ,∆, A( B ` C

Π1

Σ ` A′

Π2
Γ ` A

Π3

A′,∆, B ` C
( L

A′,Γ,∆, A( B ` C
Cut

Σ,Γ,∆, A( B ` C

−→
Π2

Γ ` A

Π1

Σ ` A′
Π3

A′,∆, B ` C
Cut

Σ,∆, B ` C
( L

Σ,Γ,∆, A( B ` C

Π1

Σ ` A′

Π2

A′,Γ, A ` B
( R

A′,Γ ` A( B
Cut

Σ,Γ ` A( B

−→

Π1

Σ ` A′
Π2

A′,Γ, A ` B
Cut

Σ,Γ, A ` B
( R

Σ,Γ ` A( B

Π1

Σ ` A′

Π2

A′,Γ ` B I ≥ 0
Weak

A′,Γ, AI ` B
Cut

Σ,Γ, AI ` B

−→

Π1

Σ ` A′
Π2

A′,Γ ` B
Cut

Σ,Γ ` B I ≥ 0
Weak

Σ,Γ, AI ` B

Π1

Σ ` A′

Π2

A′,Γ, A ` B I ≥ 1
Der

A′,Γ, AI ` B
Cut

Σ,Γ, A ` B

−→

Π1

Σ ` A′
Π2

A′,Γ, A ` B
Cut

Σ,Γ, A ` B I ≥ 1
Der

Σ,Γ, A ` B

Π1

Σ ` A′

Π2

A′,Γ, AI , AJ ` B K ≥ I+J
Contr

A′,Γ, AK ` B
Cut

Σ,Γ, AK ` B

−→

Π1

Σ ` A′
Π2

A′,Γ, AI , AJ ` B
Cut

Σ,Γ, AI , AJ ` B K ≥ I+J
Contr

Σ,Γ, AK ` B

Π1

Σ ` A′

Π2

A′, A1
I1 , · · · , An

In ` B (Ki ≥ Ii·J)
Prom

A′, A1
K1 , · · · An

Kn ` BJ
Cut

Σ, A1
K1 , · · · An

Kn ` BJ

−→

Π1

Σ ` A′
Π2

A′, A1
I1 , · · · , An

In ` B
Cut

Σ, A1
I1 , · · · , An

In ` B (Ki ≥ Ii·J)
Prom

Σ, A1
K1 , · · · An

Kn ` BJ

Π1

Σ ` A′

Π2

A′,Γ, AI ` B J ≥ I
Sweak

A′,Γ, AJ ` B
Cut

Σ,Γ, AJ ` B

−→

Π1

Σ ` A′
Π2

A′,Γ, AI ` B
Cut

Σ,Γ, AI ` B J ≥ I
Sweak

Σ,Γ, AJ ` B

Figure 1.7.: Cut-elimination rules (minor rules).
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Π1

(Ai
Ii)i ` B (Ki ≥ Ii·J)i

Prom
(Ai

Ki)i ` BJ

Π2
Γ ` C J ≥ 0

Weak
Γ, BJ ` C

Cut
(Ai

Ki)i,Γ ` C

−→

Π2
Γ ` C

K1 ≥ Ii·J (J ≥ 0)
K1 ≥ Ii·0
K1 ≥ 0

Weak· · ·
Weak

(Ai
Ki)i,Γ ` C

Π1

(Ai
Ii)i ` B (Ki ≥ Ii·J)i

Prom
(Ai

Ki)i ` BJ

Π2
Γ, B ` C J ≥ 1

Der
Γ, BJ ` C

Cut
(Ai

Ki)i,Γ ` C

−→

Π1

(Ai
Ii)i ` B

Π2
Γ, B ` C

Cut
(Ai

Ii)i,Γ ` C

K1 ≥ I1·J J ≥ 1
K1 ≥ I1·1
K1 ≥ I1

Sweak· · ·
Sweak

(Ai
Ki)i,Γ ` C

Π1

(Ai
Ii)i ` B (Ki ≥ Ii·J)i

Prom
(Ai

Ki)i ` BJ

Π2

Γ, BJ1 , BJ2 ` C J ≥ J1·J2
Contr

Γ, BJ ` C
Cut

(Ai
Ki)i,Γ ` C

−→

Π1

(Ai
Ii)i ` B (Ii·J1 ≥ Ii·J1)i

Prom
(Ai

Ii·J1)i ` BJ1

Π1

(Ai
Ii)i ` B (Ii·J2 ≥ Ii·J2)i

Prom
(Ai

Ii·J2)i ` BJ2

Π2

Γ, BJ1 , BJ2 ` C
Cut

Γ, BJ1 , (Ai
Ii·J2)i ` C

Cut
(Ai

Ii·J1)i, (Ai
Ii·J2)i,Γ ` C

K1 ≥ I1·J J ≥ J1+J2

K1 ≥ I1·(J1+J2)
K1 ≥ I1·J1+I1·J2

Contr· · ·
Contr

(Ai
Ki)i,Γ ` C

Π1

(Ai
Ii)i ` B (I′i ≥ Ii·J)

Prom
(Ai

I′i )i ` BJ

Π2

(C j
Ki) j, BJ1 ` C (K′j ≥ K j·J2) j J ≥ J1·J2

Prom
(C j

K′j) j, BJ ` CJ2

Cut
(Ai

I′i )i, (A j
K′j) j ` CJ2

−→

Π1

(Ai
Ii)i ` B (Ii·J1 ≥ Ii·J1)i

Prom
(Ai

Ii·J1)i ` BJ1

Π2

(C j
K j) j, BJ1 ` C

Cut
(Ai

Ii·J1)i, (A j
K j) j ` C

(I′i ≥ Ii·J) (J ≥ J1·J2)

(I′i ≥ Ii·(J1·J2))i

(I′i ≥ (Ii·J1)·J2)i (K′j ≥ K j·J2)i
Prom

(Ai
I′i )i, (A j

K′j) j ` CJ2

Π1

(Ai
Ii)i ` B (Ki ≥ Ii·J′)

Prom
(Ai

Ki)i ` BJ

Π2

Γ, BJ ` C J′ ≥ J
Sweak

Γ, BJ′ ` C
Cut

(Ai
Ki)i,Γ ` C

−→

Π1

(Ai
Ii)i ` B (Ii·J ≥ Ii·J)i

Prom
(Ai

Ii·J
i ) ` BJ

Π2

Γ, BJ ` C
Cut

(Ai
Ii·J)i,Γ ` C

K1 ≥ I1·J′ J′ ≥ J
K1 ≥ I1·J

Sweak· · ·
Sweak

(Ai
Ki)i,Γ ` C

Figure 1.8.: Cut-elimination rules (exponentials only).
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1.3.2. Examples

Trivial semiring: the multiplicative exponential fragment of intuitionistic linear logic is
recovered from BSLL by taking S as the one element semiring.

Boolean semiring: the Boolean semiring B = ({tt, ff },∧, tt,∨, ff ) allows finer types that the
trivial one, distinguishing between data that can be weakened (of type A ff ) from data that can
be duplicated (Att). The order over B plays a role, also: the discrete order will make the two
types disjoint, while tt ≥ ff will make A ff a subtype of Att, so that the ( )tt modality behaves as
the usual of-course modality ! of linear logic.

Natural numbers: the natural number semiring (N,×, 1,+, 0) yields modalities expressing
the number of times a resource is to be used. The order relation then allows some flexibility:
for example, the natural order 0 < 1 < 2 < . . . makes An to be the type of data that can be used
up-to n times. Notice that in this case there is no modality allowing a resource to be used an
indefinite number of times, so the system is not an extension of linear logic. In order to recover
the usual of-course modality ! one should take the order completion N̄, adding a top-element
ω.

Polynomial semiring: by taking the semiring (N[Xi]i∈N,×, 1,+, 0) of polynomials with nat-
ural numbers as coefficients, one can express a basic form of resource dependency. One can
write formulas like Ap(~x) ( Bq(~x) where p, q are polynomials in the unknowns ~x. Roughly
speaking, this is the type of a function giving a result reusable q(~n) number of times as soon as
its input can be used p(~n) number of times, for any sequence of natural numbers ~n. This sys-
tem has been discussed in [GSS92a] as an introduction to bounded linear logic (BLL). What
is lacking with respect to the whole BLL is the possibility to bound first-order variables, so
writing types of the form Ay≤p(x), where y is an unknown of a polynomial occurring inside A.

Affine contractive transformations: the one-dimensional contractive affine transforma-
tions can be represented by real-valued matrices xs,p =

( s p
0 1

)
with 0 ≤ s ≤ 1 and 0 ≤ s + p ≤ 1.

The value s is a scaling factor relative to the unit interval, and p is a delay from the time origin.
The set of such transformations forms a monoid Affc

1 with composition given by matrix prod-
uct.7 By Proposition A.4.2.2, N f 〈Affc

1〉 is a semiring so it defines the logic BNf〈Affc1〉LL. This
system has been introduced by Ghica and Smith [GS14] in order to express at the level of types

a scheduling on the execution of certain resources. For example, a formula A
[(
.5 0
0 1

)
,
(
.5 .25
0 1

)]
rep-

resents a resource of type A that can be called twice, both calls will last 1
2 the duration relative

to which we are measuring, but one call starts at the beginning of the available time interval,
while the other call starts when 1

4 of the time has elapsed. Of course, such annotations have a
meaning when the language has primitives describing processes to be scheduled. See [GS14]
for more details.

7Notice, however, that the semiring product I·J denotes the reverse matrix product J·I, this is due to a change in
notation between us and [GS14].
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Positive real numbers: in presence of random primitives, one can associate any resource
with a discrete random variable quantifying on the number of times this resource is used dur-
ing the evaluation. In [BGMZ14], BSLL has been parametrised with the ordered semiring
R+ = (R+,×, 1,+, 0,≤) of the non-negative real numbers endowed with the natural order, the
parameters expressing the expected values of these random variables. So for example, the
type A

3
2 expresses a resource that, whenever it is called a number n > 0 of times, denoting by

pi ∈ [0, 1] the probability of converging to a value in the i-th call, we have
∑n

i=1 pi = 3
2 .

This system can be extended (syntactically) with true dependent types and be able to catch
finer properties, like differential privacy [GHH+13b].
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2. Characterization of full abstraction of
H∗

The histories of full abstraction and denotational semantics of λ-calculi are both rooted in four
fundamental articles published in the course of a year.

In 1976, Hyland [Hyl76] and Wadsworth [Wad76] independently1 proved the first full ab-
straction result of Scott’s D∞ (Ex. 1.2.4.9) for H∗ (the theory observing the convergence of
head-normalization, see Example 1.1.0.16). The following year, Milner [Mil77] and Plotkin
[Plo77] showed respectively that PCF (a Turing-complete extension of the simply typed λ-
calculus) has a unique fully abstract model up to isomorphism and that this model is not in the
category of Scott domains and continuous functions.

Later, various articles focused on circumventing Plotkin counterexample [AMJ94, HO00] or
investigating full abstraction results for other calculi [AM96, Lai97, Pao06]. However, hardly
anyone pointed out the fact that Milner’s uniqueness theorem is specific to PCF, while H∗ has
various models that are fully abstract but not isomorphic.

The quest for a general characterization of the fully abstract models of head normalization
started by successive refinements of a sufficient, but unnecessary condition [DGFH99, X.G95,
Man09], improving the proof techniques from 1976 [Hyl76, Wad76]. While these results shed
some light on various fully abstract semantics forH∗, none of them could reach full character-
ization.

In this chapter, we give the first full characterization of the full abstraction of H∗ for a
specific (but large) class of models. The class we choose is that of Krivine-models, or K-
models [Kri93, Ber00] (Def. 1.2.4.3). This class, described in Section 1.2.4, is essentially the
subclass of Scott complete lattices (or filter models [CDHL84]) which are prime algebraic.
We add two further conditions: extensionality and approximability of Definition 2.2.1.12 (or
equivalently the sensibility for Λτ(D) of Definition 2.3.1.19). The extensional and approximable
K-models are the objects of our characterization and can be seen as a natural class of models
obtained from models of linear logic [Gir87]. Indeed, the extensional K-models correspond to
the extensional and approximable reflexive objects of the co-Kleisli category associated with
the exponential comonad of Ehrhard’s ScottL category [Ehr12] (Prop. 1.2.4.4).

We achieve the characterization of full abstraction forH∗ in Theorem 2.1.0.5: a model D is
fully abstract for H∗ iff D is hyperimmune (Def. 2.1.0.1). Hyperimmunity is the key property
our study introduces in denotational semantics. This property is reminiscent of the Post’s notion
of hyperimmune sets in recursion theory. Hyperimmunity is not only undecidable, but also
surprisingly high in the hierarchy of undecidable properties (it cannot be decided by a machine
with an oracle deciding the halting problem) [Nie09].

Roughly speaking, a model D is hyperimmune whenever the λ-terms can have access to only

1Notice, however, that the idea already appears in Wadsworth thesis 3 years earlier.

45



well-founded chains of elements of D. In other words, D might have non-well-founded chains
d0 ≥ d1 ≥ · · · , but these chains “grow” so fast (for a suitable notion of growth), that they cannot
be contained in the interpretation of any λ-term.

The intuition that full abstraction of H∗ is related with a kind of well-foundation can be
found in the literature (e.g., Hyland’s [Hyl76], Gouy’s [X.G95] or Manzonetto’s [Man09]).
Our contribution is to give, with hyperimmunity, a precise definition of this intuition, at least in
the setting of K-models.

A finer intuition can be described in terms of game semantics. Informally, a game semantic
for the untyped λ-calculus takes place in the arena interpreting the recursive type o = o→o.
This arena is infinitely wide (by developing the antecedent of the implication o→o) and in-
finitely deep (by developing the consequent of the implication o→o). Moves therein can thus
be characterized by their nature (question or answer) and by a word over natural numbers. For
example, q(2.3.1) represents a question in the underlined “o” in o = o→(o→o→(o→o)→o)→o.
Plays in this game are potentially infinite sequences of moves, where a question of the form
q(w) is followed by any number of deeper questions/answers, before an answer a(w) is eventu-
ally provided, if any.

A play like q(ε), q(1)...a(1), q(2)...a(2), q(3)... is admissible: one player keeps asking ques-
tions and is infinitely delaying the answer to the initial question, but some answers are given so
that the stream is productive. However, the full abstraction for H∗ forbids non-productive in-
finite questioning like in q(ε), q(1), q(1.1), q(1.1.1)..., in general. Nevertheless, disallowing all
such strategies is sufficient, but not necessary to get full abstraction. The hyperimmunity condi-
tion is finer: non productive infinite questioning is allowed as long as the function that choose
the next question grows faster than any recursive function (notice that in the example above
that choice is performed by the constant (n 7→ 1) function). For example, if (ui)i≥0 grows faster
than any recursive function, the play q(ε), q(u1), q(u1.u2), q(u1.u2.u3)... is perfectly allowed.

Incidentally, we obtain a significant corollary (also expressed in Theorem 2.1.0.5) stating
that full abstraction coincides with inequational full abstraction for H∗ (equivalence between
observational and denotational orders). This is in contrast to what happens to other calculi
[Sto90, EPT14].

In the literature, most of the proofs of full abstraction for H∗ are based on Nakajima trees
[Nak75] or some other notion of quotient of the space of Böhm trees, using the characterization
of the observational equivalence (see Proposition 1.2.2.12). The usual approach is too coarse
because it considers arbitrary Böhm trees which are not necessarily images of actual λ-terms.
To overcome this we propose two different techniques leading to two different proofs of the
main result: one purely semantical and another one purely syntactical.

Section 2.2 deals with the semantical proof. This proof follows the line of historical ones
while overcoming weaknesses of Nakajima trees with a notion of quasi-approximation property
(Def. 2.2.1.17), that involves recursivity in a refined way. Quasi-approximability is a key tool
in the proof, which is otherwise quite standard. However, since Böhm trees are specific to
the λ-calculus and head reduction, there is not much hope to extend the proof to many other
calculi/strategies (such as differential λ-calculus [ER04], or call-by-value strategies).

Section 2.3 deals with the syntactical proof. It approaches the problem from a novel angle.
It consists in the use of a new tool: the calculi with tests (Def. 2.3.1.1). These are syntactic
extensions of the λ-calculus with operators defining compact elements of the given models.
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Since the model appears in the syntax, we are able to perform inductions (and coinductions)
directly on the reduction steps of actual terms, rather than on the construction of Böhm trees.

The idea of test mechanisms as syntactic extensions of the λ-calculus was first used by Buc-
ciarelli et al. [BCEM11]. Even though it was mixed with a resource-sensitive extension, the
idea was already used to define morphisms of the model. Nonetheless, we can notice that older
notions like Wadsworth’s labeled λ⊥-calculus [Wad76] seem related to calculi with tests. The
calculi with tests are not ad hoc tricks, but powerful and general tools.
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2.1. The theorem

We state our main result, showing an equivalence between hyperimmunity (Def. 2.1.0.1) and
full abstraction forH∗ with two theorems (Th. 2.1.0.5 and 2.1.0.6) that differ in their premises.
We will prove later (Th. 2.4.1.9) that these premises are in fact equivalent.

Recall from Section 1.2.4 and Appendix A.3.4 that an extensional K-model is a
pair (D, ( → )) where:

• D is a poset.

• ( → ) is an order isomorphism between D⇒ D and D (where D⇒ D ' A f (D)op×D).

Definition 2.1.0.1 (Hyperimmunity). A (possibly partial) extensional K-model D is said to be
hyperimmune if for every sequence (αn)n≥0 ∈ DN, there is no recursive function g : N→N
satisfying, for all n≥0:

αn = an,1→· · ·→an,g(n)→α
′
n and αn+1 ∈

⋃
k≤g(n)

an,k. (2.1)

Notice, in the above definition, that each antichain an,i always exist and are uniquely deter-
mined by the isomorphism between D and D⇒ D that allow us to unfold any element αi as an
arrow (of any length).

The idea is the following. The sequence (αn)n≥0 is morally describing a non well-founded
chain of elements of D, through the isomorphism D ' D⇒ D, allowing us to see any element
αi as an arrow (of any length):

α1 = a1,1→· · · a1,i1 · · ·→a1,g(1)→α
′
1

∈

α2 = a2,1→· · · a2,i2 · · ·→a2,g(2)→α
′
2

∈

α3 = a3,1→· · · a3,i3 · · ·→ a3,g(3)→α
′
3

. . .

The growth rate (in)n of the chain (αn)n depends on how many arrows must be displayed in αi

in order to see αi+1 as an element of the antecedent of one of them. Now, the hyperimmunity
means that if any such non-well founded chain (αn)n exists, then its growth rate (in)n cannot be
bounded by any recursive function g.

Remark 2.1.0.2. It would not be sufficient to simply consider the function n 7→ in such that αn+1∈an,in
rather than the bounding function g. Indeed, n 7→ in may not be recursive even while g is.
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Proposition 2.1.0.3. For any extensional partial K-model E (Def. 1.2.4.5), the completion E
(Def. 1.2.4.6) is hyperimmune iff E is hyperimmune.

Proof. The left-to-right implication is trivial.
The right-to-left one is obtained by contradiction:
Assume we had (αn)n≥0 ∈ ĒN and a recursive function g : N→ N such that for all n ≥ 0:

αn = an,1→· · ·→an,g(n)→α
′
n and αn+1 ∈

⋃
i≤g(n)

an,i

Recalls that the sequence (Ek)k≥0 of Definition 1.2.4.6 approximates the completion Ē.
Then we have the following:

• There exists k such that α0 ∈ Ek: Indeed, α0 ∈ Ē =
⋃

k Ek.

• If αn ∈ Ek+1 then αn+1 ∈ Ek: There is i ≤ g(n) such that αn+1 ∈ an,i ⊆ Ek.

• If αn ∈ E0 = E then αn+1 ∈ E0 = E: By surjectivity of jE .

Thus there is k such that (αn)n≥k ∈ EN, what would break the hyperimmunity of E. �

Example 2.1.0.4. • The well-stratified K-models of Example 1.2.4.9(4) (and in particular D∞ of
Item (1)) are trivially hyperimmune: already in the partial K-model, there are not even α1, α2
and n such that α1 = a1→· · ·→an→α

′
1 and α2 ∈ an (since an = ∅). The non-hyperimmunity of

the partial K-model can be extended through the completion using Proposition 2.1.0.3.

• The same holds for ω (Ex. 1.2.4.9(5)). Indeed, any such (αn)n in the partial K-model would
respect αn+1<Nαn,hence (αn)n must be finite by well-foundation of N.

• On the other hand the models P∞, D∗∞ and Z (Examples 1.2.4.9(2), (3) and (6)) are not hyperim-
mune. Indeed for all of them g = (n 7→ 1) satisfies the condition of Equation (2.1), the respective
non-well founded chains (αi)i being (∗, ∗, . . . ), (p, q, p, q, . . . ), and (0,−1,−2, . . . ):

∗ = {∗} → ∗ p = {q} → p 0 = {1} → 0

∈ ∈ ∈

∗ = {∗} → ∗ q = {p} → q 1 = {2} → 1

∈ ∈ ∈

∗ = {∗} → ∗ p = {q} → p 2 = {3} → 2
. . .

. . .
. . .

• More interestingly, the model H f (Ex. 1.2.4.9(7)) is hyperimmune iff f is an hyperimmune func-
tion [Nie09], i.e., iff there is no recursive g : N→ N such that f ≤ g (pointwise order); otherwise
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the corresponding sequence is (αi
1)i.

α0
1 = ∅ → · · · → ∅︸         ︷︷         ︸

f (0) times

→{α1
1} → ∅ → · · · → ∅ → ∗

∈

α1
1 = ∅ → · · · → ∅︸         ︷︷         ︸

f (1) times

→{α2
1} → ∅ → · · · → ∅ → ∗

∈

α2
1 = ∅ → · · · → ∅︸         ︷︷         ︸

f (2) times

→{α3
1} → ∅ → · · · → ∅ → ∗

∈

. . .

The following theorems constitute the main result of this chapter. They show the equivalence
between hyperimmunity and (inequational) full abstraction for H∗ under certain conditions.
These conditions, namely the approximation property and the sensibility for Λτ(D), are equiv-
alent conditions (see Theorem 2.4.1.9) and are defined in more details in Definitions 2.2.1.12
and 2.3.1.19.

Theorem 2.1.0.5 (Main theorem (semantic)). For any extensional and approximable K-
model D (Def. 2.2.1.12), the following are equivalent:

1. D is hyperimmune,

2. D is inequationally fully abstract forH∗,

3. D is fully abstract forH∗.

Theorem 2.1.0.6 (Main theorem (syntactic)). For any extensional K-model D sensible for
Λτ(D) (Def. 2.3.1.19), the following are equivalent:

1. D is hyperimmune,

2. D is inequationally fully abstract forH∗,

3. D is fully abstract forH∗.

Example 2.1.0.7. In Example 1.2.4.9, the models D∞ and ω (Items (1) and (5)), and the well-stratified
K-models are (inequationally) fully abstract as well as the H f which function f is hyperimmune. While
the models P∞, D∗∞, Z (Items (2), (3) and (6)) are not, as well as the H f for f not hyperimmune.

Indeed, we have seen in Example 2.1.0.4 that the first models are hyperimmune but not the second
and we will see in Example 2.4.2.13 that each of them are sensible for Λτ(D).

50



Despite being based on equivalent conditions, the two theorems will be proven separately.
We use two different proofs, as they give different perspectives of the same problem. The first
proof is a semantical proof based on Böhm trees, it is the object of Section 2.2. The second one
is a syntactical proof based on λ-calculi with tests; it is the object of Section 2.3. Section 2.4
gathers several bypassing properties and theorems regarding λ-calculi with tests, among them is
the proof of equivalence between approximation property and sensibility for Λτ(D) (Th. 2.4.1.9).

The two proofs will split into three parts. Sections 2.2.1 and 2.3.1 will present needed def-
initions and theorems referring respectively to Böhm trees and λ-calculi with tests. Sections
2.2.2 and 2.3.2 prove the implication ((1)⇒(2)), showing that the (inequational) theory of D is
H∗ when assuming the hyperimmunity (Th. 2.3.2.4). Sections 2.2.3 and 2.3.3 prove the impli-
cation ((3)⇒(1)), exhibiting a counterexample to full abstraction when D is not hyperimmune
(Th. 2.2.3.1). The implication ((2)⇒(3)) is trivial.
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2.2. Semantical proof using Böhm trees

The main idea of this proof is not new, it consists in using Böhm trees to decompose the
interpretation of the λ-calculus. In order to do so, we need to interpret them into our K-model
D so that the following diagram commutes:

Λ D

BT

~.�
BT(.) ~.�∗

The approximation and quasi-approximation properties of Definitions 2.2.1.12 and 2.2.1.17
exactly state this decomposition for two specific choices of interpretation. Indeed, we will
see in Definition 2.2.1.7 that there are many different possible interpretations of the Böhm
trees, we will mainly focus on the inductive interpretation (Def. 2.2.1.10) and the quasi-finite
interpretation (Def. 2.2.1.16).

The approximation and quasi-approximation properties will have different roles. The ap-
proximation property, i.e., the decomposition via the inductive interpretation, mainly says that
the interpretation of terms is approximable by finite Böhm trees. Approximation property is
a hypothesis of Theorem 2.1.0.5 and it holds in all known candidates to full abstraction, i.e.,
extensional and sensible models (Ex. 2.2.1.14). We even conjecture, in fact, that all K-models
that are fully abstract forH∗ respect the approximation property.

The quasi-approximation property is a fairly finer property2 that is based on deep references
to recursivity theory. The quasi-approximation property will be proven equivalent to both full
abstraction forH∗ and hyperimmunity in the presence of the approximation property.

Theorem 2.2.0.8 (Developed semantic theorem). For any extensional K-model D sensible
for Λτ(D) (Def. 2.3.1.19), the following are equivalent:

1. D is hyperimmune,

2. D respects the quasi-aproximation property,

3. D is inequationally fully abstract for Λ,

4. D is fully abstract for Λ.

Proof.

• (1)⇒ (2): Theorem 2.2.2.8,

• (2) ⇒ (3): inequational adequation is the object of Theorem 2.2.2.9 and inequational
completeness the one of Theorem 2.2.2.10,

• (3)⇒ (4): trivial,
2Even if technically independent.
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• (4)⇒ (1): Theorem 2.2.3.1.

�

2.2.1. Böhm trees

Subclasses of Böhm trees

Before saying anything on interpretations of Böhm trees in a K-model, we need a few defini-
tions over non conventional representations (def. A.2.1.9) of Böhm trees (def. 1.2.2.1). Indeed,
it is convenient to define dense subclasses of Böhm trees (for the inclusion order) that will work
as potential bases. Such bases can be used to interpret any Böhm tree in our models as the sup
of the interpretations of its approximants.3

The only base that appears in the literature is the class BTf of finite Böhm trees. However, we
will oppose it the larger classes BTΩ f and BTq f of Ω-finite and quasi-finite Böhm trees. Larger
bases are generally less interesting, but here we will see that they enforce a notion of “stability”
for recursive Böhm trees.

Concretely, Ω-finite Böhm trees basically constitute a base where approximants of an actual
term (via its translation into a Böhm tree) are all recursive Böhm trees (Lemma. 2.2.1.3). The
quasi-finite Böhm trees are then Ω-finite Böhm trees that are somehow stable by �η∞ and �η∞
(Lemma. 2.2.1.6).

Definition 2.2.1.1. We define the following representations (Def. A.2.1.9) over Böhm trees:

• The set of finite Böhm trees, denoted BTf , is the set of Böhm trees inductively generated
by their grammar (or equivalently Böhm trees of finite height). Given a term M, we
denote BTf (M) the set of finite Böhm trees U such that U ⊆ BT(M).

• The set of Ω-finite Böhm trees, denoted BTΩ f , is the set of Böhm trees that contain a
finite number of occurrences of Ω.

• The set of quasi-finite Böhm tree, denoted BTq f , is the set of those Ω-finite Böhm trees
having their number of occurences of each (free and bounded) variables recursively
bounded. Formally, there is a recursive function g such that variables abstracted at
depth4n cannot occur at depth greater that g(n).

Capital final Latin letters X,Y,Z... will range over any of those classes of Böhm trees. We
will use the notation ⊆ f (resp. ⊆Ω f and ⊆q f ) for the inclusion restricted to BTf × BT (resp.
BTΩ f × BT and BTq f × BT).

In particular, to any finite Böhm tree U corresponds a term M obtained by replacing every
symbol Ω by the diverging term Ω. By abuse of notation, we may use one instead of the other.

Example 2.2.1.2. The identity I corresponds to a finite Böhm tree and thus is in all three classes. The
term λz.Θ (λux.z u) has a Böhm tree that is Ω-finite but not quasi-finite. The term Θ (λux.x u Ω) has a

3Recall that coinductive structures may have several interpretations into a given model (def. A.2.1.27).
4We consider that free variables are “abstracted” at depth 0.
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Böhm tree that is neither of these classes.

BT(λz.Θ (λux.z u)) = λzx1.z . BT(Θ (λux.x u Ω)) = λx1.x1 . Ω

| |

λx2.z . λx2.x2 . Ω

| |

λx3.z . λx3.x3 . Ω

...
...

Lemma 2.2.1.3. For all terms M, if X ∈ BTΩ f and X ⊆ BT(M), then X is a recursive Böhm
tree (def. A.2.1.9).

Proof. First remark that only X has to be recursive, not the proof of X ⊆ BT(M). Moreover, we only
have to show that there exists a recursive construction of X, we do not have to generate it constructively.

There is a finite number of Ω’s in X whose positions p ∈ P can be guessed beforehand by an oracle
that is finite thus recursive. After that, it suffices to compute the Böhm tree of M except in these positions
where we directly put an Ω. This way the program is always productive as any Ω of M (i.e., any non
terminating part of the process of computation of BT(M)) will be shaded by a guessed Ω of X (potentially
far above). �

Lemma 2.2.1.4. Let U,V ∈ BT. If U �η∞ V (def. 1.2.2.9), there is a bijection between the
Ω’s in U and those in V.

Proof. Recall that U �η∞ V is the relation which proofs range over the coinductive sequents generated
by

(η∞ω)
Ω �η Ω

∀i ≤ k, Ui �η∞ Vi ∀i ≤ m, Uk+i �η∞ xn+i
(η∞@)

λx1...xn+m.y U1 · · ·Uk+m �η∞ λx1...xn.y V1 · · ·Vk

Remark that this system is deterministic so that a sequent U �η∞ V has at most one proof. In particular
the occurrences of rule (η∞ω) describe the pursued bijection. �

Lemma 2.2.1.5. For all U,V ∈ BT such that U �η∞ V, U ∈ BTq f iff V ∈ BTq f .

Proof. By lemma 2.2.1.4, we know that if X �η∞ V or X �η∞ V then V ∈ BTΩ f .
It is easy to see that if variables occurrences are bounded by g in X they will be bounded

by (n 7→ max(g(n), 1)) in V . Indeed an η∞-expansion/reduction will not change the depth of any vari-
able, and will only delete/introduce abstraction whose variable will be used exactly once at depth 1. �

Lemma 2.2.1.6. Both ordering �η∞ and �η∞ distribute over ⊆q f , and the ordering �η∞ dis-
tributes over ⊆ f :

• For all U,V ∈ BT and X ∈ BTq f such that X ⊆q f U �η∞ V, there is Y ∈ BTq f such that

X �η∞ Y ⊆q f V.
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• For all U,V ∈ BT and X ∈ BTq f such that X ⊆q f U �η∞ V, there is Y ∈ BTq f such that

X �η∞ Y ⊆q f V.

• For all U,V ∈ BT and X ∈ BTf such that X ⊆ f U �η∞ V, there is Y ∈ BTf such that

X �η∞ Y ⊆ f V.

Proof.

• Distribution of �η∞ over ⊆q f :
We create Y ∈ BT such that X �η∞ Y ⊆ V by co-induction (remark that, by lemma 2.2.1.5, we
obtain V ∈ BTq f ):

– Either X = Ω: then Y = Ω.

– Otherwise

X = λx1...xn.y X1 · · · Xm, U = λx1...xn.y U1 · · ·Um, V = λx1...xn+k.y V1 · · ·Vm+k,

such that Xi ⊆q f Ui �η∞ Vi for i ≤ m and xn+i �η∞ Vm+i (thus Vm+i ∈ BTq f ) for i ≤ k. By
co-induction hypothesis we have (Yi)i ln m such that Xi �η∞ Yi ⊆ Vi for i ≤ m, we thus set

Y = λx1...xn+k.y Y1 · · · Ym Vm+1 · · ·Vm+k.

• Distribution of �η∞ over ⊆q f :
We create Y ∈ BT such that X �η∞ Y ⊆ V by co-induction, by lemma 2.2.1.5 we then obtain
that V ∈ BTq f :

– Either X = Ω: then Y = Ω.

– Otherwise

X = λx1...xn+k.y X1 · · · Xm+k, U = λx1...xn+k.y U1 · · ·Um+k, V = λx1...xn.y V1 · · ·Vm,

such that Xi ⊆q f Ui �η∞ Vi for i ≤ m and Xm+i ⊆q f Um+i �η∞ xn+i for i ≤ k. By co-
induction hypothesis we have (Vi)i≤m+k such that Xi �η∞ Yi ⊆ Vi for i ≤ m,
and Xm+i �η∞ Ym+i ⊆ xn+i for i ≤ k; we thus set

Y = λx1...xn+k.y Y1 · · · Ym.

• Distribution of �η∞ over ⊆ f :
We create Y ∈ BTf similarly to the previous case except that we proceed by induction on X:

– Either X = Ω: then Y = Ω.

– Otherwise

X = λx1...xn+k.y X1 · · · Xm+k, U = λx1...xn+k.y U1 · · ·Um+k, V = λx1...xn.y V1 · · ·Vm,

such that Xi ⊆ f Ui �η∞ Vi for i ≤ m and Xm+i ⊆ f Um+i �η∞ xn+i for i ≤ k. By co-induction
hypothesis we have (Vi)i≤m+k such that Xi �η∞ Yi ⊆ f Vi for i ≤ m,
and Xm+i �η∞ Ym+i ⊆ f xn+i for i ≤ k; we thus set

Y = λx1...xn+k.y Y1 · · · Ym.

�
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Interpretations of Böhm trees

Böhm trees can be seen as normal forms of infinite depth. As such, one can give them an
interpretation extending the interpretation of the λ-calculus in our semantic through a fixpoint.
However, there is no a priori reason to choose one specific fixpoint. We will formalize the
notion of interpretations of Böhm trees in Definition 2.2.1.7, then, using their description as
fixpoint, we will see in Property 2.2.1.9 that they form a complete lattice.

The minimal interpretation, called the inductive interpretation (Def. 2.2.1.10), is the canon-
ical choice and has been used often in the literature to describe the approximation property
(Def. 2.2.1.12). The approximation property informally states the coherence of the interpreta-
tion of terms and the inductive interpretation of Böhm trees.

But the complete lattice of interpretations is richer than the sole inductive one. Another
canonical interpretation is the maximal one, called co-inductive interpretation (Def. 2.2.1.10).
Unfortunately, no equivalent version of approximation property can be given for the co-inductive
interpretation (more exactly, no K-model can verify it).

However, we can look for an interpretation that is both: as large as possible and with a useful
notion of coherence with the λ-calculus. We found the quasi-finite interpretation (Def. 2.2.1.16)
that is basically the minimal interpretation which restriction to quasi-finite Böhm trees corre-
sponds to the co-inductive interpretation. The property that states the coherence of the inter-
pretation is the quasi-approximation property (Def. 2.2.1.17). We will see later on that in the
presence of the approximation property and the extensionality, the quasi-approximation prop-
erty is equivalent to the hyperimmunity and the full abstraction forH∗.

Definition 2.2.1.7. We call proto-interpretation of Böhm trees any total function ~−�∗ that
map elements U ∈ BT to initial segments of DFV(U) ⇒ D.

An interpretation of Böhm trees is a proto-interpretation ~.�∗ respecting the following:

• The interpretation of Ω is always empty:

~Ω�~x∗ = ∅.

• The interpretation of an abstraction λy.U satisfies:

~λy.U�~x∗ = {(~a, b→α) | (~ab, α) ∈ ~U�~xy
∗ }.

• The interpretation of a stack of applications xi U1 · · ·Un (for n ≥ 0), has to respect:

~xi U1 · · ·Un�
~x
∗ = {(~a, α) | ∃b1→· · ·→bn→α ≤ α

′ ∈ ai,∀i ≤ n,∀β ∈ bi, (~a, β) ∈ ~Ui�
~x
∗}

Remark 2.2.1.8. On finite Böhm trees, every interpretation collapses, thus we can denote ~X�x̄ for any
X ∈ BTf without ambiguity. Moreover, if the model is sensible, ~X�~x is the same as the interpretation of
X considered as a λ-term (by replacing occurrences of Ω by the diverging term Ω).

The interpretations, however, differ on their infinite Böhm trees. Fortunately, the set of
interpretations forms a complete lattice.
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Γ, x : a ` U : α (BT -λ)
Γ ` λx.U : a→α

b1→· · ·→bn→β ∈ a α ≤ β ∀i ≤ n,∀γ ∈ bi, Γ, x : a ` Ui : γ
(BT -@)

Γ, x : a ` x U1 · · ·Un : α

Figure 2.1.: Intersection type system for Böhm trees. Notice that the intersection is hiddent in
the membership condition in the first premise of (BT -@).

Proposition 2.2.1.9. The poset of interpretations (with pointwise inclusion) is a complete
lattice.

Proof. We are showing that interpretations are the fixpoints of a Scott-continuous (even linear) function
ζ in the complete lattice of proto-interpretations (with pointwise order).

The function ζ , maps an interpretation ~.�∗ to the interpretation ~.�ζ(∗) defined by

• The interpretation of Ω is always empty:

~Ω�~xζ(∗) = ∅.

• The interpretation of λy.U is the same as for λ-terms:

~λy.U�~xζ(∗) = {(~a, b→α) | (~ab, α) ∈ ~U�~xy
∗ }.

• xi U1 · · ·Un, have to respect:

~xi U1 · · ·Un�
~x
ζ(∗) = {(~a, α) | ∃b1→· · ·→bn→α ≤ α

′ ∈ ai,∀i ≤ n,∀β ∈ bi, (~a, β) ∈ ~Ui�
~x
∗},

This three equations trivially preserve the sups, so that ζ is continuous (even linear). It is well known
that fixpoints of a Scott-continuous function form a complete lattice. �

Definition 2.2.1.10. The minimal interpretation is the inductive interpretation

~U�~xind =
⋃
X⊆U

X∈BTf

~X�~x.

The maximal interpretation is called the co-inductive interpretation and denoted ~.�~xcoind .

The idea of intersection types can be generalized to Böhm trees. We introduce in Figure 2.1
the corresponding intersection type system. There is no rule for Ω since it has an empty in-
terpretation. Remark, moreover, that the rule (BT -@) seems complicated, but is just the ag-
gregation of rules (I-id), (I-w), (I- ≤) and (I-@) of Figure 1.3. The difference between the
inductive and the co-inductive interpretations lies on the finiteness of the allowed derivations
in this system.
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Proposition 2.2.1.11. Let U be a Böhm tree, then:

• (~a, α) ∈ ~U�~xind iff the type judgment ~x : ~a ` U : α has a finite derivation using the rules
of Figure 2.1.

• (~a, α) ∈ ~U�~xcoind iff the type judgment ~x : ~a ` U : α has a possibly infinite derivation
using the rules of Figure 2.1.

Definition 2.2.1.12. We say that D respects the approximation property, or that D is approx-
imable, if the interpretation of any term corresponds to the inductive interpretation of its
Böhm tree, i.e. if the following diagram commutes:

Λ D

BT

~.�
BT(.) ~.�ind

Lemma 2.2.1.13. If D is extensional and approximable, and if M and N are two terms such
that M �η∞ N (def. 1.2.2.9), then ~M�~x ⊆ ~N�~x.

Proof. Let (a, α) ∈ ~M�~x, by the approximation property there is a finite U ⊆ f BT(M) such that
(a, α) ∈ ~U�~x. Since U ⊆ f BT(M) �η∞ BT(N), we can apply Lemma 2.2.1.6 to find V ∈ BTf such that
U �η∞ V ⊆ f BT(N). However, between finite Böhm trees, an ∞η-expansion is a usual η-expansion, so
that U �η V ⊆ f BT(N). We thus have (using the extensionality), (a, α) ∈ ~U�~x ⊆ ~V�~x ⊆ ~M�~x. �

The approximation property is a common condition enjoyed by all known K-models.5

Example 2.2.1.14. All the K-models of Example 1.2.4.9 except P∞ (that is not even sensible) are
approximable, regardless of them being fully abstract or not.

Proof. By Example 2.4.2.4 and Corollary 2.4.2.14. �

Our goal is to modify the approximation property so that we could characterize the full
abstraction.

Remark 2.2.1.15. A vain attempt would consist on replacing the inductive interpretation (in the defi-
nition of the approximation property) by the co-inductive one. In fact, the resulting property would never
hold:

For any sensible K-model and any α∈D, if M = Θ (λu.z u), then

({{α}→α}, α) ∈ ~BT(M)�zcoind ({{α}→α}, α) < ~M�z.

Indeed, If we had ({{α}→α}, α) ∈ ~M�z it would give α ∈ ~M[I/z]� = ~Θ I� = ∅. Moreover, since
BT(M) = z BT(M), we get to co-inductively show that ({{α}→α}, α) ∈ ~BT(M)�zcoind.

5Provided that they equalize terms with the same Böhm trees (which is a necessary condition for full abstraction).
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In this example, the co-inductive interpretation of BT(Θ (λux.z u)) is incoherent with the term in-
terpretation because it uses the z infinitely often. In the category Rel, for example, this would not hold
(even if other problems would come later). In order to get rid of these incoherence we can use a guarded
fixpoint.

In order to recover a meaningful property, we will use the quasi-finite interpretation. This is
the least interpretation which restriction to quasi-finite Böhm trees is the co-inductive interpre-
tation.

Definition 2.2.1.16. The quasi-finite interpretation of Böhm trees is defined by

~U�~xq f =
⋃
X⊆U

X∈BTq f

~X�~xcoind.

Definition 2.2.1.17. We say that D respects the quasi-approximation property, or is quasi-
approximable, if the interpretation of any term corresponds to the quasi-finite interpretation
of its Böhm tree, i.e. if the following diagram commutes:

Λ D

BT

~.�
BT(.) ~.�q f

Example 2.2.1.18. We will prove that the quasi-approximation property is equivalent to hyperimmu-
nity and full abstraction for H∗ (in presence of approximation property and extensionality). So models
that are hyperimmune, like D∞, respect it and those that are not, like D∗∞, does not. In the case of D∗∞,
for example, the quasi-approximation property is refuted by J, indeed p ∈ ~BT(J)�q f − ~J�.

Technical lemmas

This section shows that the relations ⊆ and �η∞ in BT are pushed along the co-inductive in-
terpretation into the inclusion (Lemma. 2.2.1.19) and the equality (Lemma. 2.2.1.20) at the
level of the model. These properties will be useful as they generalize easily to the quasi-finite
interpretation.

Lemma 2.2.1.19. Let D be an extensional K-model.
Let U,V be two Böhm trees such that U ⊆ V.
Then ~U�~xcoind ⊆ ~V�

~x
coind.

Proof. We will show that the proto-interpretation ~V�∗ =
⋃

U⊆V~U�coind over Böhm trees is an inter-
pretation. This is sufficient since, ~ �coind being the greatest interpretation, we will have

~V�coind ⊆
⋃
U⊆V

~U�coind = ~V�∗ ⊆ ~V�coind
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• Interpretation over Ω:

~Ω�~x∗ =
⋃
U⊆Ω

~U�~xcoind

= ~Ω�~xcoind

= ∅.

• Interpretation over abstractions:

~λy.V�~x∗ =
⋃

U⊆λy.V

~U�~xcoind

= ~Ω�coind ∪
⋃

U′⊆V

~λy.U′�~xcoind

=
⋃

U′⊆V

{(~a, b→α) | (~ab, α) ∈ ~U′�~xy
coind}

= {(~a, b→α) | (~ab, α) ∈
⋃

U′⊆V

~U′�~xy
coind}

= {(~a, b→α) | (~ab, α) ∈ ~V�~xy
∗ }.

• Interpretation over applications:

~xm V1 · · ·Vk�∗ =
⋃

U⊆xm V1···Vk

~U�~xcoind

= ~Ω�coind ∪
⋃

U j⊆V j

~xm U1 · · ·Uk�
~x
coind

=
⋃

U j⊆V j

{(~a, α) | ∃b1→· · ·→bk→α ≤ α
′ ∈ a,∀ j ≤ k,∀β ∈ b j, (~a, β) ∈ ~U j�

~x
coind}

= {(~a, α) | ∃b1→· · ·→bk→α ≤ α
′ ∈ a,∀ j ≤ k,∀β ∈ b j, (~a, β) ∈

⋃
U j⊆V j

~U j�
~x
coind}

= {(~a, α) | ∃b1→· · ·→bk→α ≤ α
′ ∈ a,∀ j ≤ k,∀β ∈ b j, (~a, β) ∈ ~V j�

~x
∗}

�

Lemma 2.2.1.20. Let D be an extensional K-model.
Let U,V be two Böhm trees such that U �η∞ V.
Then ~U�~xcoind = ~V�~xcoind.

Proof. We will prove separately the two inclusions.

• We will show that the proto-interpretation ~V�∗ =
⋃

U�η∞V~V�coind over Böhm trees is an inter-
pretation. This is sufficient since, ~ �coind being the greatest interpretation, we will have

~V�coind ⊆
⋃

U�η∞V

~V�~xcoind = ~V�∗ ⊆ ~V�coind.
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– Interpretation over Ω:

~Ω�~x∗ =
⋃

U�η∞Ω

~U�~xcoind

= ~Ω�~xcoind

= ∅.

– If Vs 6�η∞ xk and Vs+i �η∞ xk+i (for 1 ≤ i ≤ m) and j ≤ k:

~λxn+1...xk+m.x j V1 · · ·Vs+m�
~xn

∗

=
⋃

U�η∞λxn+1...xk+m.x j V1···Vs+m

~U�~x
n

coind

=
⋃

m′≤m

⋃
Ut�η∞Vt

~λxn+1...xk+m′ .x j U1 · · ·Us+m′ , (ui)i>n�
~xn

coind

=
⋃

m′≤m

⋃
Ut�η∞Vt

{(ai)i≤n, an+1→· · · ak+m′→α) | ∃c1→· · ·→cs+m′→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈ ~Ut�
~xk+m′

coind}

=
⋃

m′≤m

{(ai)i≤n, an+1→· · · ak+m′→α) | ∃c1→· · ·→cs+m′→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈
⋃

Ut�η∞Vt

~Ut�
~xk+m′

coind}

=
⋃

m′≤m

{(ai)i≤n, an+1→· · · ak+m′→α) | ∃c1→· · ·→cs+m′→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xk+m′

∗ }

=
⋃

m′≤m

{(ai)i≤n, an+1→· · · ak+m→α) | ∃c1→· · ·→cs+m′→ak+m′+1→· · · an+m→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xk+m′

∗ }

=
⋃

m′≤m

{(ai)i≤n, an+1→· · · ak+m→α) | ∃c1→· · ·→cs+m′→ak+m′+1→· · · ak+m→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xk+m′

∗

∀m′ ≤ t ≤ m,∀β ∈ ak+t, (~a, β) ∈ ~xk+t�
~xk+m′

∗ }

=
⋃

m′≤m

{(ai)i≤n, an+1→· · · ak+m→α) | ∃c1→· · ·→cs+m′→ak+m′+1→· · · ak+m→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xk+m′

∗

∀m′ ≤ t ≤ m,∀β ∈ ak+t, (~a, β) ∈ ~Vs+t�
~xk+m′

∗ }

This proves that if U �η∞ V then ~U�~xcoind ⊆ ~V�
~x
∗ ⊆ ~V�

~x
coind.

• To prove the converse, it is sufficient to show that the proto-interpretation ~V�~x∗ =
⋃

U�η∞V~U�~xcoind
is an interpretation:
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–

~Ω�~x∗ =
⋃

U�η∞Ω

~U�~xcoind

= ~Ω�~xcoind

= ∅.

–

~λxn+1...xs.x j V1 · · ·Vk�
~x
∗

=
⋃

U�η∞λxn+1...xs.x j V1···Vk

~U�~xcoind

=
⋃
m

⋃
Ui�η∞Vi

⋃
Uk+i�η∞xs+i

~λxn+1...xs+m.x j U1 · · ·Uk+m�
~x
coind

=
⋃
m

⋃
Ui�η∞Vi

⋃
Uk+i�η∞xs+i

{((ai)i≤n, an+1→· · · as+m→α) | ∃c1→· · ·→ck+m→α ≤ α
′ ∈ a j,

∀t ≤ k+m,∀β ∈ ct, (~a, β) ∈ ~Ut�
~xs+m

coind}

=
⋃
m

{(ai)i≤n, an+1→· · · as+m→α) | ∃c1→· · ·→ck+m→α ≤ α
′ ∈ a j,

∀t ≤ k,∀β ∈ ct, (~a, β) ∈
⋃

Ut�η∞Vt

~Ut�
~xs+m

coind

∀t ≤ m,∀β ∈ ck+t, (~a, β) ∈
⋃

Uk+t�η∞xn+t

~Ut�
~xs+m

coind}

=
⋃
m

{(ai)i≤n, an+1→· · · as+m→α) | ∃c1→· · ·→ck+m→α ≤ α
′ ∈ a j,

∀t ≤ k,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xs+m

∗

∀t ≤ m,∀β ∈ ck+t, (~a, β) ∈ ~xn+t�
~xs+m

∗ }

=
⋃
m

{(ai)i≤n, an+1→· · · as+m→α) | ∃c1→· · ·→ck+m→α ≤ α
′ ∈ a j,

∀t ≤ k,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xs+m

∗ }

This proves that if U �η∞ V then ~U�~xcoind ⊆ ~V�
~x
∗ ⊆ ~V�

~x
coind.

�

2.2.2. Hyperimmunity implies full abstraction

In this section we will prove the step (1)⇒ (2) of the main theorem (Th. 2.1.0.5). This will be
done using the quasi-approximation property to decompose the proof in two steps. Indeed, we
will see that in the presence of the approximation property, hyperimmunity implies the quasi-
approximation property that itself implies the full abstraction for H∗. Those two implications
will be proven separately in Theorems 2.2.2.8 and 2.2.2.10.
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Hyperimmunity and approximation imply quasi-approximation

Firstly, we are introducing the tree-hyperimmunity that is equivalent to hyperimmunity
(Lemma 2.2.2.2).

The reason to introduce this new formalism is quite simple. For the proof of Theorem 2.2.2.8,
we will have to contradict hyperimmunity starting from a term M that contradicts the quasi-
approximation.

Recall that refuting the hyperimmunity amounts to exhibiting an non-hyperimmune function
(i.e., bounded by a recursive function g) and a sequence (αi)i ∈ DN with a non well founded
chain bounded by g (see Definition 2.1.0.1).

The refutation of the quasi-approximation by M gives a recursive procedure that bounds the
non-hyperimmune function g. However, the procedure does generally not directly construct
the values of this function, but also performs a lot of useless computation; this is due to the
refuting term M not being optimal. Thus, we will simply construct an infinite tree and use
König lemma6 to find an infinite branch that contradicts the hyperimmunity.

Generalizing hyperimmunity from sequences to trees allows us to apply a well known theo-
rem of recursivity theory. This theorem states the equivalence between hyperimmune functions
and infinite paths in recursive N-labeled trees.7 That is why the hyperimmune function becomes
an infinite recursive N-labeled tree. The sequence (αi)i ∈ DN, similarly, becomes a partial (but
infinite) labeling of the recursive tree. The sequence has to be partial in order to select a specific
hyperimmune path.

Definition 2.2.2.1. Let D be a K-model.
A N-labeled tree T is a finitely branching tree where nodes are labeled by N, we denote by
T (µ) the N-label of µ.
A D-decoration of a N-labeled T is a partial function of infinite domain `D : T → D such
that for every couple of nodes ν and µ that are father and son in T , if µ ∈ dom(`D), then
ν ∈ dom(`D) and:

`D(ν) = a1→· · ·→aT (µ)→α ⇒ `D(µ) ∈ aT (µ).

D is tree-hyperimmune if any D-decoration of any T is non-recursive.

Lemma 2.2.2.2. A K-model D is tree-hyperimmune iff it is hyperimmune.

Proof. • We assume that there is a recursive g and a sequence (αn)n refuting the hyperimmunity.
We define the tree T given by the set of nodes {ω ∈ N∗ | ∀n ≤ |ω|, ωn ≤ g(n)} of finite sequences
bounded by g and ordered by prefix; the N-labeling is given by T (ε) = 0 and T (ω.n) = n. Then T
is recursive and we have `D partially defined by induction:

– `D(ε) = α0 is always defined,

– `D(ω.n) = α|ω.n| is defined if `D(ω) = α|ω| = a1→· · ·→an→α and α|ω.n| = α|ω|+1 ∈ an.

6König lemma states that any infinite tree that is finitely branching accepts an infinite branch/path.
7Trees with nodes indexed by natural numbers
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The decoration is infinite since, for all depth d, αd+1 ∈
⋃

n≤g(d) an for αd = a1→· · · ag(d)→α
′
d.

This contradicts the tree-hyperimmunity.

• If D is not tree-hyperimmune, then there is a finitely branching, N-labeled, and recursive tree T
and an infinite decoration `D. By König lemma, the sub-tree that constitute the domain of `D (that
is infinite and finitely branching) accepts an infinite branch (µn)n. If we denotes αn = `D(µn), we
have αn+1 ∈ aT (µn+1) for αn = a1→· · ·→aT (µn+1)→α

′. Since the sequence (T (µn+1))n is majored by
the maximal N-label on depth n+1 in T , that is recursive, we are contradicting the hyperimmunity.

�

Remark 2.2.2.3. In the following, internal nodes of a quasi-finite Böhm tree are denoted by X,Y... as
they are assimilated with the quasi-finite Böhm tree which root is the node at issue.

Definition 2.2.2.4. Let X be a quasi-finite Böhm tree that is recursive and close.
The play over X is a (non-necessarily finitely branching) tree T which nodes, denoted P(Y)
(or O(Y)) are uniquely determined by a letter P or O and a node Y over X.

• The nodes at even depth are called player nodes. They are denoted P(Y).

• The nodes at odd depth are called opponent nodes. They are denoted O(Y).

The tree is given by:

• the root is P(X),

• the opponent node O(λx1...xm.z Y1 · · · Yk) has k sons which are the P(Yi) for i ≤ k,

• the player node P(λx1...xm.z Y1 · · · Yk) has for sons every O(Z) for Z a node over Y1, ...,
or Yn which head variable is one of the x1, . . . , xm.

Proposition 2.2.2.5. Let X be a quasi-finite Böhm tree that is recursive and close and T the
play over X.
For every node Y of X, P(Y) is a node of T . For every node Y of X that is not an Ω, O(Y) is a
node of T .

Proof. By structural induction over the nodes Y of X:

• If Y is a node of X, then either Y = X and P(X) is the root of T , or Y has a father Y ′ in X.
In the last case, O(Y ′) is a node of T by IH and P(Y) is a son of O(Y ′).

• If Y ′ = λx1...xm.z Y1 · · · Yk is a node of X, then by closeness of X, there is a forebear
forbear of Y in X where z is abstracted (potentially Y = Y ′), i.e Y = λy1...ym′ .z′ Y ′1 · · · Y

′
k

with z = yi. By IH, P(Y) is a node of T and O(Y) is its son.

�
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Definition 2.2.2.6. Let X be a quasi-finite Böhm tree that is recursive and close.
The labeled play over X is the play over X together with the N-labeling ` defined as follow:

• the labeling of the root is `(P(X)) = 0,

• for any Y, P(Y) has for father O(λx1...xm.z Y1 · · · Yk) with Y one of the Yi, the N-label
of P(Y) is the corresponding index of application i,

• for any Y = λx1...xm.z Y1 · · · Yk, the father of O(Y) is P(Y ′) for Y ′ that is the forbear
of Y in X where z is abstracted (potentially Y ′ = Y), i.e Y ′ = λy1...ym′ .z′ Y ′1 · · · Y

′
k with

z = yi. The N-label of O(Y) is the corresponding index of abstraction i.

Proposition 2.2.2.7. For any quasi-finite X ∈ BTq f , the labeled play T over X is recursive
finitely branching and N-labeled.

Proof.

• The tree T is finitely branching: An opponent node P(λx1 . . . xn.z Yn · · · Yk) has exactly
k sons which are the O(Yi) for i ≤ k. A player node O(λx1 . . . xn.z Yn · · · Yk) has one
son for each occurrence of its abstracted variables, which result in a finite number by
quasi-finiteness of X.

• The tree T is recursive: by recursivity and quasi-finiteness of X.

�

Theorem 2.2.2.8 (Hyperimmunity and approximation imply quasi-approximation). Any
hyperimmune approximable K-model D is also quasi-approximable.

Proof. We will prove the contrapositive: We assume that D is approximable but not quasi-approximable,
then we show that D is not tree-hyperimmune (and thus not hyperimmune by Lemma 2.2.2.2).
Since D is not quasi-approximable, there is a λ-term M ∈ Λ such that
~M�~x , ~BT(M)�~xq f . We can assume that M is closed (otherwise we could have taken λx1...xm.M).

But the approximation property gives that ~M�~x = ~BT(M)�ind ⊂ ~BT(M)�q f . Thus there is α such that
α ∈ ~BT(M)�q f but α < ~BT(M)�ind.
By Definition 2.2.1.16 of ~.�q f , there is a Böhm tree X ⊆ BT(M) quasi-finite such that α ∈ ~X�coind.
Since X is quasi-finite (and in particular Ω-finite), its tree is recursive by Lemma 2.2.1.3. And since D
is approximable, for all finite Böhm tree Z ⊆ X, α < ~Z� = ~Z�coind; in particular X is infinite.
Let T be the labeled play over X.
It remains to partially (but infinitely) label the tree T with elements of D breaking the conditions of
tree-hyperimmunity.
We will give, inductively, two infinite sequences (Yn)n and (Zn)n of nodes of X, two infinite sequences
(αn)n and (βn)n of elements of D, and for all n ∈ N:

an
1, ..., a

n
#FV(Yn) ∈ A f (D)#FV(Yn) ln1, ..., l

n
#FV(Yn) ∈ N#FV(Yn) kn

1, ..., k
n
#FV(Yn) ∈ N#FV(Yn)
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such that there is (an
1...a

n
m, α

n) ∈ ~Yn�
~x
q f − ~Yn�

~x
in f and so that xi is the (ln1)th variable of Ykn ,

• Y0 = X and α0 = α.

• Yn , Ω by non emptiness of ~Yn�
~x
q f .

• If Yn = λxm+1...xm′ .xi X1 · · · Xk has x1...xm as free variables:
If we unfold αn = an

m+1→· · · a
n
m′→α

′ then there exist β = b1→· · · bk→α
′
0 ∈ an

i such that for all
j and all γ ∈ b j, we have (an

1...a
n
m′ , γ) ∈ ~X j�

~x
q f . In particular there is j ≤ k and γ ∈ b j such that

(an
1...a

n
m′ , γ) ∈ ~X j�

~x
q f − ~X j�

~x
ind. We have then

Zn = Yn βn = β

Yn+1 = X j ∀i, an+1
i = an

i αn+1 = γ

Remark that we have P(Ykn) that is the father of O(Zn) = (Zn, lni ) that, itself, is the father
of P(Yn+1) = (Yn+1, j) and that β ∈ an

i and αn+1 = γ ∈ b j.

As a result, we can D-label `D(P(Yn)) = αn and `D(O(Zn)) = βn. �

Quasi-approximation and extensionality imply full abstraction

Theorem 2.2.2.9 (Adequacy). Let D be a K-model respecting the quasi-approximation prop-
erty. Then it is inequationally adequate, i.e. for all M and N such that ~M�~x ⊆ ~N�~x,
M vH∗ N (c.f. Definition 1.2.1.4).

Proof. D is sensible (diverging terms have empty interpretations). Indeed, for any head-diverging term
M, BT(M) = Ω and thus

~M�~x = ~BT(M)�~xq f = ~Ω�~xq f = ∅.

We conclude by Lemma 1.2.1.10. �

Theorem 2.2.2.10 (Completion). Let D be a quasi-approximable extensional K-model. D is
inequationally complete, i.e. for all M and N such that M vH∗ N, there is ~M�~x ⊆ ~N�~x (c.f.
Definition 1.2.1.5).

Proof. Let (~a, α) ∈ ~M�~x.
By the quasi-approximation property, there is W ⊆ BTq f (M) such that (~a, α) ∈ ~W�~xcoind.
Using Proposition 1.2.2.12, there is U and V such that BT(M) �η∞ U ⊆ V �η∞ BT(N). By Lemma 2.2.1.6,
there is X,Y,Z ∈ BTq f such that:

BT(M) �η∞U ⊆ V �η∞ BT(N)

∈q f ∈q f ∈q f ∈q f

W �η∞X ⊆ Y �η∞ Z

Thus:

(~a, α) ∈ ~W�~xcoind = ~X�~xcoind Lemma 2.2.1.19

⊆ ~Y�~xcoind Lemma 2.2.1.20

= ~Z�~xcoind Lemma 2.2.1.19

⊆ ~N�~x quasi-approximation
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2.2.3. Full abstraction implies hyperimmunity

The counterexample

Suppose that D is approximable but not hyperimmune. By Definition 2.1.0.1 of hyperimmunity,
there exists a recursive g : (N→ N) and a sequence (αn)n≥0 ∈ DN such that

αn = an,1→· · ·→an,g(n)→α
′
n with αn+1 ∈

⋃
k≤g(n)

an,k.

We will use the function g to define a term Jg (Eq. 2.4) such that (Jg 0) is observation-
aly equal to the identity in Λ (Lemma 2.2.3.3) but can be denotationally distinguished in D
(Lemma 2.2.3.6). This allows to refute the full abstraction:

Theorem 2.2.3.1 (Full abstraction imply Hyperimmunity). If D is approximable but not
hyperimmune, then it is not fully abstract for the λ-calculus.

Basically, (Jg 0) is a generalization of the term J used in [CDCZ87] to prove that the model
D∗∞ (Ex. 1.2.4.9) is not fully abstract. The idea is that J is the infinite η-expansion of the
identity I where each level of the Böhm tree is η-expanded by one variable. Our term (Jg 0) is
also an infinite η-expansion of I, but now, each level of the Böhm tree is η-expanded by g(n)
variables.8

Let (Gn)n∈N be the sequence of closed λ-terms defined by:

Gn := λuex1...xg(n).e (u x1) · · · (u xg(n)) (2.2)

The recursivity of g implies the one of the sequence Gn. We can thus use Proposition 1.1.0.5:
there exists a λ-term G such that:

G n→∗ Gn. (2.3)

Recall that S denotes the Church successor function and Θ the Turing fixedpoint combinator.
We define:

Jg := Θ (λuv.G v (u (S v))). (2.4)

Then:

Jg n→∗ Gn (Jg n+1), (2.5)

which Böhm tree can be sketched as

8In the article [Bre13] of the same author, the reader may also find another counterexample based on the same
kind of intuitions.
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λex1...xg(0).e

λy1...yg(1).x1 · · · λy1...yg(1).xg(0)

λz1...zg(3).y1 · · · · · · · · · λz1...zg(2).yg(1)

· · · · · · · · · · · · · · ·

Lemma 2.2.3.3 proves that Jg 0 is operationally equivalent to the identity I. In fact it is an
infinite η-expansion of I. But first, we need the following auxiliary lemma.

Lemma 2.2.3.2. For any terms M,N∈Λ and any fresh z:

(M z �η∞ N z) ⇒ (M �η∞ N).

Proof. If M diverges then so does (M z), then (N z)⇑h and N⇑h, so that BT(M) = BT(N) = Ω.
Otherwise we have M →∗h λx1 . . . xn.y M1 · · ·Mk:

• If n = 0 then M z→∗h y M1 · · ·Mk z and N z→∗h y N1 · · ·Nk z with Mi �η∞ Ni, thus M �η∞ N.

• Otherwise, M z→∗h λx2 . . . xn.y[z/x1] M1[z/x1] · · ·Mk[z/x1]
and N z →∗h N′ �η λx2 . . . xn.y[z/x1] N1 · · ·Nk with Mi[z/x1] �η∞ Ni for all i. Thus, since
z is fresh, N →∗h λx1.N′[x1/z] �η λx2 . . . xn.y N1[x1/z] · · ·Nk[x1/z] and Mi �η∞ Ni[x1/z], so
M �η∞ N.

�

Lemma 2.2.3.3. We have Jg 0 ≡H∗ I.

Proof. We prove that (Jg n z) �η∞ z (where z is fresh) for every n, by co-induction and unfolding of
BT(Jg n z):

BT(Jg n z)

= BT(Gn (Jg n+1 z)) by (2.5)

= λ~xg(n).z BT(Jg n+1 x1) · · · BT(Jg n+1 xg(n)) by (2.2)

�η∞ λ~xg(n).z x1 · · · xg(n) by co-Ind

�η z

By applying Lemma 2.2.3.2, we know that (Jg n) �η∞ I and by Corollary 1.2.2.14 that Jg 0 ≡H∗ I. �

Denotational separation

In this section we show that Jg 0 and I are denotationally separated (Lemma 2.2.3.6), despite
being operationally equivalent.

Let Jn,k
g (z) ∈ BTf (Jg n z) be the truncation of BT(Jg n z) at depth k (in particular J0

g = Ω).
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Example 2.2.3.4. For example, the J5,3
g (z) is the Böhm tree:

λx1...xg(5).z

λy1...yg(6).x1 · · · λy1...yg(6).xg(5)

λz1...zg(7).y1 Ω · · ·Ω · · · · · · · · · λz1...zg(7).yg(6) Ω · · ·Ω

We recall that the sequence (αn)n≥0 is obtained from the refutation of the hyperimmunity and
verify αn = an,1→· · ·→an,g(n)→α

′
n with αn+1 ∈

⋃
k≤g(n) an,k.

Lemma 2.2.3.5. For all n and k, and for all a ∈ A f (D) such that αn ∈ a, we have

(a, αn) < ~Jn,k
g (z)�z

D.

Proof. By induction on k:

• If k = 0, then Jk
n = Ω and (approximation property) (a, αn) < ~Jn,k

g (z)�zD = ∅.

• For k + 1:
We first unfold αn = an

1→· · ·→an
g(n)→α

′
n.

Remark that Jk+1
n (z) = λex1...xg(n).e (Jk

n+1(x1)) · · · (Jk
n+1(xg(n))) and that for all i, xi is the only

free variable of Jk
n+1(xi).

Thus (a, αn) would be in ~Jn,k+1
g (z)�zD iff their where β = b1→· · ·→bg(n)→α

′
n ∈ a such that for

all i ≤ g(n) and for all γ ∈ bi, (an
i , γ) ∈ ~Jn+1,k

g (xi)�
xi
D. The refutation has two cases:

– For β = αn: there is i ≤ g(n) such that αn+1 ∈ bi = an
i , so that the induction hypothesis gives

(an
i , αn+1) < ~Jn+1,k

g (xi)�
xi
D.

– For β , αn, since a is an anti-chain and αn ∈ a, β 6≥ α. Thus there is i ≤ g(n) such that bi 6≤

an
i and, in particular, there is γ ∈ bi such that γ 6≤ δ for any δ ∈ an

i , thus (an
i , γ) < ~I xi�

xi .
Since (I xi) �η∞ (A n+1 xi), applying Lemma 2.2.1.13 gives that ~I xi�

xi ⊇ ~A n+1 xi�
xi ⊇

~Jk
n+1(xi)�.

�

Lemma 2.2.3.6. The term Jg n (for any n) and the identity are denotationally separated in
D:

~Jg n�D , ~I�D

Proof. Using the approximation property and extensionality, it is sufficient to prove that

{α0}→α0 <
⋃

k

~λz.Jn,k
g (z)�D =

⋃
U∈BTf (Jg n)

~U�D = ~Jg n�D,

which can be obtained by the application of Lemma 2.2.3.5. �

69



2.3. Syntactical proof using tests

In this section we will give a different proof (with respect to the proofs in Section 2.2) of the
Theorem 2.1.0.6. The main idea is similar to Section 2.2, we will again use a middle step
between our calculus and our models. However, this time the proxy will not be a kind of
syntactical model (the Böhm trees), but a kind of semantical calculus, more exactly a set of
calculi that we call λ-calculi with D-tests (Def. 2.3.1.1). Böhm trees were used since they were
“syntactical models” directly inspired by the calculus (here the λ-calculus); thus, taking the
opposite view, we will use “semantical calculi” that are directly inspired by the model (and that
are dependent on the K-model D).

Given a K-model D, the λ-calculus with D-tests, denoted Λτ(D), is an extension of the untyped
λ-calculus that can itself be interpreted in D (Def. 2.3.1.1):

Λ D

Λτ(D)

~.�
⊆ ~.�

The interest of Λτ(D) relies on the definition of sensibility for Λτ(D) (Def. 2.3.1.19), which
easily implies the full abstraction of D for Λτ(D) (Th. 2.3.1.20), even if not for the λ-calculus.
Therefore, it remains to understand when the observational equivalence is preserved from Λ

to Λτ(D):

Λ Λτ(D)

M M

N N

⊆

id

≡H∗ ≡τ(D)

id

As for the semantical approach, the proof splits in the two directions: inequational full ab-
straction implies hyperimmunity (Sec. 2.3.2 and Th. 2.3.2.4) and the non-full abstraction for
H∗ given a counterexample to hyperimmunity (Sec. 2.3.3 and Th. 2.3.3.5). However, the proofs
will rely on syntactical properties of Λτ(D) such as confluence (Th. 2.3.1.26) and standardization
(Th. 2.3.1.29).

2.3.1. λ-calculi with D-tests

Syntax

The original idea of using tests to recover full abstraction (via a theorem of definability) is
due to Bucciarelli et al. [BCEM11]. There we define variants of Bucciarelli et al.’s calculus
adapted to our framework.

Directly dependent on a given K-model D, the λ-calculus with D-tests Λτ(D) is, to some
extent, an internal calculus for D. In fact, we will see that, for D to be fully abstract for Λτ(D),
it is sufficient to be sensible (Th. 2.3.1.20).
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(term) Λτ(D) M,N ::= x | λx.M | M N |
∑

i≤n τ̄αi(Qi) ,∀(αi)i ∈ Dn, n ≥ 0

(test) Tτ(D) P,Q ::=
∑

i≤n Pi |
∏

i≤n Pi | τα(M) ,∀α ∈ D, n ≥ 0

Figure 2.2.: Grammar of the calculus with D-tests

The idea is to introduce tests as a new kind in the syntax. Tests Q ∈ Tτ(D) are sort of co-terms,
in the sense that their interpretations are maps from the context to the dualizing object of the
linear category ScottL (⊥ = {∗}):

~Q�x1...xn ∈ Dn ⇒ ⊥

The type ⊥ is the unit type, having only one value representing the convergence of the evalua-
tion, seen as a success. We will see in Remark 2.3.1.4 that in a polarized context, the behavior
of test does not correspond to co-term (or stack), but to command, i.e., to interactions between
usual terms and fictive co-terms extracted from the semantics.

The interaction between terms and tests is carried out by two groups of operations indexed
by the elements α ∈ D:

τα : Λτ(D) → Tτ(D) and τ̄α : Tτ(D) → Λτ(D).

The first operation, τα , will verify that its argument M ∈ Λτ(D) has the point α in its in-
terpretation. Intuitively, this is performed by recursively unfolding the Böhm tree of M and
succeeding (i.e., converges) when α is in the interpretation of the finite unfolded Böhm tree.
If α < ~M�, the test τα(M) will either diverge or refute (raising a 0 considered as an error).
Concretely, it is an infinite application that feeds its argument with empty τ̄ operators.

The second operator, τ̄α , simply raises a term of interpretation ↓α if its argument succeeds
and diverges otherwise. Concretely, it is an infinite abstraction that runs its test argument, but
also tests each of its applicants using τ operators.

In addition to these operators, we use sums and products as ways to introduce may (for the
addition) and must (for the multiplication) non-determinism; in the spirit of the λ+||-calculus
[DCdP98]. Indeed, these two forms of non-determinism are necessary to explore the branching
of Böhm trees.

The idea of these two operators is to use the parametricity of our terms toward theirs inter-
section types. As a result, τ̄α(ε) (further on denoted ε̄α), that transfers the always succeeding
test ε into a term of interpretation ↓α, constitutes the canonical term of type α; its behavior is
exactly the common behavior of every term of type α. Symmetrically, the test τα(M) will verify
whether M behaves like a term of type α.

Hereinafter, D denotes a fixed extensional K-model.

Definition 2.3.1.1. The λ-calculus with D-tests, for short Λτ(D) , is given by the grammar in
Figure 2.2.

We denote the empty sum by 0 , and the empty product by ε . Binary sums (resp. products)
can be written with infix notation, e.g. M+N (resp P·Q).

Moreover, we use the notation ε̄α := τ̄α(ε) and ε̄a :=
∑
α∈a ε̄α; which are terms.

Sums and products are considered as multisets, in particular we suppose associativity,
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commutativity and neutrality with, respectively, 0 and ε.
In the following, an abstraction can refer either to a λ-abstraction or to a sum of τ̄ opera-

tors. This notation is justified by the behavior of Σiτ̄αi(Qi) that mimics an infinite abstraction.
The operational semantics is given by three sets of rules in Figure 2.3. The main rules of

Figure 2.3a are the effective rewriting rules. The distributive rules of Figure 2.3b implement
the distribution of the sum over the test-operators and the product. The small step semantics
→ is the free contextual closure (i.e., by the rules of Figure 2.3d) of the rules of Figures 2.3a
and 2.3b. The contextual rules of Figure 2.3c implement the head reduction →h that is the
specific contextual extension we are considering.

Let us notice that this calculus enjoys the properties of confluence and standardization. These
theorems are proved in the end of this section (Th. 2.3.1.26 and 2.3.1.29).

Example 2.3.1.2. The operational behavior of D-tests depends on D. Recall the K-models of Exam-
ple 1.2.4.9. In the case of Scott’s D∞ we have in Λτ(D∞):

τ∗((λxy.x y) ε̄∗)
β
→h τ∗(λy.ε̄∗ y)

τ
→h τ∗(ε̄∗ ε̄∅)

τ̄
→h τ∗(ε̄∗) = τ∗(τ̄∗(ε))

ττ̄
→h ε,

τ∗((λxy.y x) ε̄∗)
β
→h τ∗(λy.y ε̄∗)

τ
→h τ∗(ε̄∅ ε̄∗)

= τ∗(0 ε̄∗)
τ̄
→h τ∗(0)

ττ̄
→h 0.

In the case of Park P∞:

τ∗(λx.xx)
τ
→h τ∗(ε̄∗ ε̄∗)

τ̄
→h τ∗(τ̄∗(τ∗(ε̄∗)))

ττ̄
→h

ττ̄
→h ε.

In the case of Norm:

τp(λx.x)
τ
→h τp(ε̄q)

ττ̄
→h ε, τq(λx.x)

τ
→h τq(ε̄ p)

ττ̄
→h 0.

Example 2.3.1.3. In any K-model D, given α = a1→· · ·→an+1→β ∈ D, and if we denote
α′ = a2→· · ·→an+1→β we have:

ε̄α M1 · · ·Mn+1
τ̄
→h τ̄α′(Πγ∈a1τγ(M1)) M2 · · ·Mn+1

τ̄
→n

h τ̄β(Πi≤n+1Πγ∈aiτγ(Mi))

Remark 2.3.1.4. In a polarized (or classical) framework with explicit co-terms (or stacks) such that
[MM09], tests would correspond to commands (or processes), or, more exactly, to conjunctions and
disjunctions of commands. Indeed, a test τα(M) is nothing else than the command 〈M | πα〉 where
πα would be the canonical co-term of interpretation ↑α, the same way that ε̄α is the canonical term of
interpretation ↓α. Similarly, the term τ̄(Q) can be seen as the canonical term ε̄α endowed with a parallel
composition referring to the set of commands Q. To resume, we have:

τα(M) ' 〈M | ↑α〉 〈ε̄α(Q) | π〉 ' 〈↓α | π〉·Q
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(β) (λx.M) N → M[N/x]

(τ) ∀β = a→α, τβ(λx.M) → τα(M[ε̄a/x])

(τ̄) ∀βi = ai→αi, (Σiτ̄βi(Qi)) M → Σiτ̄αi(Qi · Πγ∈aiτγ(M))

(ττ̄) ∀α,∀(βi)i, τα(Σiτ̄βi(Qi)) → Σ{i|α≤βi}Qi

(a) Main rules

(·+) Πi≤nΣ j≤ki Qi, j → Σ j1≤k1,..., jn≤knΠi≤nQi, ji

(τ̄+) τ̄α(ΣiQi) → Σiτ̄α(Qi)

(b) Distribution of the sum

M →h M′ (H-cλ)
λx.M →h λx.M′

M →h M′ M is not an abstraction (H-c@)
M N →h M′ N

M →h M′ M is not an abstraction (H-cτ)
τα(M)→h τα(M′)

Q→h Q′ Q is not a sum
(H-cτ̄)

τ̄α(Q)→h τ̄α(Q′)

M →h M′ (H-cs)
M + N →h M′ + N

Q→h Q′
(H-c+)

Q + P→h Q′ + P
Q→h Q′ Q is not a sum

(H-c·)
Q·P→h Q′·P

(c) Contextual rules for the head reduction

M → M′ (cλ)
λx.M → λx.M′

M → M′ (c@L)
M N → M′ N

N → N′ (c@R)
M N → M′ N

M → M′ (cτ)
τα(M)→ τα(M′)

Q→ Q′
(cτ̄)

τ̄α(Q)→ τ̄α(Q′)

M → M′ (cs)
M + N → M′ + N

Q→ Q′
(c+)

Q + P→ Q′ + P
Q→ Q′

(c·)
Q·P→ Q′·P

(d) Contextual rules for the full reduction

Figure 2.3.: Operational semantics of the calculus with D-tests
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Remark 2.3.1.5. In the conference version [Bre14], the rule (ττ̄) is decomposed in three rules (the
distribution of the sum over τ, denoted (τ+) and two versions of (ττ̄) depending whether α ≤ β). This
decomposition was easier to understand as more atomic, but ultimately it always reproduced our actual
rule (ττ̄) and did not permit to use Theorem 2.3.1.32.

Proposition 2.3.1.6. A test is in head-normal form iff it has the following shape:

Σi≤kΠ jταi, j(xi, j M1
i, j · · · Mn

i, j),

with k ≥ 1 and Mk
i, j any term.

A term is in head-normal form if it has one of the following shapes:

λx1....xn.y M1 · · · Mm, or λx1...xn.Σi≤kτ̄αi(Qi),

with m, n ≥ 0, k ≥ 1, (αi)i ∈ Dk, Mi any term, and every Qi any test in head-normal form
without sums.

Proof. By structural induction on the grammar of Λτ(D). In particular, notice that any test of the shape
τα(λx.M) is not a head-normal form because iD is surjective and thus α = a→β for some a, β and we
can apply Rule (τ) �

Definition 2.3.1.7. A term (resp. test) is head-converging if it head reduces to a may-head-
normal form (denoted mhnf ) that is either a head-normal form or a term (resp. test) of the
form

λx1...xn.(τ̄α(Q) + N) resp. Q1 + Q2

with τ̄α(Q) (resp. Q1) in head-normal form and N any term (resp. Q2 any test). This cor-
responds to a may-convergence for the sum. Coherently with the head convergence in λ-
calculus, the convergence will be denoted by ⇓h and the divergence by ⇑h .

Example 2.3.1.8. For any n ∈ N, the term n (λx.τ̄α(τα(x)+τβ(x))) ε̄α may head converges.

Remark 2.3.1.9. Following Proposition A.2.1.34, we can coinductively prove the divergence of a term
by constructing a tree of head reductions, with must and may nodes (corresponding to the reductions
under sums and under products).

Definition 2.3.1.10. Grammars of term-contexts Λ
(|·|)
τ(D) and test-contexts T(|·|)

τ(D) are given in
Figure 2.4.

Definition 2.3.1.11. The observational preorder vτ(D) of Λτ(D) is defined by:

M vτ(D) N iff (∀K∈T(|·|)
τ(D), K(|M|)⇓h implies K(|N|)⇓h).
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(term-context) Λ
(|·|)
τ(D) C ::= x | (|.|) | C C′ | λx.C |

∑
i≤n τ̄αi(Ki) ,∀(αi)i ∈ Dn, n ≥ 0

(test-context) T(|·|)
τ(D) K ::=

∑
i≤n Ki |

∏
i≤n Ki | τα(C) ,∀α ∈ D, n ≥ 0

Figure 2.4.: Grammar of the contexts in a calculus with D-tests

~xi�
~x
D = {(~a, α) | α ≤ β ∈ ai}

~M N�~xD = {(~a, α) | ∃b, (~a, (b→α)) ∈ ~M�~xD ∧ ∀β∈b, (~a, β) ∈ ~N�~xD}

~λy.M�~xD = {(~a, (b→α)) | (~ab, α) ∈ ~M�~xy
D }

(a) Interpretation of Λ

~Σi≤kτ̄αi(Qi)�~xD =
⋃

i≤k{(~a, β) | ~a ∈ ~Qi�
~x
D ∧ β ≤D αi}

~τα(M)�~xD = {~a | (~a, α) ∈ ~M�~xD}

~Πi≤kQi�
~x
D =

⋂
i≤k~Qi�

~x
D ~Σi≤kQi�

~x
D =

⋃
i≤k~Qi�

~x
D

(b) Interpretation of tests extensions

Figure 2.5.: Direct interpretation in D

We denote by ≡τ(D) the observational equivalence, i.e., the equivalence induced by vτ(D).

Remark 2.3.1.12. The observational preorder could have been defined using term-contexts rather
than test-contexts, but this appears to be equivalent and test-contexts are easier to manipulate (because
normal forms for tests are simpler).
Proof. For any test Q and for any α, Q⇓h iff τ̄α(Q)⇓h. Conversely, for all M, there is n ∈ N and α ∈ D
such M⇓h iff τα(Mx0· · ·

n
x0)⇓h (remark that if N diverges, then τα(N x0· · ·x0︸  ︷︷  ︸

n times

)⇑h). �

Semantics

The standard interpretation of Λ into D (Fig. 1.2 and recalled here in Figure 2.5) can be ex-
tended to Λτ(D) (Fig. 2.5b).

Definition 2.3.1.13. A term M with n free variables is interpreted as a morphism (Scott-
continuous function) from Dn to D and a test Q with n free variables as a morphism from Dn

to the dualizing object {∗} (singleton poset):

~M�x1,...,xn
D ⊆ (D⇒· · · ⇒ D⇒ D) ' (A f (D)op)n × D

~Q�x1,...,xn
D ⊆ (D⇒· · · ⇒ D⇒ {∗}) ' (A f (D)op)n

This interpretation is given in Figure 2.5 by structural induction.

Proposition 2.3.1.14. For any extensional K-model D, D is a model of the λ-calculus with
D-tests, i.e., the interpretation is invariant under the reduction.
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α ∈ a
x : a ` x : α

Γ ` M : α
Γ, x : a ` M : α

Γ ` M : β α ≤ β

Γ ` M : α

Γ, x : a ` M : α
Γ ` λx.M : a→α

Γ ` M : a→α ∀β ∈ a, Γ ` N : β
Γ ` M N : α

∃i ≤ n, Γ ` Qi

Γ ` Σi≤nτ̄αi(Qi) : αi

Γ ` M : α
Γ ` τα(M)

∃i ≤ n, Γ ` Qi

Γ ` Σi≤nQi

∀i ≤ n, Γ ` Qi

Γ ` Πi≤nQi

Figure 2.6.: Intersection type system associated with tests extensions

Proof. The invariance under β-reduction is obtained, as usual, by the Cartesian closeness of ScottL!.
The other rules are easy to check directly. �

Proposition 2.3.1.15. For any extensional K-model D, the interpretation is invariant by con-
text, i.e., ~M�~x = ~N�~x implies that for any test/term-context C, ~C(|M|)�~y = ~C(|N |)�~y.

Proof. By easy induction on C. �

The idea of intersection types can be generalized to Λτ(D). We introduce in Figure 2.6 a type
assignment system associating with any term M ∈ Λτ(D) an element of D under an environ-
ment (xi : ai)i with ai ∈ A f (D). The following theorem gives the equivalence between the
interpretation of a term and the set of judgments derivable from the type system.

Theorem 2.3.1.16 (Intersection types). Let M be a term of Λτ(D), (resp. Q be a test of Tτ(D)),
the following statements are equivalent:

• (~a, α) ∈ ~M�~xD (resp. ~a ∈ ~Q�~xD),

• the type judgment ~x : ~a ` M : α (resp. ~x : ~a ` Q) is derivable by the rules of Figure 2.6.

Proof. By structural induction on the grammar of Λτ(D). �

Remark 2.3.1.17. In particular, an easy induction gives that if ` M[N/x] : α then there is a such that
N : a ` M : α.

Remark 2.3.1.18. For more intuitions on tests, the reader is invited to look at Section 2.4.1, giving
some analogies between tests and Böhm trees.

Full abstraction and sensibility for tests

The main theorem (Th. 2.1.0.6) uses the assumption of the sensibility of D for Λτ(D). The
sensibility is simply asking for the diverging terms M ∈ Λτ(D) to have empty interpretation as
precised in Definition 2.3.1.19. Its interest is in implying directly the inequational full abstrac-
tion of D for Λτ(D) (i.e. for its observational preorder) as we will see in Theorem 2.3.1.20.
The proof of Theorem 2.3.1.20 needs a technical counterpart that is basically the definability
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of Λτ(D) stated in Theorem 2.3.1.21. This definability theorem is not usual and appears to be
stronger and more useful for future developments.

First we recall the definition of sensibility specified in the case of K-models (following Def-
inition 1.2.1.7)

Definition 2.3.1.19. An extensional K-model D is sensible for Λτ(D) whenever diverging terms
(resp. tests) correspond exactly to the terms (resp. tests) having empty interpretation, i.e., for
all M ∈ Λτ(D) and Q ∈ Tτ(D):

M⇑h ⇔ ~M�~xD = ∅ Q⇑h ⇔ ~Q�~xD = ∅

Theorem 2.3.1.20 (full abstraction). For any extensional K-model D, if D is sensible for
Λτ(D), then D is inequationally fully abstract for the observational preorder of Λτ(D):

~M� ⊆ ~N� ⇔ ∀K ∈ T(|·|)
τ(D),K(|M|)⇓h ⇒ K(|N|)⇓h.

Proof. The left-to-right implication is the inequational adequation given by Lemma 1.2.1.10.
Conversely, if ∀K ∈ T(|·|)

τ(D),K(|M|)⇓h ⇒ K(|N |)⇓h and if (~a, α) ∈ ~M�~x:
Then by Theorem 2.3.1.21, τα(M[(ε̄ai/xi)i≤n])⇓h. Thus, stating K = τα((λx...xn.(|.|)) ε̄a1 · · · ε̄an), we have
K(|M|) →n

h τα(M[(ε̄ai/xi)i≤n])⇓h which implies that K(|N |)⇓h. However, the only n first head-reductions
of K(|N |) are forced into K(|N |) →∗h τα(N[(ε̄ai/xi)i≤n]) so that this term is converging. Then by applying
the reverse implication of Theorem 2.3.1.21 we conclude (~a, α) ∈ ~N�~x. �

Theorem 2.3.1.21 (Definability). If D is sensible for Λτ(D) then:

(~a, α) ∈ ~M�~x ⇔ τα(M[(ε̄ai/xi)i≤n])⇓h.

Proof. If (~a, α) ∈ ~M�~x then ~τα(M[(ε̄ai/xi)i≤n])� is not empty by Lemma 2.3.1.22, thus it converges by
sensibility. If τα(M[(ε̄ai/xi)i≤n])⇓h then its interpretation is non empty, and necessarily ∗ ∈ ~τα(M[(ε̄ai/xi)i≤n])�
(where ∗ denotes the only inhabitant of ⊥) and thus, by Lemma 2.3.1.22, (~a, α) ∈ ~M�~x. �

This proof make use of the following lemma that splits the problem in two.

Lemma 2.3.1.22. If D is sensible for Λτ(D) then:

(~ab, α) ∈ ~M�~yx ⇔ (~a, α) ∈ ~M[ε̄b/x]�~y,

(~a, α) ∈ ~M�~y ⇔ ~a ∈ ~τα(M)�~y.

Proof. For this proof we use the intersection type system of Figure 2.6. This replaces the statement by:

Γ, x : a ` M : α ⇔ Γ ` M[ε̄a/x] : α

Γ ` M : α ⇔ Γ ` τα(M)
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• Γ, x : a ` M : α ⇒ Γ ` M[ε̄a/x] : α:
and Γ, x : a ` Q ⇒ Γ ` Q[ε̄a/x]:
By structural induction on M and Q:

– If M = x: then α ≤ β ∈ a and by definition Γ ` ε̄a : α.

– If M = y , x: trivial.

– If M = λy.N: then α = b→β and Γ, y : b, x : a ` N : β thus by IH, Γ, y : b ` N[ε̄a/x] : β and
thus Γ ` M[ε̄a/x] : α.

– If M = N1 N2: then there exists b such that Γ, x : a ` N1 : b→α and for all β ∈ b,
Γ, x : a ` N2 : β. Thus by IH, Γ ` N1[ε̄a/x] : b→α and for all β ∈ b, Γ ` N2[ε̄a/x] : β and
thus Γ ` M[ε̄a/x] : α.

– If M = Σiτ̄αi(Qi): then there exists i such that α = αi and Γ, x : a ` Qi. Thus by IH,
Γ ` Qi[ε̄a/x] and thus Γ ` M[ε̄a/x] : α.

– If Q = ΣiQi: then there exists i such that Γ, x : a ` Qi. Thus by IH, Γ ` Qi[ε̄a/x] and thus
Γ ` Q[ε̄a/x].

– If Q = ΠiQi: then for all i, Γ, x : a ` Qi. Thus by IH, for all i, Γ ` Qi[ε̄a/x] and thus
Γ ` Q[ε̄a/x].

– If Q = τβ(M): then Γ, x : a ` M : β. Thus by IH, Γ ` M[ε̄a/x] : β and thus Γ ` Q[ε̄a/x].

• Γ, x : a ` M : α ⇔ Γ ` M[ε̄a/x] : α, and Γ, x : a ` Q ⇔ Γ ` Q[ε̄a/x]:
By structural induction on M and Q:

– If M = x then Γ ` ε̄a : α and by definition Γ, x : a ` x : α, i.e, Γ, x : a ` M : α

– If M = y , x: trivial.

– If M = λy.N: then α = iD(b→β) and Γ, y : b ` N[ε̄a/x] : β thus by IH, Γ, y : b, x : a ` N : β
and thus Γ, x : a ` M : α.

– If M = N1 N2: then there exists b such that Γ ` N1[ε̄a/x] : b→α and for all β ∈ b,
Γ ` N2[ε̄a/x] : β. Thus by IH, Γ, x : a ` N1 : b→α and for all β ∈ b, Γ, x : a ` N2 : β and
thus Γ, x : a ` M : α.

– If M = Σiτ̄αi(Qi): then there exists i such that α = αi and Γ ` Qi[ε̄a/x]. Thus by IH,
Γ, x : a ` Qi and thus Γ, x : a ` M : α.

– If Q = ΣiQi: then there exists i such that Γ ` Qi[ε̄a/x]. Thus by IH, Γ, x : a ` Qi and thus
Γ, x : a ` Q.

– If Q = ΠiQi: then for all i, Γ ` Qi[ε̄a/x]. Thus by IH, for all i, Γ, x : a ` Qi and thus
Γ, x : a ` Q.

– If Q = τβ(M): then Γ ` M[ε̄a/x] : β. Thus by IH, Γ, x : a ` M : β and thus Γ, x : a ` Q.

• Γ ` τα(M) ⇔ Γ ` M : α: by definition of the inference rule for τα

�

Confluence

This section is dedicated to the proof of Theorem 2.3.1.26 stating the confluence of the re-
duction → in Λτ(D). The proof is using the diamond property of the full parallel reduction,
following the proof of [Tai67] for the λ-calculus.
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M ⇒ M′ N ⇒ N′ (P-β)
(λx.M) N ⇒ M′[N′/x]

M ⇒ M′ (P-τ)
τa→α(λx.M)⇒ τα(M′[ε̄a/x])

M ⇒ M′ ∀i, Qi ⇒ Σ jQ′i j (P-τ̄)
Σiτ̄ai→αi(Qi) M ⇒ Σi jτ̄αi(Q

′
i j · Πγ∈aiτγ(M′))

∀i,Qi ⇒ Q′i (P-ττ̄)
τα(Σiτ̄βi(Qi))⇒ Σ{i|α≤βi}Q

′
i

(a) Main rules
∀i, Qi ⇒ Q′i (P-τ̄+)

τ̄α(ΣiQi)⇒ Σiτ̄α(Q′i)

∀i j, Qi j ⇒ Q′i j (P-·+)
Πi≤nΣ j≤ki Qi j ⇒ Σ j1≤k1,...,kn≤knΠi≤nQ′i ji

(b) Distribution of the sum

(P-id)x⇒ x
M ⇒ M′ (P-cλ)

λx.M ⇒ λx.M′
M ⇒ M′ N ⇒ N′ (P-c@)

M N ⇒ M′ N′

M ⇒ M′ (P-cτ)
τα(M)⇒ τα(M′)

∀i, Mi ⇒ M′i (P-cs)
ΣiMi ⇒ ΣiM′i

(c) Contextual rules

Figure 2.7.: Operational Semantics of parallel reduction

We define first the parallel reduction ⇒ in Figure 2.7, allowing the parallel reduction of
independent redexes.

Lemma 2.3.1.23. If M ⇒ N then M →∗ N and if M →∗ N then M ⇒∗ N.
In particular we have⇒∗=→∗.

Proof. Firstly remark that⇒ is reflexive. Indeed, when we proceed by induction the only difficult case
is ε ⇒ ε that is obtained by rule P-·+ for n = 0.
Rules with similar names are then simulating each other except for

• (c@L) and (c@R) that are simulated by (P-c@).

• (P-id) that is simulated by→ε (the reduction in 0 step).

• (c+) that is a particular case of (P-·+) with n = 1 and k1 = 2.

• (c·) that is a particular case of (P-·+) with n = 2 and k1 = k2 = 1.

• (cτ̄) that is a particular case of (P-τ̄+) where the sum has one element.

�

For a term M (resp. a test Q) we define the maximal parallel reduct M+ (resp. Q+ ) by induc-
tion on M and Q in Figure 2.8. Recall that by abstractions, we not only mean λ-abstractions,
but also terms of the form Σiτ̄αi(Qi).
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(T -β)
((λx.M) N)+ := M+[N+/x]

∀i, Q+
i = Σ jQ′i j ∀ j, Q′i, j are not sums

(T -τ̄)
((Σiτ̄ai→αi(Qi)) M)+ := Σi jτ̄αi(Q

′
i j · Πγ∈aiτγ(M+))

(T -τ)
τa→α(λx.M)+ := τα(M+[ε̄a/x])

∀i ∈ I, α ≤E βi ∀i ∈ J, α 6≤E βi (T -ττ̄)
τα(Σi∈I∪J τ̄βi(Qi))+ := Σi∈IQ+

i

(a) Main rules

∀i, Qi are not sums
(T -τ̄+)

τ̄α(ΣiQi)+ := Σiτ̄α(Q+
i )

n , 1 or k1 , 1 the Qi j are not sums
(T -·+)

(Πi≤nΣ j≤ki Qi j)+ := Σ j1≤k1,...,kn≤knΠi≤nQ+
i ji

(b) Distribution of the sum

(T -id)
x+ := x

(T -cλ)
(λx.M)+ ⇒ λx.M+

M is not an abstraction (T -c@)
(M N)+ := M+ N+

M is not an abstraction (T -cτ)
τα(M) := τα(M+)

k , 1 (T -cs)
(Σi≤kMi)+ := Σi≤kM+

i

(c) Contextual rules

Figure 2.8.: Full parallel reduction

Lemma 2.3.1.24. For any M (resp. Q), M+ (resp. Q+) is well defined.

Proof. By induction, since it is always the case that exactly one rule is applied. �

Lemma 2.3.1.25. If M ⇒ N (resp. Q⇒ P) then N ⇒ M+ (resp. P⇒ Q+).

Proof. By induction on M:

• If M = x:
Then N = x⇒ x = M+.

• If M = λx.M′:
Then N = λx.N′ for some N′ such that M′ ⇒ N′.
By IH, N′ ⇒ M′+ and thus N ⇒ λx.M′+ = M+.

• If M = M1 M2:

– If M1 is not an abstraction:
Then N = N1 N2 with M1 ⇒ N1 and M2 ⇒ N2.
By IH, N1 ⇒ M+

1 and N2 ⇒ M+
2 , thus N ⇒ M+

1 M+
2 = M+.

– If M1 = λx.M0:

∗ Either N = (λx.N0) N2 with Mi ⇒ Ni (for i ∈ {0, 2}).
By IH, Ni ⇒ M+

i and N ⇒ M+
0 [M+

2 /x] = M+.

∗ Or N = N1[N2/x] with Mi ⇒ Ni (for i ∈ {0, 2}).
By IH, Ni ⇒ M+

i and N ⇒ M+
0 [M+

2 /x] = M+.

– If M1 = Σi∈I τ̄ai→αi(Qi):
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∗ Either N = (Σi, jτ̄a→αi(Pi, j)) N2 with M2 ⇒ N2 and Qi = ΣiP′i, j and P′i, j ⇒ Pi, j .
By IH, N2 ⇒ M+

2 and, moreover,
Pi, j ⇒ Q+

i, j = ΣkQ′i, j,k where Q′i, j,k that are not sums.
Thus N ⇒ Σi, j,kτ̄αi(Q

′
i, j,k·Πγ∈aiτγ(M+

2 )) = M+.

∗ Or N = Σi, jτ̄αi(Pi, j·Πγ∈aiτγ(N2)) with M2 ⇒ N2 and Qi ⇒ Σ jPi, j.
By IH, N2 ⇒ M+

2 and, moreover,
Σ jPi, j ⇒ Q+

i = Σ j,kQ′i, j,k where Q′i, j,k that are not sums and Pi, j ⇒ ΣkQ′i, j,k.
Thus N ⇒ Σi, j,kτ̄αi(Q

′
i, j,k·Πγ∈aiτγ(M+

2 )) = M+.

• If Q = τα(M):

– If M is not an abstraction:
Then P = τα(N) for some N such that M ⇒ N.
By IH, N ⇒ M+ and thus P⇒ λx.M+ = Q+.

– If α = a→α and M = λx.M′:

∗ Either P = τa→α(λx.N) with M ⇒ N.
By IH, N ⇒ M′+ and P⇒ τα(M′+[ε̄a/x]) = Q+.

∗ Or P = τα(N[ε̄a/x]) with M′ ⇒ N.
By IH, N ⇒ M′+ and P⇒ τα(M′+[ε̄a/x]) = Q+.

– If M = Σiτ̄βi(Qi):

∗ Either N = τα(Σi, jτ̄βi(P
′
i, j)) with Qi = Σ jPi, j and Pi, j ⇒ P′i, j.

By IH, P′i, j ⇒ P+
i, j. Thus, N ⇒ Σ{i|α≤βi}Σ jP+

i, j = Σ{i|α≤βi}Q
+
i = Q+.

∗ Or N = Σ{i|α≤βi}Q
′
i with Qi ⇒ Q′i .

By IH, Q′i ⇒ Q+
i . Thus, N ⇒ Σi|α≤βi Q

+
i = Q+.

• If M = ΣiMi:
Then N = ΣiNi with Mi ⇒ Ni.
By IH, Ni ⇒ M+

i and N ⇒ ΣiM+
i = M+.

• If M = τ̄α(ΣiQi) where none of the Qi are sums:
Then we can only apply rules (P-τ̄+) and (P-·+). Thus there are J and a surjective function
φ : I → J such that N = Σ j∈J τ̄α(Σi∈φ−1( j)Pi) and Qi ⇒ Pi.
By IH, Pi ⇒ Q+

i and N ⇒ Σi∈I τ̄α(Q+
i ) = M+.

• If Q = Πi≤nΣ j≤ki Qi j where none of the Qi j are sums and where either n , 1 or one of the ki , 1 :
Then there are, for all i ≤ n, Ji and φi : ~1, ki� → Ji such that P = Σ(ti)i∈(Ji)iΠi ln nΣ j|φ( j)=ti Pi j with
Qi j ⇒ Pi j.
By IH, Pi j ⇒ Q+

i j and P⇒ Σ j1≤k1... jn≤knΠi≤nQ+
i ji

= Q+.

�

Theorem 2.3.1.26 (Confluence). The calculus Λτ(E) with the reduction→ is confluent

M →∗ M2

→
∗

 

→
∗

M1 →
∗ M+
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M →∗h x
(S -x)

M ⇒st x
M →∗h M1 M2 M1 ⇒st N1 M2 ⇒st N2

(S -@)
M ⇒st N1 N2

M →∗h λx.M0 M0 ⇒st N0
(S -λ)

M ⇒st λx.N0

M →∗h Σiτ̄αi(Pi) ∀i, Pi ⇒st Qi
(S -τ̄)

M ⇒st Σiτ̄αi(Qi)

P→∗h ΣiPi ∀i, Pi ⇒st Qi
(S -+)

P⇒st ΣiQi

P→∗h ΠiPi ∀i, Pi ⇒st Qi
(S -·)

P⇒st ΠiQi

P→∗h τα(M) M ⇒st N
(S -τ)

P⇒st τα(N)

Figure 2.9.: Definition of the standard reduction

Proof. By Lemma 2.3.1.25, ⇒ is strongly confluent, i.e., for any M1 ⇐ M ⇒ M2, we have M1 ⇒

M+ ⇐ M2. By chasing diagrams, we obtain the confluence of⇒ and we conclude by Lemma 2.3.1.23
that state that⇒∗=→∗. �

Standardization theorem

This section is dedicated to the proof of Theorem 2.3.1.29 that state a version of the standard-
ization theorem of Λτ(D). The proof is directly inspired from Kashima’s proof [Kas01].

Definition 2.3.1.27. The standard reduction, denoted by⇒st is defined in Figure 2.9.

Proposition 2.3.1.28. We have the following inclusions:

• ⇒st ⊆ →
∗,

• id ⊆⇒st

• →∗h ⊆ ⇒st,

• ⇒st ⊆ →
∗
h→

∗
6h where→∗

6h is the reflexive transitive closure of→ 6h=→ − →6h.

Proof. • The inclusion ⇒st ⊆ →
∗ is obtain by easy induction (using each time the transitivity

on →∗h⊆→
∗ and on the corresponding contextual rule of Figure 2.3d applied on the inductive

hypothesis).

• The inclusion id ⊆⇒st derives from an easy induction using id ⊆→∗h.

• The inclusion→∗h ⊆ ⇒st is obtained from a case analysis and the inclusion id ⊆⇒st.

• Let M,N ∈ Λτ(D) (rep. P,Q ∈ Tτ(D)) such that M ⇒st N (resp. P ⇒st Q), we will show that
M →∗h→

∗
6h N (resp. P→∗h→

∗
6h Q) by induction on N (rep. Q):

– If N = x with M →∗h x: trivial.
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– If N = λx.N0, then M →∗h λx.M0 and M0 ⇒st N0. By IH M0 →
∗
h→
∗
6h N0 so that Rule (H-cλ)

gives M →∗h λx.M0 →
∗
h→
∗
6h λx.N0.

– If N = N1 N2, then M →∗h M1 M2, M1 ⇒st N1 and M2 ⇒st N2. By IH M1 →
∗
h M′1 →

∗
6h N1

for some M′1 ∈ Λτ(D).

∗ If M′1 is not an abstraction, then there is no abstraction in the sequence M1 →h · · · →h

M′1 and by Rule (H-c@), M →∗h M1 M2 →
∗
h M′1 M2 →

∗
6h N1 M2.

∗ Otherwise, there is a first abstraction M′′1 such that M1 →
∗
h M′′1 →

∗ M′1 with no
abstraction in the sequence M1 →h · · · →h M′′1 .
In this case, by Rule (H-c@), M →∗h M1 M2 →

∗
h M′′1 M2 →

∗
6h M′1 M2 →

∗
6h

N1 M2 →
∗
6h

N1 N2.

– If Q = τα(N), then the argument is similar:
There is M such that P→∗h τα(M) and M ⇒st N. By IH, there is M′ such that M →∗h M′ →∗

6h
N. Either M′ is not an abstraction and since there is no abstraction among the sequence
M →h · · · →h M′, we have, by Rule (H-cτ), that P →h τα(M) →∗h τα(M′) →∗

6h τα(N).
Otherwise there is a first abstraction M′′ in the sequence M →h · →h M′′ →h · · · →h M′,
and we have, by Rule (H-cτ), that P→h τα(M)→∗h τα(M′′)→∗

6h τα(N).

– If N = Σiτ̄αi(Qi), there are (Pi)i such that M →∗h Σiτ̄αi(Pi) and Pi ⇒st Qi for all i. By IH,
for all i, Pi →

∗
h P′i →

∗
6h Qi for some P′i ∈ Λτ(D). For all i, if P′i is not a sum (with n , 1

arguments) we set P′′i = P′i , otherwise there is a first sum P′′i such that Pi →
∗
h P′′i →

∗
h P′i .

Then, using Rule (H-cτ̄) we have, for all i, τ̄αi(Pi)→∗h τ̄αi(P
′′
i )→∗

6h τ̄αi(Qi).
Thus, using Rule (H-cs), we have M →∗h Σiτ̄αi(Pi)→∗h Σiτ̄αi(P

′′
i )→∗

6h Σiτ̄αi(Qi).

– If Q = Πi(Qi) then the argument is similar:
There are (Pi)i such that P→∗h ΠiPi and Pi ⇒st Qi for all i. By IH, for all i, Pi →

∗
h P′i →

∗
6h Qi

for some P′i ∈ Λτ(D). For all i, if P′i is not a sum (with n , 1 arguments) we set P′′i = P′i ,
otherwise there is a first sum P′′i such that Pi →

∗
h P′′i →

∗
h P′i .

Then, using Rule (H-c·), we have P→∗h ΠiPi →
∗
h ΣiP′′i →

∗
6h ΣiQi.

– If Q = Σi(Qi), there are (Pi)i such that P →∗h ΣiPi and Pi ⇒st Qi for all i. By IH, for all i,
Pi →

∗
h P′i →

∗
6h Qi and, by Rule (H-·), ΣiPi →

∗
h ΣiP′i →

∗
6h ΣiQi.

�

Theorem 2.3.1.29 (Standardization). For any reduction M →∗ N (resp. P →∗ Q), there is
a standard reduction M ⇒st N (resp. P ⇒st Q). In particular, any term M (resp. test Q)
head converges iff it reduces to a may head-normal form:

M⇓h ⇔ ∃N ∈ mhn f ,M →∗ N′ P⇓h ⇔ ∃Q ∈ mhn f , P→∗ Q′.

Proof. By applying successively Lemma 2.3.1.31. �

Lemma 2.3.1.30. 1. If P →∗h Σ j≤kQ j, then there is (P j) j≤k such that τ̄α(P) →∗h Σ j≤kτ̄α(P j)
with P j →

∗
h Q j for all j ≤ k.

2. Similarly, if Pi →
∗
h Σ j≤ki Qi j, then there is (Pi j)i, j such that ΠiPi →

∗
h Σ( ji)iΠiPi, j with

P j →
∗
h Q j for all j ≤ k.
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3. Similarly, if M →∗h Σ j≤kτ̄β j(Q j), then there is (P j) j≤k such that τα(M)→∗h Σ{ j|β j≥α}P j with
P j →

∗
h Q j for all j ≤ k.

Proof. The proof follow the exact same pattern for each cases.

1. By induction on the lexicographicaly ordered (n, P) where n is the length P→n
h Σ j≤kQ j:

• If n = 0 then this is Rule (τ̄+).

• If P = Σi≤k′P′i for k′ , 1, there is a surjective φ : [1, k]→ [1, k′] such that P′i →
ni
h Σ j∈φ−1(i)Q j

with n = Σini. By IH on each P′i , there is (P j) j such that, for all i, τ̄α(Pi)→∗h Σ j∈φ−1(i)τ̄α(P j)

with P j →
∗
h Q j. Thus τ̄α(P)

τ̄+
−→hΣi≤k′ τ̄α(Pi)→∗h Σi≤k′Σ j∈φ−1(i)τ̄α(P j).

• Otherwise, we can decompose the reduction by P →h P′ →n−1
h Σ j≤kQ j. Since P is not a

sum we can apply the rule H-cτ̄ so that τ̄α(P) →h τ̄α(P′) and we conclude since by IH,
τ̄α(P′)→∗h Σ j≤kτ̄α(P j).

2. We will prove the following simplest statement that trivially imply the main one:

If P→∗h Σ j≤kQ j, then there is (P j) such that Q·P→∗h Σ j(Q·Q j).

We proceed by induction on the lexicographicaly ordered (n, P) where n is the length P →n
h

Σ j≤kQ j:

• If n = 0 then this is Rule (·+).

• If P = Σi≤k′P′i for k′ , 1, there is a surjective φ : [1, k]→ [1, k′] such that P′i →
ni
h Σ j∈φ−1(i)Q j

with n = Σini. By IH on each P′i , there is (P j) j such that, for all i, (Q·Pi)→∗h Σ j∈φ−1(i)(Q·P j)

with P j →
∗
h Q j. Thus Q·P

·+
−→hΣi≤k′(Q·Pi)→∗h Σi≤k′Σ j∈φ−1(i)(Q·P j).

• Otherwise, we can decompose the reduction by P →h P′ →n−1
h Σ j≤kQ j. Since P is not

a sum we can apply the rule H-c· so that Q·P →h Q·P′ and we conclude since by IH,
Q·P′ →∗h Σ j≤k·P j.

3. By induction on the lexicographicaly ordered (n,M) where n is the length M →n
h Σ j≤kτ̄α(Q j):

• If n = 0 then this is Rule (ττ̄).

• If M = Σi≤k′ τ̄γi(P
′
i) for k′ , 1, there is a surjective φ : [1, k] → [1, k′] such that τ̄γi(P

′
i) →

ni
h

Σ j∈φ−1(i)τ̄β j Q j with n = Σini. By IH on each τ̄γi(P
′
i), there is (P j) j such that, for all i,

τα(τ̄γi(P
′
i)) →

∗
h Σ{ j∈φ−1(i)|α≤β j}

P j with P j →
∗
h Q j. Since the only head reduction that can be

applyed on each τα(τ̄γi(P
′
i)) is (H-ττ̄), we have that τα(M)→h Σ{ı|α≤γi}Pi →

∗
h Σ jQ j.

• If M = λx.M′: impossible since M →∗ Σ jτ̄β j(Q j) and no rule can erase a λ in first position.

• Otherwise, we can decompose the reduction by M →h M′ →n−1
h Σ j≤kτ̄β j(Q j). Since P is

not an abstraction we can apply the rule (H-τ) so that τα(M) →h τα(M′) and we conclude
since by IH, τα(M′)→∗h Σ{ j|β j≥α}P j.

�

Lemma 2.3.1.31. For all M,N,N′ ∈ Λτ(D) (resp. P,Q,Q′ ∈ Tτ(D)) such that M ⇒st N → N′

(resp. P⇒st Q→ Q′), there is M′ (resp. P′) such that M ⇒st N′ (resp. P⇒st Q′).

Proof. We proceed by structural induction on N:

• If N = x: this is impossible since x is a normal form.
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• If N = λx.N0 then N0 → N′0 with N′ = λx.N′0. By definition of⇒st, M →∗h λx.M0 and M0 ⇒st

N0. By IH, M0 ⇒st N′0, thus M ⇒st λx.N′0.

• If N = 0: this is impossible since 0 is a normal form.

• If N = τ̄α(Q) then the only rule that change the form of the expression is (τ̄+) applied in head
position:

– Either N = τ̄α(Σ jQ j)
τ̄+
−→hN′ = Σ jτ̄α(Q j). By definition of ⇒st, M →∗h τ̄α(P) and P →∗h

Σ jP j with P j ⇒st Q j. Thus, by Lemma 2.3.1.30, there is (P′j) j such that M →∗h Σ jτ̄α(P′j)
with P′j →

∗ P j ⇒st Q j, so that M ⇒st N′.

– Otherwise, Q → Q′ and N′ = τ̄α(Q′). In this case, since M →∗h τ̄α(P) and P ⇒st Q → Q′,
we can apply the IH so that P⇒st Q′ and M ⇒st τ̄α(Q′).

• If N = Σi≤nNi for n > 0. Then, modulo commutativity of the sum, we can assume that Nn → N′n,
so that N′ = Σi<nNi + N′n. By definition of ⇒st, M →∗h Σi≤nMi with Mi ⇒st Ni. By induction
hypothesis, Mn ⇒st N′n and we can set M ⇒st N′.

• If N = N1 N2, then M →∗h M1 M2 with M1 ⇒st N1 and M2 ⇒st N2. There are different cases:

– Either N1 →h N′1 and N′ = N′1 N2. In this case, the IH on M1 ⇒st N1 →h N′1 gives
M1 ⇒st N′1, so that M ⇒st N′.

– Or N2 →h N′2 and N′ = N1 N′2. In this case, the IH on M2 ⇒st N2 →h N′2 gives M2 ⇒st N′2,
so that M ⇒st N′.

– Or N1 = λx.N0 and N′ = N0[N2/x]. By definition of⇒st, M1 →
∗
h λx.M0 with M0 ⇒st N0.

By easy induction on ⇒st, one can see that M0[M2/x] ⇒st N0[N2/x], we can conclude
since→∗⇒st⊆⇒st.

– Or N1 = Σi≤nτ̄ai→αi(Qi) and N′ = Σi≤nτ̄αi(Qi·Πγ∈aiτγ(N2)). By definition of ⇒st, M1 →
∗
h

Σi≤nτ̄ai→αi(Pi) and Pi ⇒st Qi for all i. By definition of ⇒st, one can see that
Σi≤nτ̄αi(Pi·Πγ∈aiτγ(M2))⇒st Σi≤nτ̄αi(Πγ∈aiτγ(N2)) so that M ⇒st N.

• If Q = τa→α(N), then P→∗h τa→α(M) with M ⇒st N and there are different cases:

– Either N → N′ and Q′ = τa→α(N′). In this case, the IH on M ⇒st N → N′ gives M ⇒st N′,
so that P⇒st Q′.

– Or N = λx.N0 and Q′ = τα(N0[ε̄a/x]). By definition of⇒st, M →∗h λx.M0 with M0 ⇒st N0.
By easy induction on⇒st, one can see that M0[ε̄a/x]⇒st N0[ε̄a/x], we can conclude since
→∗⇒st⊆⇒st.

– Or N = Σi≤nτ̄βi(Qi) and N′ = Σi≤n|βi≥αQi. By definition of ⇒st, M →∗h Σi≤nτ̄βi(Pi) and
Pi ⇒st Qi for all i. By Lemma 2.3.1.30, there is (P′i)i such that τα(M) →∗h Σi≤n|βi≥αP′i and
P′i ⇒st Qi so that P⇒st Q′.

• If Q = Σi≤nQi then (up to commutativity of the sum) Qn → Q′n and Q′ = Σi<nQi + Q′n. By
definition of⇒st, P →∗h Σi≤nPi with Pi ⇒st Qi for all i. By IH on Pn ⇒st Qn → Q′n, Pn ⇒st Q′n
so that P⇒st Q′.

• If Q = Πi≤nQi then the only rule that change the form of the expression is (·+) applied in head
position, there are two cases:
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– Either Q = ΠiΣ j≤ki Qi j
·+
−→hQ′ = Σ( ji)iΠiQi ji . By definition of ⇒st (used 2 times), P →∗h

ΠiPi and Pi →
∗
h Σ j≤ki Pi j with Pi j ⇒st Qi j for all i, j. Thus, by Lemma 2.3.1.30, there is

(P′i j)i j such that P→∗h Σ( ji)iΠiP′i j with P′i j →
∗ Pi j ⇒st Qi j, so that M ⇒st N′.

– Otherwise (and up to commutativity of the sum), Qn → Q′n and Q′ = Πi<nQi·Q′i). By
definition of⇒st, P→∗h ΠiPi and Pi ⇒st Qi. We can apply the IH on Pn ⇒st Qn →h Q′n so
that P⇒st Q′.

�

Invariance of the convergence

We will see in this section that the head convergence in at most n steps is invariant wrt the
reduction. This means that performing a non-head reduction can only reduce the length of
convergence.

Theorem 2.3.1.32 (Invariance of the convergence). For any terms M → N (resp. test
P→ Q) and any n ∈ N:

M⇓h
n ⇒ N⇓h

n P⇓h
n ⇒ Q⇓h

n

Proof. By recursive invocations of Lemma 2.3.1.34, for any (n, k) we can close the diagram:

M →n
h M1 Q →h Q1

→
k
 

→
∗

→

k
 

→
∗

M2 →
≤n
h M′ Q2 →

≤n
h Q′

where→≤n
h =

⋃
i≤n →

i
h.

In particular, if M →∗h M′ with M′ ∈ mhn f (i.e. M converges), since M → N, there is N0 such
that N →≤n

h N0 and N →∗ N0, from the last we deduce that N0 ∈ mhn f and conclude. The same
goes for tests. �

Remark 2.3.1.33. We have seen in Proposition A.2.1.37 that this property allows to coinductively
treat head-divergence modulo non-head reductions.

In order to prove this theorem we need a stronger notion of confluence for the cases where
one of the reduction is a head reduction.

Lemma 2.3.1.34. Any pick, M →h M1 and M →∗ M2 (resp. Q →h Q1 and Q →∗ Q2),
between a head reduction and any reduction verify the diamond:

M →h M1 Q →h Q1

→  

→
∗

→  

→
∗

M2 →
?
h M′ Q2 →

?
h Q′
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where→?
h:= (→h ∪id) is either a head reduction or an equality.

Proof. By induction on M and Q:

• If M = x or M = 0: it is impossible that M →h M1.

• If M = λx.N: then M1 = λx.N1 and M2 = λx.N2 so that N1 h←N → N2, thus, by
induction, there is N′ such that N1 →

∗ N′ ?
h←N2, finally we can fix M′ = λx.N′.

• If M = Σi≤n+2N i: then, modulo commutativity of the sum, M1 = Nn+2
1 +Σi≤n+1N i with

Nn+2 →h Nn+2
1 .

– Either (modulo commutativity of the sum), M2 = Nn+2
2 +Σi≤n+1N i with Nn+2 → Nn+2

2
and by induction there is Nn+2

1 →∗ Nn+2
0

?
h←Nn+2

2 so that M′ = Nn+2
0 +Σi≤n+1N i.

– Or (modulo commutativity of the sum), M2 = Nn+2+Nn+1
2 +Σi≤n+1N i with

Nn+1 → Nn+1
1 , so that M′ = Nn+2

1 +Nn+1
2 +Σi≤n+1N i.

• If M = τ̄α(Q) with Q that is not a sum: then M1 = τ̄αi(Q1) and M2 = τ̄α(Q2) with
Q1 h←Q→ Q2, thus, by induction, there is Q′ such that Q1 →

∗ Q′ ?
h←Q2, finally we can

fix M′ = τ̄α(Q′).

• If M = τ̄α(Σi≤n+1Qi) and M1 = Σi≤n+1τ̄α(Qi):

– Either M2 = τ̄α(Qn+1
2 Σi≤nQi) and M′ = τ̄α(Qn+1)Σi≤nτ̄α(Qi).

– Or Qi = Σ jPi, j and M2 = Σ jτ̄α(Pi, j), then M′ = Σi, jτ̄α(Pi, j).

• If M = N L:

– If N is not an abstraction: then M1 = N1 L with N →h N1. Moreover

∗ Either M2 = N2 L with N → N2 and N2 that is not an abstraction. By induction
there is N′ such that N1 →

∗ N′?h ←N2, and M′ = N′ L.

∗ Or M2 = (λx.N2) L with N → N2 and N2 that is an abstraction: since N is not
an abstraction, this can only be the result of a (β) or a τ̄ reduction in outermost
position in N. In both cases, necessary M1 = M2.

∗ Or M2 = N L2 with L→ L2: then M′ = N1 L2.

– If N = λx.N′ : then M1 = N′[L/x] and

∗ Either M′ = M2 = M1.

∗ Or M2 = λx.N′2 L with N′ → N2, thus M′ = N′2[L/x].

– If N = Σiτ̄αi(Qi): idem.

• If Q = τα(M):

– If M is not an abstraction: then Q1 = τα(M1) and Q2 = τα(M2) with M1 h←M → M2

and by induction hypothesis, there is M′ so that M1 →
∗ M′?

h ←M2.

∗ Either M2 is not an abstraction and Q′ = τα(M′).
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∗ Or M → M2 is an abstraction created by a (β) or a (τ̄) outermost reduction. In
both cases, necessary M1 = M2.

– If M = λx.N: then Q1 = τα′(N[ε̄a/x]) and

∗ Either Q2 = Q1 = Q′.

∗ Or Q2 = ταλx.N2 with N → N2, thus Q′ = τα′(N2[ε̄a/x]).

– If M = Σi≤n+1τ̄βi(P
i): then Q1 = Σ{i≤n+1|α≤βi}P

i and

∗ Either Q2 = Q1 = Q′.

∗ Or Q2 = τα
(
Σi≤nτ̄αi(P

i) + Σ jτ̄βn(R
j)
)

with τ̄αn+1(P
n+1)→ Σ jτ̄β j(R

j),
thus Q′ = Σ{ j|α≤βn}R

j + Σ{i≤n|α≤βi}P
i.

• If Q = P+R: then, modulo commutativity of the sum, Q1 = P1+R with P→h P1.

– Either Q2 = P2+R with P → P2 and the induction hypothesis gives P′ so that
M′ = P′+R.

– Or Q2 = P+R2 and M′ = P1+R2.

• If Q = P·R: same as for Q = P+R except if a rule (·+) is used in outermost position. In
this case, either only one of the reduction is a (·+) and the two reductions are indepen-
dents, or both of them are (·+), which is similar to M = τ̄α(Σi≤n+1Qi).

�

2.3.2. Hyperimmunity implies full abstraction

In this subsection we show that if D is sensible for Λτ(D) and is hyperimmune, D is inequation-
ally fully abstract for Λ, that is Theorem 2.3.2.4. We use the full abstraction of D for Λτ(D)

of Theorem 2.3.1.20 (or rather its technical counterpart: Theorem 2.3.1.21) in order to express
the problem in a purely syntactical form. We prove Theorem 2.3.2.3 stating the (inequational)
full abstraction of D for Λ. The purpose of the second subsection is to prove Lemma 2.3.2.2,
which is a restricted version of Theorem 2.3.2.3. This lemma states that N wH∗ x implies
that ~M�x0 ⊇ ~x�x; this case being the key-point where the hypothesis of hyperimmunity is
used. But, before that, we need the technical Lemma 2.3.2.1 in order to refute the operational
equivalence between two λ-terms in easy cases.

Technical lemma

Lemma 2.3.2.1. Let M = λx1...xn.y M1 · · ·Mk ∈ Λ and let N = λx1...xn′ .y′ N1 · · ·Nk′ ∈ Λ be
such that M vH∗ N. Then:

1. y = y′,

2. n − k = n′ − k′,

3. if i ≤ k and i ≤ k′ then Mi vH∗ Ni,

4. if i > k and i ≤ k′ then xi−k vH∗ Ni,
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5. if i ≤ k and i > k′ then Mi−k vH∗ xi.

Proof. From each i ≤ 5, assuming statements (1)...(i-1) and refuting statement (i), we can exhibit a
context C ∈ Λ(|·|) such that C~M�⇓h and C~N�⇑h.

In the following, M = λx1...xn.y M1 · · ·Mk and N = λx1...xn′ .y′ N1 · · ·Nk′ .
If y , y′, then M 6vH∗ N:

• If y′ is free in N then by setting C(|.|) = (λy′.(|.|)) Ω we have C(|M|)⇓h and C(|N |)⇑h.

• If y′ = x j for j ≤ n′, then by setting C(|.|) = (|.|) x1 · · · x j−1 Ω we have C(|M|)⇓h and C(|N |)⇑h.

Now we suppose that M = λx1...xn.y M1 · · ·Mk and N = λx1...xn′ .y N1 · · ·Nk′ .
If n − k , n′ − k′, then M 6vH∗ N:

• If y is free in N, then by setting C(|.|) = (λy.(|.|) x1 · · · xn′+k) (λz1...zk′+ku.u)Ω we have C(|M|)⇓h and
C(|N |)⇑h:

• If y = x j for j ≤ n′, then by setting C(|.|) = (|.|) x1 · · · x j−1 (λz1...zk′+ku.u) xi+1 · · · xn′+k Ω we have
C(|M|)⇓h and C(|N |)⇑h.

Now we suppose that n − k = n′ − k′.
If there is i such that i ≤ k, i ≤ k′ and Mi 6vH∗ Ni then M vH∗ i, by hypothesis, there is C′(|.|) such that

C′(|Mi|)⇓h and C′(|Ni|)⇑h:

• If y is free in N, then by setting C(|.|) = (λy.(|.|)) (λz1...zk+k′ .C′(|zi|)) we have C(|M|)⇓h and C(|N |)⇑h.

• If y = x j for j ≤ n′, then by setting C(|.|) = (|.|) x1 · · · x j−1 (λz1...zk+k′ .C(|zi|)) we have C(|M|)⇓h and
C(|N|)⇑h.

If there is i such that i > k, i ≤ k′ and xi−k 6vH∗ Ni then M vH∗ N, by hypothesis, there is C′(|.|) such
that C′(|xi−k|)⇓h and C′(|Ni|)⇑h:

• If y is free in N, then by setting C(|.|) = (λy.(|.|) x1 · · · xn+k) (λz1...zk+k′ .C′(|zi|)) we have C(|M|)⇓h

and C(|N |)⇑h.

• If y = x j for j ≤ n′, then by setting C(|.|) = (|.|) x1 · · · x j−1 (λz1...zk+k′ .C(|zi|)) x j+1 · · · xn+k we have
C(|M|)⇓h and C(|N |)⇑h.

If there is i such that i ≤ k, i > k′ and Mi 6vH∗ xi−k′ then M vH∗ N, by hypothesis, there is C′(|.|) such
that C′(|Mi|)⇓h and C′(|xi−k′ |)⇑h:

• If y is free in N, then by setting C(|.|) = (λy.(|.|) x1 · · · xn+k) (λz1...zk+k′ .C′(|zi|)) we have C(|M|)⇓h

and C(|N |)⇑h.

• If y = x j for j ≤ n′, then by setting C(|.|) = (|.|) x1 · · · x j−1 (λz1...zk+k′ .C(|zi|)) x j+1 · · · xn+k we have
C(|M|)⇓h and C(|N |)⇑h.

�

The key-lemma

From now on, we consider an extensional K-model D that is both hyperimmune and sensible
for Λτ(D).

The following lemma is a key lemma that introduces the hyperimmunity in the picture:
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Lemma 2.3.2.2. Let α ∈ D and a0, . . . , ak ∈ A f (D) be such that α ∈ a0.
Let N ∈Λ and x0, . . . , xk be such that τα(N[s])⇑h with s = [ε̄a0/x0, . . . , ε̄ak/xk]. Then N AH∗ x0.

Proof. We define the recursive function gN′ for any N′ ∈ Λ such that N′ wH∗ x0, it is done by recursiv-
elly defining gN′(k) for k ∈ N:
Since N′ wH∗ x0, N′ is converging, and by Lemma 2.3.2.1 N′ →∗h λy1...yn.x0 N1 · · ·Nn with Nm wH∗ ym

for all m ≤ n. We then define gN′(0) = n and gN′(k + 1) = maxi≤ngNi(k).
We will show that assuming N wH∗ x0 contradicts the hyperimmunity of D by showing that:

There exists (αn)n≥0 with α0 = α and for all n, αn = an
1→· · · a

n
gN (n)→α

′
n and αn+1 ∈

⋃
i≤gN (n) an

i .

We are constructing (αn)n by co-induction.
Since N wH∗ x0, it is converging, and by Lemma 2.3.2.1, N →∗ λy1...yn.x0 N1 · · ·Nn with Nm wH∗ ym

for all m ≤ n.
We will assume that α = b1→· · ·→bn→α

′ and a0 = {α, β1, . . . , βt} with βi = ci
1→· · ·→ci

n→β
′
i (always

possible since “→” is a bijection).
Then

τα(N[s])→∗ τα(λy1...yn.ε̄a0 N1[s] · · ·Nn[s])
τ
→∗hτα′(ε̄a0 N1[s, s′] · · ·Nn[s, s′])
Ex2.3.1.3
−→ ∗τα′(Σd1→···dn→δ∈a0 τ̄δ(Πm≤nΠγ∈dmτγ(Nm[s, s′])))

ττ̄
→hΠm≤nΠγ∈bmτγ(Nm[s, s′]) + Σ{i≤t|α′≤β′i }Πm≤nΠγ∈ci

m
τγ(Nm[s, s′])

with s′ = [ε̄b1/y1, . . . , ε̄bn/yn].
Since τα(N[s]) diverges, by standardization theorem (Th. 2.3.1.29), the test Πm≤nΠγ∈bmτγ(Nm[s, s′]) di-
verges. In particular there is m ≤ n and γ ∈ bm such that τγ(Nm[s, s′]) diverges.
Since Nm wH∗ ym and τγ(Nm[s, s′])⇑h, the co-induction gives (γk)k such that γ0 = γ and for
all k, γk = ck

1→· · · c
k
gMm (k)→γ

′
k and γk+1 ∈

⋃
i≤gMm (k) ak

i . In this case we can define (αk)k as follows:

α0 = α ∀k, αk+1 = γk

This is sufficient since:

m ≤ n = gN(0) gMm(k) ≤ sup j≤ngM j(k) = gN(k + 1)

�

Inequational completeness

Theorem 2.3.2.3 (Inequational completeness). For all M,N ∈ Λ,
if there exists (a0...ak, α) ∈ ~M�x0...xk such that (a0...ak, α) < ~N�x0...xk , then M 6vH∗ N.

Proof. We will prove the equivalent (by Theorem 2.3.1.21) statement:

Let α ∈ D and a0, . . . , ak ∈ A f (D).
Let a set of variables {x0, . . . , xk} ⊇ FV(M), and let [s] = [ε̄a0/x0 · · · ε̄ak/xk].
If9 τα(M[s])⇓h

l and τα(N[s])⇑h then M 6vH∗ N.

9Recall that M⇓h
l means that M head converges in at most l steps
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The statement is proven by induction on the length l of the reduction τα(M[s])⇓h
l:

• The case l = 0:
Then τα(M[s]) is in normal form without free variables, which is impossible.

• The case l ≥ 1:
Since τα(M[s])⇓h

l, by applying the sensibility for Λτ(D), the interpretation of τα(M[s])⇓h
l is non

empty. By Remark 2.3.1.17, the interpretation of M is also non empty. Thus, reapplying the
sensibility, M is converging to a head-normal form M →∗h λy1...yn.z M1 · · ·Mm. We can then
make some assumptions:

– We can assume that N →∗h λy1...yn′ .z′ N1 · · ·Nm′ :
In fact, if N does not converge then trivially M 6vH∗ N.

– We can assume that n′ ≥ n:
In fact, if n′<n then we can always define N′ = λy1...yn′yn′+1...yn.z′ N1 · · ·Nm′ yn′+1 · · · yn

(with yn′+1...yn < FV(z′ N1 · · ·Nm′)), and we would have N′ ≡H∗ N and τα(N′[s])⇑h.

– We can assume that n = 0:
In fact, let a0→· · · an→α

′ = α, [s′] = [ε̄a0/y1, . . . , ε̄an/yn], N′ = λyn+1...yn′ .z′ N1 · · ·Nm′

and M′ = z M1 · · ·Mm. Since τα(M[s])→∗ τα′(M′[s, s′]) (resp. τα(N[s])→∗ τα′(N′[s, s′])),
by confluence and standardization theorems (Th. 2.3.1.26 and Th.2.3.1.29), the conver-
gences of τα(M[s]) (resp. τα(N[s])) and τα′(M′[s, s′]) (resp. τα′(N′[s, s′])) are equivalent.
Applying Theorem 2.3.1.32, we thus have τα′(M′[s, s′])⇓h

l and τα′(N′[s, s′])⇑h.
Moreover M′ vH∗ N′ ⇔ M vH∗ N so that the property on M′ and N′ is equivalent to the
same property on M and N.

– We can assume that z′ = z = x0:
Since {x0 . . . xk} ⊇ FV(M), there is j ≤ k such that z = x j, for simplicity we assume
that j = 0. Then we can remark that by Item (1) of Lemma 2.3.2.1, either M 6vH∗ N or
z′ = z = x0, we will thus continue with the second case.

Altogether we have:

M →∗h x0 M1 · · ·Mm N →∗h λy1...yn′ .x0 N1 · · ·Nm′

The case M = x0 corresponds exactly to the hypothesis of Lemma 2.3.2.2 that concludes
by M = x0 6vH∗ N. We are now assuming that m ≥ 1.

By Lemma 2.3.2.1, either M 6vH∗ N or the following holds:

– m = m′ − n′, and in particular m ≤ m′

– for i ≤ m, Mi vH∗ Ni

– for m < i ≤ m′, yi−m vH∗ Ni.

We will assume that m = m′ − n′ and then refute Mi vH∗ Ni or yi vH∗ Nm+i for some i ≤ n′; we
then conclude that M 6vH∗ N.

In the following we unfold

– α = b1→· · ·→bn′→α
′,

– a0 = {β0 . . . βr},

– for all t ≤ r, βt = ct
1→· · · c

t
m→β

′
t ,

– and for all t ≤ r, β′t = ct
m+1→· · · c

t
m′→β

′′
t .
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Moreover we set [s′] = [ε̄b1/y1 . . . ε̄bn′ /yn′].

Then we have:

τα(M[s]) →∗ τα(ε̄a0 M1[s] · · ·Mm[s]) (2.6)
τ̄
→m

h
ττ̄
→h Σ{t≤r|α≤β′t }Πi≤mΠγ∈ct

i
τγ(Mi[s]). (2.7)

By Theorem 2.3.1.32, τα(ε̄a0 M1[s] · · ·Mm[s])⇓h
l. Moreover, since the head reduction (2.7) is

prefix of any head reduction sequence starting from τα(ε̄a0 M1[s] · · ·Mm[s]),
the test Σ{t≤r|α≤β′t }Πi≤mΠγ∈ct

i
τγ(Mi[s]) head converges in (l − m − 1) steps so that there exists t0≤r

such that α ≤ β′t0 and for all i ≤ m and all γ ∈ ct0
i , we have Mi[s]⇓h

l−1.

Similarly we have:

τα(N[s]) →∗ τα(λy1...yn′ .ε̄a0 N1[s] · · ·Nm′[s])
τ
→n′ τα′(ε̄a0 N1[s, s′] · · ·Nm′[s, s′]))
τ̄
→m′ τα′(Σt≤rτ̄β′′t (Πi≤m′Πγ∈ct

i
τγ(Ni[s, s′])))

ττ̄
→ Σt≤r|α′≤β′′t Πi≤m′Πγ∈ct

i
τγ(Ni[s, s′]).

Thus, by standardization (Th. 2.3.1.29), Σt≤r|α′≤β′′t Πi≤m′Πγ∈ct
i
τγ(Ni[s, s′]) diverges. Thus there are

two cases:

– Either α′ 6≤ β′′t0 : which is impossible since α≤β′t0 .

– Or there is i ≤ m′ and γ ∈ ct0
i such that τγ(Ni[s, s′]) diverges.

∗ Either i ≤ m:
Then since τγ(Mi[s, s′]) = τγ(Mi[s])⇓h

l−1, the induction hypothesis yields
that Mi 6vH∗ Ni.

∗ Or m < i:
Since α ≤ β′t0 we have bi−m ≥ ct0

i and γ ≤ γ′ ∈ bi−m. Moreover, using Theorem 2.3.1.21
and γ ≤ γ′, we have that τγ′(Ni[s, s′]) diverges. Thus we can apply Lemma 2.3.2.2
that results in yi−m 6vH∗ Ni.

�

Theorem 2.3.2.4 (Hyperimmunity implies full abstraction).
Any extensional K-model D that is hyperimmune and sensible for Λτ(D) is inequationally fully
abstract for the pure λ-calculus.

Proof. Inequational adequacy: inherited from the inequational sensibility of D for Λτ(D). Indeed, for
any M,N ∈ Λ and C ∈ Λ(|·|), if ~M�~xD ⊆ ~N�

~x
D and if C(|M|)⇓h, then by sensibility

~C(|N |)�~x
′

D ⊇ ~C(|M|)�~x
′

D , ∅

and (still by sensibility) ~C(|N |)�~x
′

D converges.
Inequational completeness: for all M,N∈Λ such that ~M�~x * ~N�~x, there is (~a, α) ∈ ~M�~x−~N�~x,

thus by Theorem 2.3.2.3, M 6vH∗ N. �
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2.3.3. Full abstraction implies hyperimmunity

The counterexample

In this section, we are assuming that D is sensible for Λτ(D) but is not hyperimmune. Then
we will construct a counterexample (Jg 0) for the full abstraction such that (Jg 0) ≡H∗ I and
~Jg 0� , ~I� resulting in Theorem 2.3.3.5. Remark that this counterexample is exactly the
same as in Section 2.2.3, only the sub-proofs justifying the non-full abstraction are different as
they are syntactic proofs.

By Definition 2.1.0.1, if D is hyperimmune, then there exist a recursive g : (N → N) and a
family (αn)n≥0 ∈ DN such that αn = an,1→· · ·→an,g(n)→α

′
n with αn+1 ∈

⋃
k≤g(n) an,k.

We will use the function g for defining a term Jg (Eq. 2.10) such that (Jg 0) is observationally
equal to the identity in Λ (Lm. 2.3.3.2) but can be distinguished in Λτ(D). From this latter
statement and the full abstraction for Λτ(D) (Th. 2.3.1.20), we will obtain that ~Jg 0�D , ~I�D,
and thus we conclude with Theorem 2.3.3.5.

Let (Gn)n∈N be the sequence of closed λ-terms defined by:

Gn := λuex1...xg(n).e (u x1) · · · (u xg(n)) (2.8)

The recursivity of g implies that of the sequence Gn. We can thus use the Proposition 1.1.0.5
that set a G ∈ Λ such that:

G n→∗ Gn. (2.9)

Recall that S denotes the Church successor function and Θ the Turing fixedpoint combinator.
We define:

Jg := Θ (λuv.G v (u (S v))). (2.10)

Then:

Jg n→∗ Gn (Jg n+1). (2.11)

Lemma 2.3.3.1. For all n ∈ N, all α ∈ D and all b = {β1, ...., βk} ⊆ D, let:

• α = a1→· · ·→ag(n)→α
′,

• for all j ≤ k, β j = b j1→· · ·→b jg(n)→β
′
j,

we have:
τα(Jg n ε̄b) →∗→h Σ{ j≤k|α′≤β′j}Πi≤g(n)Πγ∈b jiτγ(Jg n+1 ε̄ai).
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Proof. We can reduce:

τα(Jg n ε̄b)
Eq(2.11)
−→ ∗ τα(G n (Jg n+1) ε̄b)

Eq(2.8)
−→ ∗ τα(Gn (Jg n+1) ε̄b)

Eq(2.9)
−→ ∗ τα

(
(λue~xg(n).e (u x1) · · · (u xg(n))) (Jg n+1) ε̄b

)
β
→2

h τα
(
λ~xg(n).ε̄b (Jg n+1 x1) · · · (Jg n+1 xg(n))

)
τ
→

g(n)
h τα′

(
ε̄b (Jg n+1 ε̄a1) · · · (Jg n+1 ε̄ag(n))

)
τ̄
→

g(n)
h τα′(Σ j≤kτ̄β′j(Πi≤g(n)Πγ∈b jiτγ(Jg n+1 ε̄i)))
ττ̄
→h Σ{ j≤k|α′≤β′j}Πi≤g(n)Πγ∈b jiτγ(Jg n+1 ε̄ai)

�

Lemma 2.3.3.2. For all n, we have Jg n ≡H∗ I.

Proof. Let D∞ be defined as in Example 1.2.4.9. We have seen in Example 2.1.0.4 that D∞ is hyper-
immune and we will see in Example 2.4.2.13 Section 2.4.2 that it is sensible for Λτ(D∞). Thus by Theo-
rem 2.3.2.4, D∞ is fully abstract for Λ. It results that it is sufficient to verify that ~Jg n�D∞ = ~I�D∞ , or
equivalently (Th. 2.3.2.4) to verify that :

∀α ∈ D∞, τα(Jg n)⇓h ⇔ τα(I)⇓h.

Trivially τa0→α(I) converges iff there is β such that α ≤ β ∈ a0. Conversely we can prove by induction
on a0 that τα(Jg n ε̄a0) converges iff there is β such that α ≤ β ∈ a0 and conclude by extensionality.

If we denotes α = a1→· · ·→ag(n)→α
′, Lemma 2.3.3.1 gives that:

τα(Jg n ε̄a0) →∗→h Σ{b1→···bg(n)→β′∈a0 |α′≤β′}Πi≤g(n)Πγ∈biτγ(Jg n+1 ε̄ai).

By induction hypothesis and standardisation, this test converges iff there is β = b1→· · · bg(n)→β
′ ∈ a0

such that α′ ≤ β′ and for all i ≤ g(n) and all γ ∈ bi, γ ≤ δ ∈ ai, i.e., for all i, bi ≤ ai. Equivalently, this
test converges iff α ≤ β ∈ a0. Thus, using the standardization (Th. 2.3.1.29), τα(Jg n ε̄a0) converges iff
α ≤ β ∈ a0. �

Lemma 2.3.3.3. For all n ∈ N, all α ∈ D and all b ∈ A f (D), if β 6≥ α for all β ∈ b, then:

τα(Jg n ε̄b)⇑h

Proof. Let {β1, ...., βk} = b and, for all j ≤ k, let b j,1→· · ·→b j,k→β
′
j = β j.

We are proceeding by coinductively constructing the proof of τα(Jg n ε̄b)⇑h following Proposi-
tion A.2.1.37 (that we can apply due to Theorem 2.3.1.32).

From Lemma 2.3.3.1, we have:

τα(Jg n ε̄b) →∗→h Σ{ j≤l|β′j≤α
′}Πi≤g(n)Πγ∈b j,iτγ(Jg n+1 ε̄ai)
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with the last reduction that is the only possible head reduction.
By applying Proposition A.2.1.37, we get that τα(Jg n ε̄b) head-diverges if the above reduct head-

diverges. In particular, it is sufficent to prove that for any j ≤ l such that β′j ≤ α
′ there exists i ≤ g(n)

and γ ∈ b j,i such that τγ(Jg n+1 ε̄ai) head diverges.
Let j ≤ l be such that β′j ≥ α

′.
Since β j 6≥ α, there is i such that b j,i 6≤ ai, i.e., there is γ ∈ b j,i such that for all δ ∈ ai, γ 6≤ δ and by

coinduction we get that τγ(Jg n+1 ε̄ai) head diverges. �

We recall that (αn)n is given by the counterexample of the hyperimmunity, and that for all n,
αn = an,1→· · ·→an,g(n)→α

′
n and αn+1 ∈

⋃
k≤g(n) an,k.

Lemma 2.3.3.4. For any n ∈ N and any anti-chain b = {αn, β1, ...., βk}, then:

ταn((Jg n) ε̄b)⇑h.

In particular, τα0(Jg 0 ε̄α0)⇑
h.

Proof. Let β j = b j,1→· · ·→b j,g(n)→β
′
j.

We are proceeding by coinductivelly constructing the proof of ταn((Jg n) ε̄b)⇑h following Proposi-
tion A.2.1.37 (that we can apply due to Theorem 2.3.1.32).

From Lemma 2.3.3.1, we have:

τα(Jg n ε̄b) →∗→h Πi≤g(n)Πγ∈aniτγ(Jg n+1 ε̄ai) + Σ{ j≤l|α′n≤β′j}Πi≤g(n)Πγ∈b jiτγ(Jg n+1 ε̄ai).

with the last reduction that is the only possible head reduction.
By applying Proposition A.2.1.37, we get that τα(Jg n ε̄b) diverges if the above reduct head-diverges.

In particular, it is sufficent to prove that both addens diverge.

• The fist member Πi≤g(n)Πγ∈aniτγ(Jg n+1 ε̄ai) head-diverges since there is i ≤ g(n) such that αn+1 ∈

ani and by coinduction, ταn+1(Jg n+1 ε̄ai) diverges.

• The second member of the sum diverges by Lemma 2.3.3.3.
For any j ≤ l such that β′j ≥ α

′
n we know that β j 6≥ αn since {αn, β1, ..., βl} is an anti-chain. Thus

there is always i ≤ g(n) such that b j,i 6≤ an,i, i.e., there is γ ∈ b j,i such that for all δ ∈ an,i, γ 6≤ δ.
We can conclud by Lemma 2.3.3.3 that τγ(Jg n+1 ε̄ai) diverges.

�

Theorem 2.3.3.5 (Full abstraction implies Hyperimmunity). If D is not hyperimmune, but
sensible for Λτ(D), then it is not fully abstract for the λ-calculus.

Proof. Since τα0(I ε̄α0)
β
→h

ττ̄
→h ε, we have that ~τα0(I ε̄α0)�,∅, while by Lemma 2.3.3.4 we have that

~τα0(Jg 0 ε̄α0)�=∅, and thus ~Jg 0� , ~I�. Hence, by Lemma 2.3.3.2, D is not fully abstract. �
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2.4. More on D-tests

In this section we investigate further on the interest of tests and their links with other tools, in
particular with Böhm trees. This is done by achieving two quite interesting theorems.

The first is Theorem 2.4.1.9 that is the purpose of Section 2.4.1. This theorem states, for any
model D, the equivalence between the approximation property and the sensibility for Λτ(D). As
such, it also states the equivalence between the syntactical and semantical versions of the main
theorem (Th. 2.1.0.5 and Th. 2.1.0.6). In this section we will see how the reduction of a test
τα(M) can be seen as a kind of kind of type inference over the Böhm tree BT(M).

The second is Theorem 2.4.2.12 that is the purpose of Section 2.4.2. This theorem pro-
poses an easy-to-verify condition for the sensibility of tests that is the stratified positivity
(Def. 2.4.2.2). This is a rather fine property, maximizing the potential of the methods using
logical relations10 that are used for the proof. Indeed, we will see that usual proofs, using log-
ical relations to prove the sensibility for the untyped λ-calculus, generalize naturally to tests.
Moreover, the new formulation seems to be even more precise.

2.4.1. D-tests and Böhm trees

Recall that the approximation property relies on the inductive interpretation of Böhm trees
(Def. 2.2.1.10). Recall also that this inductive interpretation corresponds to the type assertion
that are finitely derivable by the rules of Figure 2.1 (Prop. 2.2.1.11).

We will see that for any λ-term M ∈ Λ, the reduction of τα(M) can be seen as a (non-
necessarily terminating) type inference procedure that tests whether BT(M) is of type α in the
inductive intersection-type system of Figure 2.1.

Lemma 2.4.1.1. For any term M ∈ Λ with free variables FV(M) ⊆ {x1...xk} and any (~a, α)
so that [s] = [ε̄a1/x1...ε̄ak/xk], the test τα(M[s]) converges iff the statement ~x : ~a ` BT(M) : α
has a finite derivation in the system of Figure 2.1.

Proof. Assuming that τα(M[s])⇓h
n, we can do an induction on the lexicographicaly ordered (n,M):

• If M is a λ-abstraction λy.N and if α = b→α′, then τα(M[s]) →h τα′(N[s, ε̄b/y]) and it is the
only possible head reduction so that (N[s, ε̄a/y])⇓h

n−1. By induction hypothesis we know that the
statement ~x : ~a, y : b ` BT(N) : α′ is derivable, so is ~x : ~a ` λy.BT(N) : b→α′ by the rule (BT -λ).

• If M = xi M1 · · ·Mm then τα(M[s]) →m+1
h Σ{b1→···→bm→β∈ai |α≤β}Π j≤mΠγ∈b jτγ(M j[s])) and there

in b1→· · ·→bm→β ∈ ai such that α ≤ β and for all j ≤ m and γ ∈ b j, τγ(M j[s]))⇓h
n−m−1. Thus,

after applying the induction hypothesis, we can conclude with the rule BT -@.

• Otherwise M is not a head-normal form nor an abstraction so that M →h N ∈ Λ

and τα(M[s])→h τα(N[s]). Moreover, this head reduction is prefix to any head-reduction starting
from τα(M[s]) so that τα(N[s])⇓h

n−1. By induction hypothesis, ~x : ~a ` BT(N) : α which conclude
since BT(M) = BT(N).

Conversely, assuming that the statement ~x : ~a ` BT(M) : α has a finite derivation in the system of
Figure 2.1, we can proceed by induction on the derivation tree:

10or equivalently realisability candidates
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• If The last rule is (BT -λ), then BT(M) = λy.U, i.e., there is N such that M →∗h λy.N with
BT(N) = U, in particular there is a first one along the reduction. Thus, assuming that α = b→β,

τα(M[s]) →∗h τα(λy.N[s]) →h τβ(N[s, ε̄b/y]).

However, the derivation also gives that ~x : ~a, y : b ` U : β where we can apply the induction
hypothesis to get the convergence of τβ(N[s, ε̄b/y]).

• If The last rule is (BT -@), then BT(M) = xi U1 · · ·Um, i.e., there is N1, ...,Nm such
that M →∗h y N1 · · ·Nm with BT(N j) = U j for all j. No abstraction appearing along the reduction,
we have that

τα(M[s]) →∗h τα(ε̄ai N1[s] · · ·Nm[s])

→∗h

∑
{b1→···→bm→β∈ai |α≤β}

Π j≤mΠγ∈biτγ(N j[s]).

However, the derivation gives exactly the existence of b1→· · ·→bm→β ∈ ai such that α ≤ β and
for all j ≤ m and γ ∈ bi, ~x : ~a ` BT(Ni) : γ, i.e., using the IH, that each τγ(N j[s]) converges.

�

Remark 2.4.1.2. For M ∈ Λ, the derivation of τα(M[s]), seen as type inference procedure, has three
elementary kinds of divergence in Λτ(D):

• either M diverges: then BT(M) = Ω which is non-typable by definition,

• or τα(M[s])→∗h 0: the BT(M) may be typable, but not by α (under ~x : ~a),

• finally, it is possible that the type inference run into an infinite tree (i.e., a co-inductive derivation).
This is the most interesting case for us as it corresponds to an infinite nesting of alternating (τ)
and (τ̄) reductions in the idea of what we did in Section 2.3.3.

Example 2.4.1.3. The following reduction and derivation are in correspondence:

τ{α,α→α}→α(λx.x x)

→hτα(ε̄{α,α→α} ε̄{α,α→α})

→hτα(ε̄α→α ε̄{α,α→α})+τα(ε̄α ε̄{α,α→α})

→hτα(τ̄α(τα(ε̄{α,α→α})))+τα(ε̄α ε̄{α,α→α})

→hτα(ε̄{α,α→α})+τα(ε̄α ε̄{α,α→α})

→hε+τα(ε̄α ε̄{α,α→α})

x : {α, α→α} ` x : α α ≤ α

x : {α, α→α} ` x x : α
` λx.x x : {α, α→α}→α

In the following example, we fix D = D∗∞ so that p = q→p and q = p→q. This gives rise to an infinite
derivation:

τp(J ε̄ p)→∗ τp(λy.ε̄p (J y))

→h τp(ε̄p (J ε̄q))

→h τp(τ̄p(τq(J ε̄q)))

→h τq(J ε̄q)

→ ...

...
y : q ` J y : q p ≤ p
x : p, y : q ` x (J y) : p J x→∗h λy.x (J y)

x : p ` J x : p
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Lemma 2.4.1.4. If D is sensible for Λτ(D) (Def. 2.3.1.19), then it is approximable
(Def: 2.2.1.12).

Proof. Let D an extensional K-model sensible for Λτ(D).
Let M ∈ Λ be a λ-term and (~a, α) ∈ ~M�~x. We want to show that (~a, α) ∈ ~BT(M)�~xind.
By Proposition 2.2.1.11, it suffices to show that ~x : ~a ` BT(M) : α is finitely derivable in the system
of Figure 1.3. By Lemma 2.4.1.1, it suffices to show that τα(M[

−→
ε̄a/~x])⇓h. However, this is given by the

sensibility for Λτ(D) and Theorem 2.3.1.21. �

Lemma 2.4.1.5. If D is approximable then for any M ∈ Λ we have:

(~a, α) ∈ ~M�~x ⇒ τα(M[
−→
ε̄a/~x])⇓h

Proof. Let D an extensional and approximable K-model. Let M ∈ Λ be a λ-term and (~a, α) ∈ ~M�~x.
By the approximation property, (~a, α) ∈ ~BT(M)�~xind.
By Proposition 2.2.1.11, the statement ~x : ~a ` BT(M) : α is finitely derivable in the system of Figure 1.3.
By Lemma 2.4.1.1, we have τα(M[

−→
ε̄a/~x])⇓h. �

To show that being sensible for Λτ(D) and being approximable are equivalent requirements,
the only remaining part is to extends Lemma 2.4.1.5 to terms M ∈ Λτ(D) −Λ. This will be done
by exhibiting, for any M ∈ Λτ(D), a term MΛ ∈ Λ and a substitution [sM] = [ε̄a1/x1...ε̄an/xn]
such that MΛ[sM]→∗ N∗←M for some N.

Definition 2.4.1.6. For an M ∈ Λτ(D), we define a term without test MΛ ∈ Λ and the corre-
sponding substitution (with tests) [sM] over some free variables x1...xn ∈ FV(MΛ) − FV(M):

• xΛ = x and [sx] = [].

• (λx.M)Λ = λx.MΛ and [sλx.M] = [sM].

• (M N)Λ = MΛ NΛ and [s(M N)] = [sM][sN]

• Otherwise M →∗ Σi≤nτ̄αi(Π j≤kiτβi, j(Mi, j)) (by only using the distributions of the sums).
Then MΛ = u MΛ

1,1 MΛ
1,2 · · · MΛ

1,k1
MΛ

2,1 · · · MΛ
n,kn

where u is fresh; and [sM] =

[ε̄a/u]
⋃

i, j[sMi, j] where a = {γi | i ≤ n} and γi = bi
1,1→· · ·→bi

n,kn
→αi and bi

i′, j = ∅

if i′ , i and bi
i, j = {βi, j} otherwise.

Remark that the substitution is linear (exactly one occurrence of each xi will appears)

Proposition 2.4.1.7. For all M ∈ Λτ(D), MΛ[sM]→∗ N∗←M for some N.

Proof. By induction on M, the only non trivial case is when M = Σiτ̄α′i (Q) (using the linearity of the
substitution for the application case).
Since Q is an alternance of sums and products with atoms of the form τ(αγ)(N), we can perform every
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possible distributions of the sum over the products and the τ’s so that M →∗ Σi≤nτ̄αi(·Π j≤kiτβi, j(Mi, j)).
By applying the induction hypothesis on each Mi, j we get that M has a common reduct with

Σi≤nτ̄αi(·Π j≤kiτβi, j(MΛ
i, j))[si, j | i, j]

which is a reduct of MΛ[sM]. �

Lemma 2.4.1.8. If D is approximable then D is sensible for Λτ(D).

Proof. Let M be a term with tests such that (~a, α) ∈ ~M�~x = ~MΛ[sM]�~x:
Then, by Lemma 2.4.1.5, τα(MΛ[sM][

−→
ε̄ a/~x])⇓h.

In particular MΛ[sM]⇓h, thus by confluence and standardization (Th 2.3.1.26 and Th. 2.3.1.29), we
obtain that M⇓h. �

Theorem 2.4.1.9 (approximability and sensibility).
An extensional K-model D is approximable iff D is sensible for Λτ(D).

Proof. Lemmas 2.4.1.8 and 2.4.1.4. �

2.4.2. A sufficient condition for the sensibility of tests

So far we could not find a generic proof of the approximation property in the literature for
standard K-models.11 Hence, we give a sufficient condition (Def 2.4.2.2) for a K-model D to
be approximable (Cor. 2.4.2.14). Indeed, we use this condition in Example 2.4.2.13 for stating
the approximation property of the models of Example 1.2.4.9 (save for P∞).

The proof of Corollary 2.4.2.14 uses the equivalence between approximability and sensibility
with tests (Th. 2.4.1.9) proven in the previous chapter. In fact, we prove that stratified positivity
of D implies sensibility for Λτ(D). Most proofs of sensibility for untyped λ-calculus extend
realizability methods of Tait [Tai67]. We do the same for sensibility with tests with a condition
(Def 2.4.2.2) extending the positivity of [Ber00].

Definition 2.4.2.1. A preorder (S ,≤) is said well founded if the order induced in the quotient
space (S ,≤)/(≤ ∩ ≥) is well founded.

Definition 2.4.2.2. A (partial) K-model D is stratified positive if there exist

• a functionV from D in ({−,+},− ≤V +),

• a well founded preorder � in D,

11Save Chapter 17.3 of the book of Barendregt, Dekkers ans Statman [BDS13] where this proof is done in parallel
for several models of different classes.
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such that for all a ∈ A f (D), α ∈ D and all β ∈ a:

a→α � α, a→α ' α ⇒ V(a→α) = V(α),
a→α � β, a→α ' β ⇒ V(a→α) , V(β),

α ≤D β⇒ (α � β ∨ α � β), α ' β ⇒ α ≤D β ⇒ V(α) ≤V V(β),
where ':= (� ∩ �)

This condition can be seen as a stratification given by �, where the quotient D/' represents
the different levels of the stratification, and a positive valuation V of every level. This strati-
fication improves the condition of [Ber00] that only considers completions of positive partial
K-models. This condition is the invariant by completion, which simplify the proof of stratified
positivity of K-models of Example 1.2.4.9 (save for P∞).

Proposition 2.4.2.3. A partial K-model E is stratified positive iff its completion Ē is stratified
positive.

Proof. The “if” part is trivial.
If E is stratified positive as a partial K-model with an evaluationV and a preorder �, then it is stratified
positive as a K-model with the an evaluationV′ defined by

∀α ∈ E, V′(α) = V(α), ∀α < E, V(α) = +,

and the preorder �′ given by the reflexive transitive closure of:

�′�E × E
=�, ∀(a, α),∀β ∈ a, a→α �′ α, and a→α �′ β.

�

Example 2.4.2.4. All the K-models of Example 1.2.4.9 are stratified positive except P∞:

• For D∞: We have to show the stratified positivity of the partial K-model ({∗}, id, {(∅, ∗) 7→ ∗})
which is trivial.

• For D∗∞: Idem, we setV(p) = +,V(q) = − and p ' q.

• For ω̄: We set � to be the usual order on N and the valuation can be anything as there is one
element per stratification level.

• For Z: There are two choices, either to take the natural order on N and any valuation, or any
order and the even/odd valuation...

• For H f : a constant valuation will do with the order αn
k � α

n′
k′ iff n ≤ n′ and always αn

k � ∗.

In the following we suppose given an extensional K-model D that is stratified positive.
We will now show (Th. 2.4.2.12) that the stratified positivity is a sufficient condition for

the sensibility for Λτ(D). Therefore we will build a maximal S D-realizer. A S D-realizer R is,
basically, the supply, for each α ∈ D, of a set R(α) of terms M such that τα(M) head converges.
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Definition 2.4.2.5. A saturated set is a set of term G ⊆ Λτ(D) that is close by backward
reduction.
Given two saturated sets G,H, we denotes by G 7→ H the saturated set of terms M such that
∀N ∈ G, M N ∈ H.
Given an antichain a ∈ A f (D), we will write R(a) for

⋂
α∈aR(α).

Definition 2.4.2.6. We will denote, for all α ∈ D:

• N+
α = {M ∈ Λτ(D) | ∀β ≤D α, τβ(M)⇓h},

• N−α = {M ∈ Λτ(D) | ∃β ≥D α,∃L ∈ Λτ(D),M →∗ ε̄β + L},

• S D
α is the set of saturated subsets of N+

α that contains N−α ,

• S D = (S D
α )α∈D.

For any partial K-model J ⊆ D, we write S J for the restriction of S D to J.

Definition 2.4.2.7. A realizer in D is a function R from D to saturated subsets of Λτ(D) such
that:

1. for all b→α ∈ D, we have

R(b→α) = R(b) 7→ R(α),

2. for all α, β ∈ D, if α ≤D β then R(α) ⊇ R(β).

A realizer R is a S D-realizer if for all α, R(α) ∈ S D
α .

Given a partial K-model J ⊆ D, a function R : J → P(Λτ(J)) is a S J-realizer if it respects the
same property when restricted to J.

Definition 2.4.2.8. For any functions X,Y ∈ S D and any evaluationV : D→ {+,−}, we will
say that X ⊆V Y if for all α:

• Xα ⊆ Yα wheneverV(α) = +,

• and Xα ⊇ Yα wheneverV(α) = −.

Lemma 2.4.2.9. There exists a S D-realizer R in D

Proof. By induction on the well founded order formed by the set of initial segments of D by the preorder
� of the stratified positivity, we can construct, for every initial segment J ∈ I(D),
a S J-realizer RJ : J → P(Λτ(D)) so that RJ = R�J (where R�J is the restriction of R to J). In par-
ticular it gives R = RD.
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• If J is empty: trivial

• If J =
⋃

k∈K Jk with Jk ⊂ J for all k:
Then for all k, k′ ∈ K, RJk∩Jk′ = RJk�Jk′

= RJk′�Jk
. Thus, RJ(α) = JJk (α) for α ∈ Jk is well

defines (it does not depend on the choice of Jk). The conditions of Definition 2.4.2.7 are universal
conditions and thus still verified:

1. For all b→α ∈ J, there is k such that a→α ∈ Jk and

∀N ∈ RJ(b) = RJk (b), M N ∈ RJk (α) = RJ(α).

2. For all α ≤ β with α, β ∈ J, since α � β or α � β, there is k such that α, β ∈ Jk and thus

RJ(α) = RJk (α) ⊇ RJk (β) = RJ(β).

• If J =↓� α, i.e., it is the set elements β � α (with the stratification order):
Let [α] be the equivalence class of α for the preorder �.
Let J′ be the initial segment J − [α], and RJ′ the realizer of J′ given by the IH.
Let R′J : J → P(Λτ(D)) be a function (not yet a realizer) defined by

R
′
J(β) = RJ′(β) if β ∈ J′,

R
′
J(β) = N−β ∪

⋃
γ∈J′,γ≥Dβ

RJ′(γ) if β'α and V(β)=+,

R
′
J(β) = N+

β ∩
⋂

γ∈J′,γ≤Dβ

RJ′(γ) if β'α and V(β)=−.

Let HJ : Λ
[α]
τ(D) → Λ

[α]
τ(D) be defined by

HJ((Xγ)γ'a)c→β =
(⋂
γ∈c

Xγ 7→ Xβ
)

where Xγ = RJ′(γ) for γ ∈ J′

When its component in J′ is fixed toRJ′ , HJ∪idJ′ is monotone for ⊆E . Moreover, HJ(R′J) ⊇E R
′
J .

Thus HJ has a least fixpoint RJ above R′J . The collection RJ is a realizer since the conditions of
Definition 2.4.2.7 are verified:

1. For all c→β ∈ J′ the IH gives RJ(c→β) = RJ′(c→β) = RJ(c) 7→ RJ(β) and
for all c→β ∈ [α], we have RJ(c→β) = RJ(c) 7→ RJ(β) by definition of HJ

2. R′J respects Item (2) and HJ conserves the property.

It is moreover a S J-realizer:

– For all β ∈ J, R′J(β) ∈ S J
β = S D

β :

∗ If β ∈ J′: since RJ′ is a S J′-realizer

∗ If β ' α and V(β) = +. Then trivially N−β ⊆ R
′
J(β). Moreover, if M ∈ R′J(β) then

either M ∈ N−β ⊆ N
+
β , or there is γ ≥D β such that M ∈ RJ′(γ). In the last case, for

any δ ≤D β, since β ≤D γ and RJ′ is a S J′-realizer, τδ(M)⇓h, so that M ∈ N+
β .

∗ If β ' α andV(β) = −. Then trivially R′J(β) ⊆ N−β . Moreover, for all M ∈ N−β , there
is δ ≥D β such that M →∗ ε̄δ + L. Then for all γ ∈ J′ such that γ ≤D β, we have δ ≥D β

and since RJ′ is a S J′-realizer M ∈ RJ′(γ), so that M ∈ R′J(β).
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– S J is an atractor of HJ ∪ idJ′ :
Suppose that R′′J ∈ S J and R′′J�J′

= RJ′ .

Then for all β ∈ J′, trivially (HJ ∪ idJ′)(R′′J )(β) = R′′J (β) ∈ S J′(β) = S J(β) (by induction
hypothesis).
For all b→β ' α:

∗ Let M ∈ (HJ ∪ idJ′)(R′′J )(b→β), we have to show that M ∈ N+
b→β.

Let b′ ≥D b and β′ ≤D β, we have to show that τb′→β′(M)⇓h. By extensionality, it is
sufficient to show that τβ′(M ε̄b′) converges. But since ε̄b′ ∈

⋂
γ∈bN

−
γ ⊆ R

′′
J (b), the

hypothesis gives that (M ε̄b′) ∈ R′′J (β) ⊆ N+
γ , and thus that τβ′(M ε̄b′) converges.

∗ Let M ∈ N−b→β, i.e., M →∗ ε̄b′→β′ + L with b′ ≤D b and β′ ≥D β.
We have to prove that M ∈ (HJ ∪ idJ′)(R′′J )(b→β), i.e., that for any γ ∈ b
and N ∈ R′′J (γ), the application M N is in R′′J (β). Since N ∈ R′′J (γ) ⊆ N+

γ , we
know that for any γ′ ∈ b′ ≤D b, the close test τγ′(M) converges to ε.
Thus M N →∗ τ̄β′(Πγ′∈b′τγ′(M)) + L′ →∗ ε̄β′ + L′ so that M N ∈ N−β ⊆ R

′′
J (β).

�

Remark 2.4.2.10. This realizer is in fact the inverse of the interpretation ~.�D in the sens
that α ∈ ~M�D iff M ∈ RD(α).

Lemma 2.4.2.11. Let R be a S D-realizer in D.

if (~a, α) ∈ ~M�~x and (∀i, Li ∈ R(ai)) then M[~L/~x] ∈ R(α)

if ~a ∈ ~Q�~x and (∀i, Li ∈ R(ai)) then Q[~L/~x]→∗ ε

Proof. By induction on M and Q:

• M = xi :
If (~a;α) ∈ ~M�~x, there exists β ∈ ai such that α � β. Thus if Li ∈ R(ai) ⊆ R(β) ⊆ R(α),
we have M[~L/~x] = Li ∈ R(α).

• M = N1 N2 :
If (~a;α) ∈ ~M�~x there exists b = {β1, ..., βn} such that (~a; b→α) ∈ ~N1�

~x and (~a; β j) ∈ ~N2�
~x

for all j. Thus, by IH, if for all i, Li ∈ R(ai), N1[~L/~x] ∈ R(b→α) = (
⋂

jR(β j) ⇒ R(α))
and N2[~L/~x] ∈

⋂
jR(β j).

• M = λy.N :
If (~a;α) ∈ ~M�~x1 then α = c→β and ((~a, c); β) ∈ ~N�~xy.
We want to show that whenever ∀i ≤ |~x|, Li ∈ R(ai), we have

λy.N[~L/~x] ∈ R(c→β) =
⋃
γ∈c

R(γ)⇒ R(β),

but if L ∈ R(γ) for all γ ∈ c, the IH give us that P[~L/~x][L/y] ∈ R(β)

103



• M = Σ jτ̄γ j(Q j) :
If (~a;α) ∈ ~Σ jτ̄γ j(Q j)�~x, there is j such that α � γ j and ~a ∈ ~Q j�

~x.
By IH, if ∀i ≤ |~x|, Li ∈ R(ai) then Qi[~L/~x] →∗ ε and M[~L/~x] →∗ M′ + ε̄γ j ∈ R(γ j) ⊆ R(α), we
can conclude by saturation of R(α)

• Q = τα(M) :
If ~a ∈ ~τα(M)�~x, we have (~a;α) ∈ ~M�~x and by IH, if ∀i ≤ |~x|, Li ∈ R(ai) then M[~L/~x] ∈ R(α),
thus by definition, τα(M[~L/~x])→∗ ε

• Q = Q1·Q2 :
If ~a ∈ ~Q1·Q2�

~x, Then ~a ∈ ~Q1�
~x∩~Q2�

~x and by IH whenever ∀i ≤ |~x|, Li ∈ R(ai), Q1[~L/~x]→∗ ε
and Q2[~L/~x]→∗ ε, thus trivially Q1·Q2 →

∗ ε

�

Theorem 2.4.2.12 (positivity implies sensibility).
Any stratified positive and extensional K-model D is sensible for Λτ(D).

Proof. Let D be a stratified positive extensional K-model.
Let M ∈ Λτ(D) be such that (~a, α) ∈ ~M�~x and Q ∈ Tτ(D) such that (~a) ∈ ~Q�~x.
By Lemma 2.4.2.9, there is an S D-realizer R in D.
Since for all i ≤ n, ε̄ai ∈

⋂
γ∈ai N

−
γ ⊆ R(ai), by Lemma 2.4.2.11 there is M[ε̄a1/x1...ε̄an/xn] ∈ R(α). We

know that R(α) ⊆ N+
α contains only converging terms, thus M[ε̄a1/x1...ε̄an/xn] converges, in particular

M converges (Rk. 2.3.1.17).
Similarly we can prove that Q converges. �

Example 2.4.2.13. By Theorem 2.4.2.12 and Example 2.4.2.4, all the K-models D of Example 1.2.4.9
are sensible for Λτ(D) except P∞.

Here is a bypassing corollary:

Corollary 2.4.2.14. Any stratified positive extensional K-model D is approximable.

Proof. By Theorems 2.4.2.12 and 2.4.1.9. �
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3. Quantitative subexponentials and
their models

We have seen in Section 1.3 that the logics BSLL offer a logical ground to the design of type
systems allowing to express various co-effects.

In this section, we present various denotational models for BSLL. In the literature, there
is a categorical axiomatisation of what is a model of BSLL known by the name of bounded
exponential situation (recalled here in Definition 3.1.1.2). This notion has been presented at
first in [BGMZ14], but it originates from Melliès’ works on parametrized monads [Mel13].1

However, there is no known concrete category satisfying the axioms of a bounded exponential
situation: the article [BGMZ14] gives only a realisability model for a few specific examples of
semirings S.

Our approach is based on a very simple intuition. We believe that behind any model of
linear logic (i.e., in any linear category Sec. A.3.2) lies a model of BSLL for some internal lax-
semiring S. Moreover, we expect this internal lax-semiring to be non trivial for most models
of interest. The goal of this chapter will then be to track the internal lax-semiring of a given
linear category and to study its structure.

The first step is Section 3.1. We proceed by analyzing which kind of models of BSLL
can be found in a degenerated but rich structure such as the relational models of linear logic
(Th. 3.1.3.8).

In Section 3.1.1, we recall and explain the notion of S-bounded exponential situation, for
S a bounded (lax-)semiring. Then, using our assumption on the existence of an internal lax-
semiring we define the notion of stratification (Def 3.1.1.13) over a linear category. This strat-
ification consists of decomposing the exponential comonad of the ambient linear category into
a S-bounded exponential situation.

Then, we study the relational model (Def. A.3.4.4) endowed with the free exponential
(Sec. 3.1.2) and other possible non-free exponential comonads (Sec. 3.1.3). We will see that
Rel can form a S-bounded exponential situation for many different semirings S. By choosing
an adequate generalized exponential, we will see in Proposition 3.1.3.13 that we can form a
S-bounded exponential situation for any semiring S.

Unfortunately, it is clear from the categorical definition of stratification (Def 3.1.1.13) that we
loss of generality. Indeed, stratification relies on the existence of a degenerated morphism (the
differential ∂). Nonetheless, this semantics is a first step and despite giving quite unsatisfactory
results, it still gives insight and intuitions over the whole theory we are trying to build up.

In Section 3.2, we use these results to explicitly track the internal lax-semiring. Indeed, we
will see that any linear category (or more exactly its 2-categorical counterpart Def. 3.2.1.2)

1See also Melliès’ presentation “Sharing and Duplication in Tensorial Logic” at the workshop Developments in
Implicit Computational complExity 2013.

105



intrinsically contains a natural internal lax-semiring hidden inside its hom-category L[!1, 1]
(Th. 3.2.2.4).

Moreover, the linear category itself can be transformed to give a S-bounded exponential sit-
uation relatively to any refining its internal semiring (Th.3.2.3.3). This transformation consists
of using the slice category around the tensorial unit 1.

Going further, we will see that the notion of internal semiring naturally expands to a de-
pendent version (Def. 3.2.4.5) that can be used to generalize BSLL (Def. 3.2.5.1). This step
is important to understand more elaborate bounded logics such as the original BLL [GSS92b]
or DFuzz [GHH+13a] that carry some notions of dependency. Indeed, the major weakness
of BSLL is the lack of dependent types, in particular BSLL is not an extension of the original
bounded linear logic. The interest in this latter has been recently renovated by a series of works,
like Dal Lago and Gaboardi’s D`PCF [dLG11] or Gaboardi et al.’s DFuzz [GHH+13a]. These
systems use parameters depending on variables which can be bounded and instantiated in the
type derivation.

Our long-term perspective is to investigate whether this notion of internal semiring can be
used to classify linear categories. For example, it seems that the linear categories whose Kleisli
category is well-pointed is associated with the Boolean semiring. A general study of internal
semirings for concrete examples of linear categories may be necessary, both for the understand-
ing of quantitative semantics, and for the selection of suitable semirings regarding interesting
applications of BSLL.
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3.1. Models of BSLL

We give a general recipe for getting a bounded exponential situation out of a model of linear
logic (Theorem 3.1.1.16). The main point of our construction is to specify the intuition that
BSLL corresponds to a stratification of the linear logic exponential comonad along the semir-
ing S: any model of linear logic admitting such a stratification (and one model can admit more
than one) defines a model also of BSLL. From our point of view, this result, although simple,
is meant to be a first step in relating the semantical notion of “approximants” (or “stratus”) of
the linear logic exponential, with a notion of co-effect annotation in a type system.

In Section 3.1.2, we apply our recipe to the category Rel of sets and relations, showing
various examples of bounded exponential situations. The category Rel provides one of the
simplest models of linear logic, where the exponential comonad is given by the finite multiset
functor. We also extend the result to other linear categories such that ScottL, CohB or CohN.

Further, in Section 3.1.3, in order to show the diversity of the models of BSLL, we con-
sider a generalization of the comonad in Rel given by the notion of multiplicity semiring in
Carraro et al.’s [CES10]. A multiplicity semiring R is a semiring satisfying some conditions
(Definition 3.1.3.1) which generalize the natural number semiring N. This generalization has
been introduced in [CES10] for proving the existence of non-sensible models of the untyped
λ-calculus in the category Rel. There, one can define a “universal” interpretation for any semir-
ing S (Prop. 3.1.3.13).

3.1.1. Stratifying Linear Logic Exponentials

The notion of linear category (Sec. A.3.2) has been introduced [BBdPH93] as a categorical
axiomatisation of a model of the multiplicative, exponential fragment of intuitionistic linear
logic. This definition has been recently revisited [BGMZ14] with the notion of S-bounded
exponential situation, which roughly corresponds to a variant of linear category where the
exponential comonad is parameterized by the elements of a partially ordered semiring S, and
which gives a categorical model of BSLL.

In this section, we are discussing this characterization: explaining its intuitions, strengths
and weaknesses. Our main contribution is the definition of the stratification of an exponential
comonad along a semiring S (Definition 3.1.1.13). We use the fact that any linear category is a
special case of a 1-bounded exponential situation (for the trivial semiring 1). We give a general
recipe for extracting a bounded exponential situation from a linear category (Theorem 3.1.1.16).
Section 3.1.2 will apply this recipe to the concrete case of the relational category.

Semirings as categories

In categories, formulas/types are the objects while derivations/terms are morphisms. What is
the place of the semiring S bounding BSLL along this scheme?

The semiring elements I, J... definitively live at the level of formulas since they are part of
them (for example, in AI), thus they should be objects of a certain category.

What about morphisms? In the rule:

Γ, AI ` B J ≥ I
Sweak

Γ, AJ ` B,

107



the right assertion J ≥ I appears like an axiom, which means that it has the status of a mor-
phism. In fact, morphisms of S are defined by S(J, I) being empty if J 6≥ I and a singleton
if J ≥ I.

In this framework, the sum and product are bifunctors + : (S × S)→ S ,· : (S × S)→ S so
that their monotonicity corresponds to the bifunctoriality.

Similarly we can see that 0 and 1 are 0-ary functors 0 : unt→ S and 1 : unt→ S .
The other axioms (associativity, distributivity...) are natural isomorphisms called unt+,
untL·, untR·, as+, as·, com+, absR and dstL; the left absorption and the right distributivity are
just natural transformations2 absLI : 0 −→ 0·I and dstRI,J,K : (I·J) + (I·K) −→ I·(J + K).

Any coherence diagram will automatically be verified since the category is an order (there is
at most one morphism between two objects). Thus we can say that the resulting category is a
bimonoidal category (more exactly its lax version).

Remark 3.1.1.1. The definition of BSLL (Def. 1.3.1.1) could be naturally generalized to any lax-
bimonoidal category, with richer morphism structure. Forcing the category to be an order means that
we consider every proofs of J ≥ I to be the same. Nonetheless, we do not see (for the moment) any
example of interest for such a refinement so that we will stay with semirings. In fact, the categorical
view of the semiring as lax-bimonoidal categories will only serve for defining the categorical semantics,
allowing to reason with functors and natural transformations (along Section 3.1 at least).

The bounded exponential situation

A linear category L (Sec. A.3.2) gives a model of BSLL with S the trivial semiring (i.e. the
usual intuitionistic MELL). In this case we have just one exponential modality, which is in-
terpreted by the functor ! of L and its associated structures. When S is non-trivial, one has
to parameterize the exponential modality ! by the elements of S and to propagate this param-
eterization along the whole structure; the interaction between these various modalities will
follow the laws of the semiring S. Such a structure has been suggested by Melliès and for-
mally introduced [BGMZ14] along with the notion of bounded exponential situation which is
a parameterized version of the linear category:

Definition 3.1.1.2 ([BGMZ14]). Let S be a lax-semiring.
A S-bounded exponential situation consists of:

• a symmetric monoidal closed category (L,⊗, 1,(), used to interpret the multiplicative
fragment of BSLL;

• a bifunctor ( ) : S × L → L together with six natural transformations:

p′I,J,a : aI·J −→ aJ I
, d′a : a1 −→ a,

c′I,J,a : aI+J → aI ⊗ aJ, w′a : a0 −→ 1,

m′I,a,b : aI ⊗ bI −→ (a ⊗ b)I , m′I,1 : 1 −→ 1I ,

2Recall that left absorption and right distributivity are directed in lax-semirings
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which should satisfy parameterized versions of the diagrams of linear category. These

diagrams are parameterized version of diagrams of linear category (Sec. A.3.2), except
for the diagrams of Figure 3.1

Remark 3.1.1.3. A surprising point, regarding this semantics, is that each axiom of semiring corre-
sponds exactly to a coherence diagram. We consider this fact as a hint for a strong relation between
semirings and linear categories, which we will explicit in Section 3.2.

Remark 3.1.1.4. The question of the right distributivity DistR′ and left absorption AbsR′ in Figure 3.1
is crucial here. Since we relax the previous definition of BSLL [BGMZ14] with lax-semiring, we had to
significantly modify the notion of bounded exponential situation.

Indeed, if the directions of the other arrows of the form ida
natTrans are not significant (they are iso-

morphisms); the directions for ida
absLI and ida

dstRI,J,K are forced by the orientation of the left absorption
and right distribution. One could ask whether it is a safe choice.

Along the remaining of the chapter, we will try to explain our choice of using a lax-semiring but here
is a first explanation.3 When using BSLL as a type system in the style of Brunel et al [BGMZ14], the
promotion of a term t is denoted !t and the cut between two banged terms is denoted by a let rule:

∆ ` s : AK Γ, x : AK ` t : B
Γ,∆ ` let !x := s in t : B

The reduction of the let rule is the following:

let !x :=!s in t → t[s/x].

This rule have to be verified at logical level. In particular, the subject reduction forces the following
reduction:

y : CI ` s : A
y : CI·K `!s : AK

y : CJ , x : A ` t : B
y : CJ·K , x : AK `!t : BK

y : CI·K+J·K ` let !x :=!s in !t : BK

→

y : CI ` s : A y : CJ , x : A ` t : B
y : CI+J ` t[s/x] : B

y : C(I+J)·K `!(t[s/x]) : BK

Of course, this rule is not correct (the conclusions are different). This shows that we need to perform an
approximation in the right sequent (corresponding exactly to the direction of the lax right distribution):

y : CI ` s : A
y : CI·K `!s : AK

y : CJ , x : A ` t : B
y : CJ·K , x : AK `!t : BK

y : CI·K+J·K ` let !x :=!s in !t : BK

→

y : CI ` s : A y : CJ , x : A ` t : B
y : CI+J ` t[s/x] : B

y : C(I+J)·K `!(t[s/x]) : BK

y : CI·K+J·K `!(t[s/x]) : BK

In conclusion, the right distribution means that commuting a contraction with a promotion is possible
but only one way: the earlier the contraction is, the more accurate we are.

Remark 3.1.1.5. This axiomatisation has been obtained by parameterization of the linear category.
However, it is not clear whether it is sufficient or not.

Indeed the soundness proof of the linear category [Bie94] strongly refers to the Eilenberg-Moore
category over (!, d, p).

3I have to thanks Dominic Orchard for this remark.

109



a(I·J)·K

aI·J K

aI·(J·K) aI J·K

aI J K

Assop′

a1·I

aI a1I

UntmL′

aI·1

aI1 aI

UntmR′
p′a,I·J,K

ida
as·I,J,K p′a,I,J·K

p′a,I,J
K

p′
aI ,J,K

ida
untL·I

p′a,1,I

d′a
I

ida
untR·I

p′a,I,1

d′
aI

aI+J

aJ+I

aI ⊗ aJ

aJ ⊗ aI

Coma′

aI

1 ⊗ aI

a0+I

a0 ⊗ aI

Unta′

aI+(J+K)

aI ⊗ aJ+K

a(I+J)+K

aI ⊗ (aJ ⊗ aK)

aI+J ⊗ aK

(a⊗IaJ) ⊗ aK

Assa′

ida
com+I,J

c′a,I,J

c′a,J,I

γaI ,aJ

ida
unt+I

λ−1
aI c′1,a

w′a ⊗ idaI

ida
as+I,J,K c′a,I+J,K

c′a,I,J+K c′a,I,J ⊗ idaK

idaI ⊗ c′a,J,K αaI ,aJ ,aK

aI·0

a0

aI0

1

AbsR′

aI·(J+K)

aI J+K

a(I·K)+(I·K) aI·J ⊗ aI·K

aI J
⊗ aI K

DistL′ida
absRI

p′a,I,1

w′a

w′
aI

ida
dstLI,J,K

p′a,I,J+K

c′a,I·J,I·K

c′
aI ,J,K

p′a,I,J ⊗ p
′
a,I,K

a0

1

a0·I a0I

1I

AbsL′

a(I·K)+(J·K)

aI·K ⊗ aJ·K

a(I+J)·K

aI K
⊗ aJ K

a(I+J)K

(aI ⊗ aJ)K

DistR′w′a

ida
absLI p′a,0,I

m′I

w′a
I ca,I·K,J·K

ida
dstRI,J,K pa,I+J,K

ca,I,J
K

pa,I,K ⊗ pa,J,K

maI ,aJ ,K

Figure 3.1.: Principal diagrams of the S-bounded exponential situation. Here we denote aI J for
(aI)J.
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For example, the diagrams AbsR and DistR (Sec.A.3.2) are supposed to be a consequence of a
stronger requirement that every free coalgebra should be a co-monoid morphism. This requirement
is not fully translated here and is only replaced by diagrams AbsR′ and DistR′.

In the parametric version, a notion of parameterized Eilenberg-Moore category would be the category
of (a, (hI)I∈S) with hI natural in I and hJ; hI

J = hI·J; pa,I,J . However with such a parameterized notion,
(a, Ia,I,J) is not a parametric coalgebra, and AbsR′ and DistR′ do not follow from requiring all free
parametric coalgebras to be co-monoid morphisms.

A last remark is that AbsL and DistL are supposed to offer a structure of coalgebra morphism to w
and c, which does not make sense here (domains w′ and c′ are not parameterized coalgebras). This is
only a reminiscence of Remark 3.1.1.4.

Remark 3.1.1.6. Another reasonable choice of categorical semantic would be to parameterize the
new-Seely semantics [Bie94] which is equivalent in the non parameterized case. The new-Seely seman-
tics is based on the isomorphism !a⊗!b '!(a & b) that has to be parameterized
by sa,I,b,J : aI ⊗ bJ ' (a & b)I+J (in order to encode contraction).

If the two semantics are equivalent in the non-parametric setting, it seems that they are different when
parameterized. One can recover the bounded exponential situation from a parameterized new-Seely
semantics via the following interpretation of ma,b,I:

aI ⊗ bI (a & b)I+I (a & b)2·I (a & b)2I ((a & b) ⊗ (a & b))I (a ⊗ b)I ,
sa,I,b,I idI+I≥2·I

a⊗b p′a&b,2,I (c′; (d′ ⊗ d′))I π1 ⊗ π2

where (I+I ≥ 2·I) := (untL·−1, untL·−1); dstR uses the right distributivity on along the allowed direc-
tion.

However, it is not possible to go the other way around. In fact, the parameterized new-Seely semantic
can be described as too strong. Indeed, it implies the existance of the following morphism:

aI ⊗ bJ (a & b)I+J aJ ⊗ bI
sa,I,b,J s−1

a,J,b,I

which is not so natural. In particular, for S = N, we get for every m, n ∈ N the morphism:

am

am ⊗ 1 am ⊗ 1n

(a & 1)m+n an ⊗ 1m

an ⊗ 11 ⊗ · · ·11︸      ︷︷      ︸
m times

an ⊗ 1 ⊗ · · ·1︸    ︷︷    ︸
m times

an

λ

id ⊗ mn ⊗ · · · ⊗ mn

sa,m,1,n

s−1
a,n,1,m

idan ⊗ (c; ...; c)

id ⊗ (d1 ⊗ · · · d1)

λ; ...; λ

which is clearly not desired in general.
Notice, however, that this semantics is promising for the semantics of syntaxical extensions using

“shapes” in the idea of Petricek et al [POM13].

Finally, we can express the conjecture form Brunel et. al. [BGMZ14] that foresee the cor-
rection of this axiomatization. Unfortunately, despite the semantic being reasonable, we did
not check all the details.

Conjecture 3.1.1.7. A S-bounded exponential situation gives a model of BSLL.
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Interpretation of semiring

We do not just study one logic BSLL, but a class of logics indexed by semirings. From this
generalization emerges a structure resulting from simulations/functors between the logics. In-
deed, among all these logics there is some that are finer than others. For example, BBLL
(Ex. of Sec. 1.3) is finer that B1LL, in the sense that any derivation in B1LL can be injec-
tively simulated by the same derivation in BBLL: the only possible amount of resource is tt and
any structural weakening (Weak) is simulated by structural weakening followed by a resource
weakening (Sweak) (that collapses ff into tt). It is only natural for the semantic to respect this
structure.

Definition 3.1.1.8. An interpretation of the lax-semiring S into the lax-semiring R is a bi-
monoidal functor.4This means that there is a function ~−� : S 7→ R such that (for all I, J ∈ S):

I ≤S J ⇒ ~I� ≤R ~J�, ~I� +R ~J� ≤R ~I +S J�, ~I�·R~J� ≤R ~I·SJ�,
0R ≤R ~0S�, 1R ≤R ~1S�.

The embedding ~−� is said to be a refinement of S.

Remark 3.1.1.9. If bimonoidal categories were considered in place of semirings, ~−� should be a
functor and several diagrams should commute.

As a result, any interpretation of S into R defines a simulation of BSLL into BRLL, i.e., a
coherent translation of formulas, derivation trees and cut-eliminations.

The simulation of formulas is the identity except for the exponential:

~AI� := ~A�~I�

The interpretation of derivation rules are also immediate except for those that use exponentials
(and are subject to equations of Definition 3.1.1.8) :[[

Γ ` B I ≥ 0S
Weak

Γ, AI ` B

]]
:= ~Γ� ` ~B�

I ≥ 0S
~I� ≥ ~0S� ~0S� ≥ 0R

~I� ≥ 0R
Weak

~Γ�, ~A�~I� ` ~B�

where the right side of the equation is strictly equivalent to:

~Γ� ` ~B� ~I� ≥ 0R
Weak

~Γ�, ~A�~I� ` ~B�

Similarly, each rule is simulated by the same rule where every formula and every semiring
annotation is translated.

It is trivial to check that each step of cut elimination is simulated by the same step in the
co-domain system.5

4In fact we should say colax-lax-bimonoidal functor: “lax” because those are lax-semiring and “colax” because
we only ask for natural transformation mapping ~0S� to 0R...etc...

5Here we have a trivial translation step by step so that we do not need to expand further.

112



Proposition 3.1.1.10. Given any interpretation ~−� of S into R, any R-bounded exponential
situation gives a S-bounded exponential situation by pre-composition.

Proof. Given aR-bounded exponential situation (L, ( ) , p′, d′, c′, w′, m′), we can get aS-bounded
exponential situation by setting aI := a~I� and translating the natural transformations, for ex-
ample:

p′′a,I,J := aI·J a~I·J� a~I�·~J� a~I�~J� aI J

d′′a := a1 a~1� a1 a
id~I·J�≥~I�·~J�a

p′a,~I�,~J�

id~1�≥~1�a d′a

The coherence diagrams are then trivially obtained using the fact that any diagram commutes
in R (since it is an order). One has to be more careful with the extension to any bimonoidal
category. �

Example 3.1.1.11. • The trivial semiring is final, i.e., any BSLL is simulated by LL.

• Setting ~∗� = tt gives an interpretation of the trivial semiring into the Boolean semiring B. How-
ever, the trivial semiring cannot be interpreted into N since B1LL is equivalent to LL which is
stronger (in term of logical power) that BNLL.

• Recalling Example A.4.1.3, the semiring P(N) interprets N, N f , B and Z2:

N f : ~n� = {n},

N: ~n� = {m ≤ n},

B: ~tt� = {n | n , 0} and ~ ff � = {0},

Z2: ~0� = {2n | n ∈ N} and ~1� = {2n + 1 | n ∈ N}.

Remark, for example, that for B we have

~tt ∨ tt� = {n > 0} ! {n1+n2 | n1, n2 > 0} = ~tt�+~tt�.

From the first example we have the following:

Proposition 3.1.1.12. Any linear category L defines a S-bounded situation for any semiring
S by setting aI :=!a.

However, models mentioned in Proposition 3.1.1.12 are critically degenerated as they col-
lapse all bounding parameters I ∈ S to the linear logic exponential.

Stratification

Following the idea that in any linear category L is hidden an internal semiring, one should
expect the interpretation of the usual exponential of LL to result from an interpretation of the
trivial semiring into the internal semiring. There are some assumptions we will use to describe
intuitively our positions:

• First, we presume the existence of some internal semiring SL,
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!a

a1

a∂

d

∂

a,1

da

d′a

!a

a0

1

∂

w

∂

a,0

wa

w′a

1

1I

!1

∂

m1

m′I

m1

∂

I

!a

aI·J

!!a

!(aI)

aI J

∂

p

∂

a,I·J,

p′a,I,J

pa

!(

∂

a,I )

∂

aI ,J

!a

aI+J

!a ⊗ !a

aI ⊗ bJ

∂

c

∂

a,I+J

ca

∂

a,I ⊗

∂

a,J

c′a,I,J

!a ⊗ !b

aI ⊗ bI

!(a ⊗ b)

(a ⊗ b)I

∂

m

∂

a,I ⊗

∂

b,J

m′a,b,I,J

ma,b

∂

a⊗b,I

Figure 3.2.: Coherence diagrams between the natural transformation

∂

and the exponential
structure (!, d, p, w, c, m) of a linear category.

• then we assume that SL interprets the trivial semiring 1,

• moreover we assume that the image ~∗� of this interpretation is the top, denoted >, of
the internal semiring SL.

Following these hypotheses, there should be a morphism

∂

a,I : a>≥I :!A → aI for any a ∈ L
and any I ∈ S. Moreover, if we presume that this morphism is an isomorphism, then one can
recover all the bounded exponential situation. For example, the contraction and digging are
given by

p′a,I,J := aI·J !a !!a !(aI) aI J
.

c′a,I,J := aI+J !a !a⊗!a aI ⊗ aJ

∂−1
a,I·J pa !

∂

a,I

∂

aI ,J

∂−1
a,I+J ca

∂

a,I ⊗

∂

a,J

In order to relieve those strong hypothesis, we do not ask for

∂

to be inversible, but to be a
natural epimorphism. We will see that this general recipe can be applied in several different
situations with interesting and various results.

Definition 3.1.1.13. A stratification of a linear category L is given by:

• an ordered semiring S (seen as a bimonoidal category);

• a bifunctor ( ) : S × L → L;

• a natural transformation

∂

I,a : !a −→ aI

• such that

∂

I,a is an epimorphism (Def. A.1.0.11) for every I and a, which means that for
any morphism φ, ψ : aI → b, if

∂

; φ =

∂

;ψ then φ = ψ,
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• such that there exists the morphisms:6

p′I,J,a : aI·J → aJ I
, d′a : a1 → a,

c′I,J,a : aI+J → aI ⊗ aJ, w′a : a0 → 1,

m′I,a,b : aI ⊗ bI → (a ⊗ b)I , m′I,1 : 1→ 1I ,

that complete the diagrams of Figure 3.2.

Remark 3.1.1.14. Notice that all the diagrams of Figure 3.2 simply state that each natural transfor-
mation e required for the linearity of L is transported along

∂

to its parameterized version e′.
Notice, moreover, that when they exist p′, d′, c′, w′, m1 and m are uniquely determined due to the uni-

versal property of epimorphisms and the diagrams of Figure 3.2. That is why we say that a stratification
is a triple (L, ( ) ,

∂

).

Lemma 3.1.1.15. If

∂

a,I and

∂

a,J are epimorphisms, so is

∂

a,I ⊗

∂

a,J.

Proof. We use the closure of ⊗. Indeed,

(

∂

a,I ⊗

∂

a,J); φ = (

∂

a,I ⊗

∂

a,J);ψ
⇒ (

∂

a,I ⊗ id); ((id ⊗

∂

a,J); φ) = (

∂

a,I ⊗ id); ((id ⊗

∂

a,J);ψ) rewriting
⇒

∂

a,I; Λ((id ⊗

∂

a,J); φ) =

∂

a,I; Λ((id ⊗

∂

a,J);ψ) Curryfication
⇒ Λ((id ⊗

∂
a,J); φ) = Λ((id ⊗

∂
a,J);ψ) since

∂
a,I is epi

⇒ (id ⊗

∂

a,J); φ = (id ⊗

∂

a,J);ψ decurryfication
⇒

∂

a,J; Λ(φ) =

∂

a,J; Λ(ψ) Curryfication
⇒ Λ(φ) = Λ(ψ) since

∂

b,I is epi
⇒ φ = ψ decurryfication

�

Theorem 3.1.1.16 (Stratification to bounded exponential). A stratification (S, ( ) ,

∂

) of a
linear category yields a S-bounded exponential situation, as defined in Definition 3.1.1.2,
hence a model of BSLL.

Proof. The point is that all the structure defining a bounded exponential situation can be trivially ob-
tained by translating back the structure of the linear category L along the epimorphism

∂

.
The naturality and the commutation of the diagrams associated with these transformations are ob-

tained by using the usual diagrams enjoyed by a linear category and the diagrams of Figure 3.2 as well
as the universal property of epimorphisms. For example, Figure 3.3 gives the commutation that the
morphism p′a,I,J should enjoy in order to give a positive action. The triangle I is naturality of

∂

over
the associativity of the semiring multiplication, the square IV is the usual one of a linear category, V

6Which are not required to be natural.
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aI·(J·K)

(aI)J·K

a(I·J)·K (aI·J)K

aI J K

!a

!!a

!!a

!!!a

.

.

. .

I II

III IV V VI

VII

VIII

p′a,I,J·K

aas
· p′a,I·J,K

p′a,I,J
K

p′
aI ,J,K

pa

pa

!pa

p!a

∂

∂

!

∂

∂

∂

!

∂

!!

∂

!

∂

∂

!p′a,I,J

paI

Figure 3.3.: An example of the proof of the commutation of the diagrams needed to have a
bounded exponential situation.

uses the promotion of the square on the first line of Figure 3.2, VI and VII are the naturality of, resp.,

∂

and p, and finally II, III and VIII are again squares of Figure 3.2. Notice that this is a priori not suffi-
cient to obtain the commutation of the external cell due to the first

∂

that point on the wrong direction.
However, we actually obtain that

∂

; Aas
·

; p′; p′K =

∂

; p′; p′ which results in the commutation of the
external cell by the universal property of the epimorphism

∂

.
The naturality diagrams are obtained by using the universal property of epimorphism over the follow-

ing diagrams:

a1

a

a1

b

!a !b

φ1≥1

d′a d′b

φ

!φ

da db

∂

a,1

∂

b,1

a0 a0

!a !b

1

φ0≥0

w′a

w′b

!φ

wa wb

∂

a,0

∂

b,0

1

1I 1I′

!1m′I

m′I′

1I≥I′

m1

∂

1,I

∂

1,I′

aI·J

aI J

aI′·J′

bI′ J
′

!a !b

!!a !!b

· ·

φI·J≥I′ ·J′

p′a,I,J p′b,I′ ,J′

φI≥I′ J≥J′

!φ

pa pb

!!φ

∂

a,I·J

∂

b,I′ ·J′

!

∂

a,I

∂

b,I′

∂

!a,J

∂

!b,J′

aI+J

aI ⊗ aJ

aI′+J′

bI′ ⊗ bJ′

!a !b

!a⊗!a !b⊗!b

φI+J≥I′+J′

c′a,I,J c′b,I′ ,J′

φI≥I′ ⊗ φJ≥J′

!φ

ca cb

!φ⊗!φ

∂

a,I+J

∂

b,I′+J′

∂

a,I ⊗

∂

a,J

∂

b,I′ ⊗

∂

b,J′

aI ⊗ bI

(a ⊗ b)I

cI′dI′

(c ⊗ d)I′

!a⊗!b !c⊗!d

!(a ⊗ b) !(c ⊗ d)

φI≥I′ ⊗ ψI≥I′

m′a,b,I m′c,d,I′

(φ ⊗ ψ) I≥I′

!φ⊗!ψ

ma,b mc,d

!(φ ⊗ ψ)

∂

a,I ⊗

∂

b,I

∂

c,I′ ⊗

∂

d,I′

∂

a⊗b,I

∂

c⊗d,I′

We show here the diagrams proving the most non trivial equation:
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aI·1

aI1

aI aI

!a

!!a

!a

.

a1·I

a1I

aI aI

!a

!!a

!a

.

p′a,I,1

auntR
·

id

d′
aI

pa

id

d!a

∂

!

∂

∂

∂ ∂

daI

p′a,I,1

auntL
·

id

d′a
I

pa

id

!da

∂

!

∂

∂

∂ ∂

!d′a

a(J+K)·I

aJ·I+K·I

(aJ+K)I (aJ ⊗ aK)I

(aJ)I
⊗ (aK)IaJ·I ⊗ aK·I

!a

!!a !(!a⊗!a)

!!a⊗!!a!a⊗!a

. .

.

aI·(J+K)

aI·J+I·K

(aI)J+K (aI)J
⊗ (aI)K

aI·J ⊗ aI·K

!a

!!a !!a⊗!!a

!a⊗!a

. .

adstR

p′a,J+K,I c′a,J,K
I

m′
aJ ,aK ,I

c′a,J·I,K·I p′a,J,I ⊗ p
′
a,K,I

ca

pa

!ca

pa ⊗ pa

m!a,!a

∂

∂

!

∂

∂

!(

∂

⊗

∂

)

∂

!
∂

⊗!
∂

∂

⊗

∂

∂
⊗

∂

!c′a,J,K

maJ ,aK adstL

p′a,I,J+K
c′

aI ,J,K

p′a,I,J ⊗ p
′
a,I,K

c′a,J·I,K·I

ca

pa

c!a

pa ⊗ pa

∂

∂

!

∂

∂

!

∂

⊗!

∂

∂

∂

⊗

∂

caI ,J,K

a0·I

a0

(a0)I 1I

1

!a

!!a !1

.

aI·0

a0

(aI)0

1

!a !!a

.

aabsR

p′a,0,I w′a
I

m′I

w′a

ca

pa

!wa

m⊥

∂

∂

!

∂

∂

∂

!w′a

aabsL

p′a,I,0

w′
aI

w′a

wa

pa

w!a

∂

∂

!

∂

∂

waI
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aI·J ⊗ bI·J

aI J
⊗ bI J

(a ⊗ b)I·J (a ⊗ b)I J

(aI ⊗ bI)J

!a⊗!b

!!a⊗!!b

!(a ⊗ b) !!(a ⊗ b)

!(!a⊗!b)

.

.

.

p′a,I,J ⊗ p
′
b,I,J

m′a,b,I·J p′a⊗b,I,J

m′a,b,I
J

m′
aI ,bI ,J

pa ⊗ pb

ma,b

pa⊗b
!ma,b

m!a,!b

∂

⊗

∂

!

∂

⊗!

∂

∂

⊗

∂

∂

!

∂

∂

!(

∂

⊗

∂

)

∂

maI ,bI

!m′a,b

�

Remark 3.1.1.17. It is clear that they should be a higher order reformulation that would present this
construction as an epimorphism between exponential actions.

3.1.2. Concrete examples of stratifications

Stratification over the relational model

Recall (Def. A.3.3.3) that the category Rel, having sets as objects and relations as morphisms,
forms a linear category RelN when endowed with the multiset comonad:

!a := N f 〈A〉 !φ := {([α1, ...., αn], [β1, ..., βn]) | ∀i ≤ n, (αi, βi) ∈ φ}

We show how to associate with an ordered semiring S a stratification of the linear category
RelN, for any multiplicity semiring R. The key-point is that any stratification over the expo-
nential object !1 actually extends to a stratification over any exponential object of RelN. Since
we are in a set-theoretical framework (the hom-sets are powersets) and !1 is isomorphic to N,
stratifying !1 corresponds to interpret the ordered semiring S into the powerset P(N). Def-
inition 3.1.2.1 gives the conditions that such interpretation should enjoy in order to induce a
stratification over the whole RelN (Th. 3.1.2.2).

Definition 3.1.2.1. A relational interpretation for a lax-semiring S is an interpretation
(Def. 3.1.1.8) ~−� : S 7→ P(N), where P(N) is the powerset lax-semiring of Example A.4.1.3.
This means that ~−� have to verify that (for all I, J ∈ S):

I ≤S J ⇒ ~I� ⊆ ~J�, ~I� ⊕ ~J� ⊆ ~I +S J�, ~I� � ~J� ⊆ ~I ·S J�,
{0N} ⊆ ~0S�, {1N} ⊆ ~1S�.
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Theorem 3.1.2.2 (Semiring interpretation of stratification). Any relational interpretation
~−� of an ordered semiring S induces a stratification of the linear category RelN, defined by:

aI :=
{
[α1, ..., αn] ∈ !a | n ∈ ~I�

}
, f I≥J := {([α1, ...., αn], [β1, ..., βn]) ∈ ! f | n ∈ ~J�},

∂

I,a := {(u, u) | u ∈ aI}.

In particular,7~−� extends to a sound interpretation of BSLL into RelN.

Proof. One should prove that the couple ((−)−,

∂

) enjoys the conditions of Definition 3.1.1.13
each

∂

a,I is a surjective relation and thus an epimorphism. Lemma 3.1.2.3 shows that ( ) is a bifunctor.
Lemma 3.1.2.4 shows the naturality of

∂

. And Lemma 3.1.2.5 shows the commutation of diagrams of
Figure 3.2. �

In the following we denote ‖[α1, ..., αn]‖ := n the norm of a multiset [α1, ..., αn] ∈!a.

Lemma 3.1.2.3. For any relational interpretation ~−�, of a lax-semiring S the exponential
( ) forms a bifunctor:

( ) : S × RelN → RelN

Proof. For simplicity, we rewrite the exponential on morphisms as:

f I≥J := {(u, v) ∈ ! f | ‖v‖ ∈ ~J�},

• The identity is preserved:

idA
I≥I = {(u, v) ∈ !idA | ‖v‖ ∈ ~I�}

= {(u, v) ∈ id!A | ‖v‖ ∈ ~I�}

= {(u, u) | ‖u‖ ∈ ~I�}

= idAI .

• The composition is preserved:

f I≥J; gJ≥K = {(u,w) | ∃v, (u, v) ∈ ! f , (v,w) ∈ !g, ‖v‖ ∈ ~J�, ‖w‖ ∈ ~K�}

= {(u,w) | ∃v, (u, v) ∈ ! f , (v,w) ∈ !g, ‖w‖ ∈ ~K�}

= {(u,w) | (u,w) ∈ ! f ; !g, ‖w‖ ∈ ~K�}

= ( f ; g)I≥K .

�

Lemma 3.1.2.4. For any relational interpretation ~−� of a lax-semiringS, the transformation

∂

I,a = {(u, u) | u ∈ a~I�} : !a −→ aI is natural.

7Assuming Conjecture 3.1.1.7.
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Proof. • Naturality of

∂

I,a in a:
Let f ∈ Rel(a, b), we must prove that for all I, ! f ;

∂

I,b =

∂

I,a; f I≤I .
Let (u, v) ∈! f ;

∂

I,b then there exists w such that (u,w) ∈! f and (w, v) ∈

∂

I,b thus v = w
and ‖v‖ ∈ ~I�; thus ‖u‖ = ‖v‖ ∈ ~I� and (u, u) ∈

∂

I,a what concludes since (u, v) ∈ f idI .
Conversely let (u, v) ∈

∂

I,a; f idI then there exists w such that (u,w) ∈

∂

I,a and (w, v) ∈ f idI

thus u = w and ‖w‖ ∈ ~I�; thus ‖v‖ = ‖w‖ ∈ ~I� and (v, v) ∈

∂

I,b what concludes since (u, v) ∈! f .

• Naturality of

∂

I,a in I:
For I, J, we must prove that for all a,

∂

J,a =

∂

I,a; ida
I≥J , what is trivial since

ida
I≥J = {(u, u) | ‖u‖ ∈ ~J�} : aI =⇒ aJ .

�

Lemma 3.1.2.5. The couple ((−)−,

∂

) makes the diagrams of Figure 3.2 commute for:

d′a := da ∩ (a1 × a) w′a := wa ∩ (a0 × 1) m′I := m1 ∩ (1 × 1I)

p′a,I,J := pa ∩ (aI·J × (aI)J) c′a,I,J := ca ∩ (aI+J × (aI ⊗ aJ)) m′a,b,J := ma,b ∩ ((aI ⊗ bI) × (a ⊗ b)I)

Proof. • Diagram (

∂

d) in Figure 3.2:

∂

a,1; d′a = {([α], α) | α ∈ a, 1N ∈ ~1S�}

da = {([α], α) | α ∈ a, 1N ∈ ~1S�}

those two sets are identical because 1N ∈ ~1S� by Item 5 of Definition 3.1.2.1.

• Diagram (
∂

p) in Figure 3.2:

∂

a,I·J; p′a,I,J = {(u,U) | u(a) = Σv∈!av(a)·U(v), ‖u‖ ∈ ~I·J�, dom(U) ⊆ aI , ‖U‖ ∈ ~J�}

= {(u,U) ∈ pa | ‖Σv∈!av·U(v)‖ ∈ ~I·J�, dom(U) ⊆ aI , ‖U‖ ∈ ~J�}

= {(u,U) ∈ pa | Σa∈aΣv∈!av(a)·U(v) ∈ ~I·J�, dom(U) ⊆ aI , ‖U‖ ∈ ~J�}

= {(u,U) ∈ pa | Σv∈!a‖v‖·U(v) ∈ ~I·J�, dom(U) ⊆ aI , ‖U‖ ∈ ~J�}

= {(u,U) ∈ pa | Σv∈dom(U)‖v‖·U(v) ∈ ~I·J�, dom(U) ⊆ aI , ‖U‖ ∈ ~J�}

pa; !

∂

a,I;

∂

aI ,J = {(u,U) ∈ pa | dom(U) ⊆ aI , ‖U‖ ∈ ~J�}.

those two sets are identical. Indeed, if dom(U) ⊆ aI and ‖U‖ ∈ ~J� then we can apply Item 3 of
Definition 3.1.2.1:

Σv∈dom(U)‖v‖·U(v) ⊆ {Σv∈dom(U) pv·qv | Σv∈dom(U)qv ∈ ~J�, ∀v ∈ dom(U), pv ∈ ~I�}

⊆ ~I� � ~J�

⊆ ~I·J�.

• Diagram (

∂

w) in Figure 3.2:

∂

a,0; w′a = {([a], a) | a ∈ a, ‖a]‖ ∈ ~1�}

w = {([a], a) | a ∈ a}

The two sets are the same since ‖[a]‖ = 1N ∈ ~1S� by Item 4 of Definition 3.1.2.1.
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• Diagram (

∂

c) in Figure 3.2:

∂

a,I,+J; c′a,I,J = {(u, (v,w)) | u = v+w, ‖u‖ ∈ ~I+J�, ‖v‖ ∈ ~I�, ‖w‖ ∈ ~J�}

= {(v+w, (v,w)) | ‖v‖+‖w‖ ∈ ~I+J�, ‖v‖ ∈ ~I�, ‖w‖ ∈ ~J�}

ca;

∂

I,a ⊗

∂

J,a = {(v+w, (v,w)) | ‖v‖ ∈ ~I�, ‖w‖ ∈ ~J�}

The two sets are the same because the conditions on v and w imply that on v+w, since ~I�⊕~J� ⊆
~I + J�.

• Diagram (

∂

m) in Figure 3.2:

(

∂

a,I ⊗

∂

b,I); m′a,b = {((u, v),w) | u(α) = Σβ∈bw(α, β), v(β) = Σα∈aw(α, β), ‖u‖, ‖v‖, ‖w‖ ∈ ~I�}

= {(((u, v),w) ∈ ma,b | ‖α 7→ Σβw(α, β)‖ ∈ ~I�, ‖β 7→ Σαw(α, β)‖ ∈ ~I�, ‖w‖ ∈ ~I�}

= {((u, v),w) ∈ ma,b | ΣαΣβw(α, β) ∈ ~I�,ΣβΣαw(α, β) ∈ ~I�, ‖w‖ ∈ ~I�}

= {((u, v),w) ∈ ma,b | Σ(α,β)∈a×bw(α, β) ∈ ~I�, ‖w‖ ∈ ~I�}

= {((u, v),w) ∈ ma,b | ‖w‖ ∈ ~I�}

= ma,b;

∂

a⊗b,I

• Recall the the remaining diagram

∂

m1 is always trivial (Rk. 3.1.1.14).
�

Example 3.1.2.6. Let us apply Theorem 3.1.2.2 to the ordered semirings discussed in Section 1.3.2.
There is only one possible interpretation of the trivial semiring into the multiplicity semiring N,

associating the unique element ∗ with the whole set N. In fact, Definition 3.1.2.1 requires that ~∗�
contains 0, 1 and that it is closed under addition. This interpretation gives the usual multi-set based
model of linear logic.

The interpretation of a Boolean-based ordered semiring into N depends on the order between tt and ff .
In the case ff ≤ tt, we can set either ~tt� = N and ~ ff � = {0}, or ~tt� = N = ~ ff �.8 The latter collapses
the two modalities to the usual multiset comonad, while the former interprets the formula A ff by the
singleton of the empty multiset, representing the type of unused resources. In the case ff and tt are
incomparable in S, then we can set ~tt� = N − {0} and ~ ff � = {0}, strictly distinguishing between used
resources (type Att) and unused resources (type A ff ).

A way to rephrase Theorem 3.1.2.2 is that the bounded logic BP(N)LL over powerset lax-
semiring P(N) can be interpreted in RelN. Indeed, all the other interpretations can be recovered
from this one using Proposition 3.1.1.10.

In fact, the powerset lax-semiringP(N) also seems to be the finest of the lax-semiring that are
relationally interpreted without collapse (I , J ⇒ ~AI� , ~AJ�). That is why we expect P(N)
to be a sort of “internal semiring” of RelN. In section 3.2, we will see that it is indeed the case
for a suitable notion of internal lax-semiring (Def. 3.2.2.4).

8There are some other uninteresting possibilities.
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Coherent and Scott models

The stratification of Rel that we have studied in the previous section may appear degenerated.
Indeed, the epiness of

∂

is too easily obtained in Rel that has every morphisms you need.
We will now present some stratifications of other linear categories, namelly ScottL, CohB

and CohN (Prop. A.3.4.6 and Def. A.3.3.7).

Proposition 3.1.2.7. The linear category CohN is the category of coherence spaces
(Def. A.3.3.6) endowed with the multiset exponential (Def. A.3.3.7):

!a := (Cm(a), {(φ, ψ) | ∀α ∈ φ,∀β ∈ ψ, α ¨ β});

!φ :=
{
([α1, ..., αn], [β1, ..., βn])

∣∣∣∣ n ∈ N, ∀i ≤ n, (αi, βi) ∈ φ
}

The following describes a stratification of CohN by P(N) (for φ ∈ Coh[a, b] and I ⊆ J ⊆ N):

aI := {[α1 · · · , αn] ∈ |!Na| | n ∈ I}, u ¨aI u′ := u ¨!Na u′, φI⊇J := {(u, v) ∈!φ | v ∈ bJ}

with the codifferential natural transformation:

∂

I,a := {(u, u) | u ∈ |aI |}, for I ∈ P(N).

Proof. This is the same stratification as RelN. In fact, since CohN is a sub linear category of RelN, the
only things to prove are:

• that φI⊇J ∈ Coh[aI , bJ]:

– since the morphism !φ conserves the size of the multisets we have φI⊇J ⊆ (aJ × bJ), and
since aI ⊆ aJ whenever I ⊇ J, we have φI⊇J ⊆ (aI × bJ)

– φI⊇J is a clique of !a(!b since it is included in the clique !φ, thus it is a clique of aI ( bJ ,

• that the

∂

I,a are morphisms, which is clear since it is a subclique of the identity morphism,

• that d′, p′, w′, c′ and m′ are actualy transformations of CohN: this is immediate since each of them
are subcliques of their unparameterized version.

�

Proposition 3.1.2.8. The linear category CohB is the category of coherence spaces
(Def. A.3.3.6) endowed with the set exponential (Def. A.3.3.7):

!a := (C(a), {(φ, ψ) | ∀α ∈ φ,∀β ∈ ψ, α ¨ β});

!φ :=
{
({α1, ..., αn}, {β1, ..., βn}) ∈ C(a) × C(b)

∣∣∣∣ n ∈ N, ∀i ≤ n, (αi, βi) ∈ φ
}

We define in Example A.4.1.3 the four element lax-semiring ♦ which elements are |♦| :=
{0, 1,⊥,>} where 1+1 = 1+> = 1 and where ⊥ is a universal absorber (⊥+I=⊥·I=I·⊥=⊥
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excepts for ⊥·0 = 0). Let ~ � : ♦→ P(N) defined by:

~0� := {0} ~1� := N − {0} ~⊥� := ∅ ~>� := N

The following describes a stratification of CohB by ♦ (for φ ∈ Coh[a, b] and I ≥ J ⊆ N):

aI := {{α1 · · · , αn} ∈ |!Ba| | n ∈ ~I�}, u ¨aI u′ := u ¨!Ba u′, φI⊇J := {(u, v) ∈!φ | v ∈ bJ}

with the codifferential natural transformation:

∂

I,a := {(u, u) | u ∈ |aI |}, for I ∈ ♦.

Proof. First remark that the following holds (by case analysis over J):

I ≥ J implies that aI ⊇ aJ (3.1)

(v,w) ∈!ψ implies that v ∈ bJ ⇔ w ∈ cJ . (3.2)

• We have φI≥J ∈ Coh[aI , bJ]:

– We get φI≥J ⊆ (aI × bJ), indeed by Implication (3.2) we have φI≥J ⊆ (aJ × bJ) and we can
conclude using Implication (3.1) over I ≥ J,

– moreover, φI≥J is a clique of !a (!b since it is included in the clique !φ, an thus it is a
clique of aI ( bJ .

• The functor is stable by identity and composition:

idI≥I
a = {(u, v) ∈!ida | v ∈ aI}

= {(u, u) ∈ id!a | v ∈ aI}

= idaI

φI≥J;ψJ≥K = {(u,w) | ∃v, (u, v) ∈!φ, (v,w) ∈!ψ, v ∈ bJ , w ∈ cK}

= {(u,w) | ∃v, (u, v) ∈!φ, (v,w) ∈!ψ, v ∈ bJ , v ∈ cJ w ∈ cK} by Eq. (3.2)

= {(u,w) | ∃v, (u, v) ∈!φ, (v,w) ∈!ψ, w ∈ cK} by Eq. (3.1)

= (φ;ψ)I≥J

• For each a ∈ Coh and I ∈ ♦,

∂

I,a ∈ Coh[!a, aI]: already proved since

∂

I,a = id>≥I
a .

• The transformation

∂

is natural: idem.

• For each a ∈ Coh and I ∈ ♦,

∂

I,a is epi: this is immediat since it is a surjective relation.

• If we set d′a := {({α}, α) | α ∈ a} we get a morphism in Coh[a1, a] that verifies

∂

a,1; d′a = da:

– d′a ⊆ a1 × a is immediate,

– that d′a is a clique comes from it being a clique in !a( a,

–

∂

a,1; d′a = da is immediate.

• If we set p′a,I,J :=
{
(
⋃

i≤n ui, {u1, ..., un})
∣∣∣∣ n ∈ ~J�,∀i, ui ∈ aI , ∀i, j, ui ¨aI u j

}
we get a morphism

in Coh[aI·J , aI J] that verifies

∂

a,I·J; p′a,I,J = pa; !

∂

a,I;

∂

aI ,J:
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– p′a,I,J ⊆ aI·J × (aI J) is an easy case analysis over

(n ∈ ~J�, ∀i ≤ n, ui ∈ aI) ⇒
⋃
i≤n

ui ∈ aI·J , (3.3)

– p′a,I,J is a clique since it is a subset of pa,

–

∂

a,I·J; p′a,I,J = pa; !

∂

a,I;

∂

aI ,J is immediate by Equation. (3.3).

• If we set w′a := {(∅, ∗)} we get a morphism in Coh[a0,1] that verifies

∂

a,0; w′a = wa:

– wa ⊆ a0 × 1 is immediate,

– that w′a is a clique comes from it being a clique in !a( 1,

–

∂

a,0; w′a = wa is immediate.

• If we set c′a,I,J :=
{
(u∪v, (u, v))

∣∣∣∣ u ∈ aI , v ∈ aJ , u ¨!a v
}

we get a morphism in Coh[aI+J , aI⊗CJ]
that verifies

∂

a,I+J; c′a,I,J = ca; (

∂

a,I ⊗

∂

a,J):

– ca,I,J ⊆ aI+J × (aI ⊗ aJ) is an easy case analisis over

(u ∈ aI , v ∈ aJ) ⇒ (u ∪ v) ∈ aI+J , (3.4)

– c′a,I,J is a clique since it is a subset of ca,

–

∂

a,I+J; c′a,I,J = ca; (

∂

a,I ⊗

∂

a,J) is immediate by Equation. (3.4).

• If we set m′a,b,I :=
{
((u, v), u × v)

∣∣∣∣ u ∈ aI , v ∈ bI
}

we get a morphism in Coh[aI ⊗ bJ , (a ⊗ b)I] that
verifies (

∂

a,I ⊗

∂

b,I); m′a,b,I = ma,b; (

∂

a⊗b,I):

– m′a,b,I ⊆ (aI ⊗ bJ) × (a ⊗ b)I is an easy case analisis over

(u ∈ aI , v ∈ bI) ⇒ (u × v) ∈ (a ⊗ b)I , (3.5)

– m′a,b,I is a clique since it is a subset of ma,b,

– (

∂

a,I ⊗

∂

b,I); m′a,b,I = ma,b; (

∂

a⊗b,I) is immediate by Equation. (3.5).

�

Remark 3.1.2.9. The lax-semiring ♦ can be seen as a lax-semiring over P(B).

Proposition 3.1.2.10. Recall that the category ScottL of posets and linear functions between
initial segments (Def.A.3.4.3), is a linear category when endowed with the antichain exponen-
tial (Prom. A.3.4.6):

!a := A f (a); !φ(U) := ↓{v | ∃u ∈ U, φ(↓u) = ↓v}

Recall that the bottomed Boolean lax-semiring B⊥ (Ex. A.4.1.3) is the three objects fully
ordered lax-semiring tt > ff > ⊥ where ⊥ is a universal absorber (⊥ + I = ⊥·I = I·⊥ = ⊥

excepts for ⊥· ff = ff ).
The following describes a stratification of ScottL by B⊥:

a⊥ := ({}, id) a ff := ({∅}, id) att :=!a φI≥J(U) :=!φ(U) ∩ aJ
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with the codifferential natural transformation:

∂

a,I(U) := U ∩ aI

Proof. Here is a little lemma for any I ∈ B⊥ and and φ ∈ ScottL[a, b]:

!φ(U ∩ aI) = !φ(U) ∩ bI . (3.6)

For I = ⊥ and for I = tt it is trivial, for I = ff it comes from the linearity of φ (so that φ(∅) = ∅).

• If φ ∈ ScottL[a, b] then φI≥J is linear since !φ is linear and its domains and codomain range
over the initial segments of aI and bJ since the domain and codomain of !φ range over the initial
segments of !a and !b and since aI and bJ are initial segments of !a and !b respectivelly.

• for any a ∈ ScottL and any I ∈ B⊥,

ida
I≥I = !ida ∩ aI = idaI

• for any φ : a→ b, any ψ : b→ c and any I ≥ J ≥ K ∈ B⊥:

φI≥J;ψJ≥K(U) =!ψ(!φ(U) ∩ bJ) ∩ cK

=!ψ(!φ(U)) ∩ (cJ ∩ cK) by Eq.3.6

=!(φ;ψ)(U) ∩ (cJ ∩ cK) funct. of !

=!(φ;ψ)(U) ∩ cK since J ≥ K

= (φ;ψ)I≥K(U).

• For any φ : a→ b, and any I ≥ J ∈ B⊥, we have

!φ;

∂

b,J(U) :=!φ(U) ∩ bJ

∂

a,I; φI≥J(U) :=!φ(U ∩ aI) ∩ bJ

:=!φ(U) ∩ bI ∩ bJ by Eq.3.6

:=!φ(U) ∩ bJ sinceI ≥ J,

which prove the naturality of

∂

.

• For any φ, ψ : aI → b, if

∂

a,I; φ =

∂

a,I;ψ, then φ(U ∩ aI) = ψ(U ∩ aI) for any U ∈ I(a)
so that φ = ψ since I(aI) = I(a) ∩ aI; this conclud that

∂

a,I is an epimorphism.

• Diagram

∂

d is verified for d′a := da since

∂

a,tt = id!a.

• Diagram

∂

p is verified for pa,I,J(U) := pa(U) ∩ aI J . Indeed, we have:

(pa; !

∂

a,I;

∂

aI ,J)(U) = ↓A f (a){{u} | u ∈ U} ∩ aI J

(

∂

a,I·J; pa,I,J)(U) = ↓A f (a){{u} | u ∈ (U ∩ aI·J)} ∩ aI J

= ↓A f (a){{u} | u ∈ U} ∩ A f (aI·J) ∩ aI J
,

remains to check thatA f (aI·J) ⊇ aI J for any I, J ∈ B⊥ which is clear.
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• Diagram

∂

w is verified by w′a :=
( ∅ 7→∅
{∅}7→∗

)
. Indeed, we trivialy have (

∂

a,0; w′a)(∅) = ∅ = wa(∅) and
if U , ∅, we have:

(

∂

a,0; w′a)(U) = w′a(U ∩ a0)

= w′a({∅})

= wa(U)

since U ∩a0 = U ∩{∅} with U that is non empty and downward close and with ∅ wich is a bottom
inA f (a).

• Diagram

∂

c is verified by c′a,I,J(U) := {(u, v) ∈ aI × aJ | u, v ≤ w ∈ U} for U ∈ aI+J . Indeed, we
have (for any U ∈!a):

(ca; (

∂

a,I ⊗

∂

a,J)(U) = {(u, v) | u, v ≤ w ∈ U} ∩ (aI × aJ)

= {(u, v) ∈ aI × aJ | u, v ≤ w ∈ U}

(

∂

a,I+J; c′a,I,J)(U) = {(u, v) ∈ aI × aJ | u, v ≤ w ∈ U ∩ aI+J}

If I = ⊥ or J = ⊥ then both resolve to the emptyset, if I = tt or J = tt then aI+J =!a making the
two terms equals and if I = J = ff then u = v = w = ∅.

• Diagram

∂

m is verified by m′a,b,I(U) := ↓{u × v | (u, v) ∈ U}}. Indeed, we have:

(ma,b;

∂

a⊗b,I)(U) = ↓{u × v ∈ (a ⊗ b)I | (u, v) ∈ U}}

((

∂

a,I ⊗

∂

b,I); m′a,b,I)(U) = ↓{u × v | (u, v) ∈ (U ∩ aI × bI)}

it is then easy to check that u × v ∈ (a ⊗ b)I iff u ∈ aI and v ∈ bI .

• As usual, Diagram
∂

m1 is trivially obtained for m′I = m1;
∂

1,I .

�

3.1.3. A parametric generalisation with multiplicity exponential

In the previous section, we have seen several models and what seems to be their internal lax-
semiring. However, there are too few examples to oversee a generality. In this section we
will use a parameterized class of models called RelR. They correspond to the relational model
endowed with different, non-free, exponential comonads !R, where R ranges over a specific
subclass of semirings called multiplicity semirings (Def. 3.1.3.1).

We will see that the “internal lax-semiring” depends on R. In fact, it corresponds to P(R),
the powerset lax-semiring over R (rather than N) of Definition 3.1.3.4. Bypassing, we will
show that this case is so large that any logic BSLL can be interpreted in some RelR so that the
quantitative information does not collapse (if I , J the ~AI� , ~AJ�).

Multiplicity semirings

It has been pointed out by Hyland et al. [HNPR06] that several linear categories such as Rel can
be seen as Kleisli categories over some variant of the non-deterministic monad. This is a remi-
niscent of the granularity of these models that can decompose programs into an “aggregation’
of their different possible behaviors.
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In the case of Rel, this fact could not be clearer, indeed, Rel is the Kleisli of the non-
deterministic monad (the powerset monad) in Set. It particular, this means that any exponential
comonad have to somehow distribute over this powerset monad.

These were some informal intuitions, however, they correspond to a concrete notion of mul-
tiplicity semiring introduced by Carraro, Ehrhard and Salibra [CES10]. This notion was intro-
duced to show that decomposing the exponential of the model Rel of linear logic with such a
semiring still yields to a model of linear logic.9

Definition 3.1.3.1 ([CES10]). A multiplicity semiring is a semiring R = (|R|, ·, 1,+, 0) such
that (p, q, r will vary over R):

(MS1) R is positive: p+q = 0 implies p = q = 0;

(MS2) R is discrete: p+q = 1 implies p = 0 or q = 0;

(MS3) R is additively splitting: p1 + p2 = q1 + q2 implies ∃r1,1, r1,2, r2,1, r2,2, such that

pi = ri,1 + ri,2 , qi = r1,i + r2,i ;

(MS4) R is multiplicatively splitting: q1+q2 = r · p implies there is l ∈ N such that for all
j ≤ l, we can find r j, p1, j, p2, j such that

r = r1 + · · · + rl,

p = p1, j + p2, j for all j ≤ l,
qi = r1 · pi,1 + · · · + rk · pi,l.

The notion of multiplicity semiring given by Definition 3.1.3.1 is a slight generalization of
the one in [CES10], because the multiplicative splitting has been slightly relaxed. It is straight-
forward to check that all proofs in [CES10] still hold, in particular we have Theorem 3.1.3.3.

First, we present some intuitions for these rules:

(MS1): This equation states that there is no negative at all, i.e. no pairs of resources that cancel
each other. Technically, this rule will be needed for the naturality of the weakening in the
proof of Theorem 3.1.3.3.

(MS2) This equation says that 1R is a non-breakable atom. Technically, this rule will be needed
for the naturality of the dereliction in the proof of Theorem 3.1.3.3.

(MS3) This equation says that if two different summations result in the same quantity, then
there is a finer decomposition factorizing them:

9Those were used to create relational models for pure λ-calculus that are not sensible (Def 1.2.1.7)
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=
p

q
p q1

1
2 2

r r

r r1,2

1,1 2,1

2,2

Technically, this rule will be needed for the naturality of the contraction in the proof of
Theorem 3.1.3.3.

(MS4) This equation says that if a sum and a product result in the same quantity, then there is
a finite decomposition of this result that factorizes both (here l = 5):

=
q
1q

2

r

p

r

p

r1 r4

p
1,2

p
1,1

p
2,2

p
2,1

Technically, this rule will be needed for the naturality of the digging in the proof of
Theorem 3.1.3.3.

Example 3.1.3.2. The semiring of natural numbers N is the prototypical example of multiplicity semir-
ing, while the Boolean semiring (as well as any cyclic semiring) is a non-example because the discrete-
ness condition fails. In fact, one can show that any multiplicity must contain N as a sub-semiring gen-
erated by 0 and 1. The completed natural numbers N̄ of Example A.4.1.3 forms a multiplicity semiring,
as well as the polynomial semiring of Example A.4.2.3.

The category Rel of sets and relation can be turned into a linear category using the multiset
comonad as exponential modality (see Appendex A.3.3). The following is a generalization by
Carraro et al. [CES10]. In place of multisets, the exponential modality is composed of the free
R-semimodules (Def. A.4.1.4), for any multiplicity semiring R.

Theorem 3.1.3.3 (RelR [CES10]). In the monoidal category Rel of Example A.1.0.4
(Prop. A.3.4.4), any multiplicity semiring R defines an exponential comonad making it a
linear category with:

• the exponential functor is defined by (for r ∈ Rel(a, b)):

!Ra := R f 〈a〉,

!Rr := {(u, v) ∈ Rel(!Ra, !Rb) | ∃σ ∈ R f 〈r〉, u(α) =
∑
β∈b

σ(α, β),

v(β) =
∑
α∈a

σ(α, β)},

• the dereliction is da := {(δα, α) | α ∈ a} : !Ra → a, where δα(α) = 1 and δα(α′) = 0 for
every α , α′,
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• the digging is pa := {(m,M) | ∀α ∈ a,m(α) = Σn∈!Ran(α)M(n)} : !Ra→ !R!Ra,

• the contraction is ca := {(u, (v1, v2)) | ∀α ∈ a, u(α) = v1(α) + v2(α)} : !Ra→ !Ra ⊗ !Ra,

• the weakening is wa = {(0, ∗)} : !Ra→ 1, where 0 denotes the constant zero function in
R f 〈a〉,

• the 0-ary promotion is m1 = {(∗, u) | u ∈ !R1} : 1→ !R1,

• and the binary promotion is
ma,b := {((u1, u2), v) | u1(α) = Σβv(α, β), u2(β)= Σαv(α, β)} : (!Ra ⊗ !Rb)→ !R(a ⊗ b).

We denote by RelR the linear category induced by this exponential comonad.

The powerset lax-semiring of a multiplicity semiring

The notion of internal semiring for multiplicity exponentials should extend the notion of inter-
nal semiring for RelN (the powerset lax semiring P(N) over natural numbers). It is only natural
to expect the internal semiring of RelR to be some P(R).

We will see in this section that if R is a multiplicity semiring, then its powerset can be
endowed with a lax-semiring structure. In fact, we conjecture that the conditions are equivalent.

Definition 3.1.3.4. Given a multiplicity semiring R, we define the powerset lax-semiring of R
as P(R) endowed with the structure (�, {1R},⊕, {0R},⊆) where the operations are defined by
(I, J,K vary over P(R)):

I ⊕ J := {p +R q | p ∈ I, q ∈ J},

I � J :=
{ k∑

i=1

pi·Rqi | k ≤ 0,
k∑

i=1

qi ∈ J,∀i ≤ k, pi ∈ I
}
.

Lemma 3.1.3.5. For I, J ∈ P(R) and k ∈ N, any sequence (ri)i≤k of elements of I ⊕ J can be
decomposed so that ri =

∑k′
j=1 p j·qi, j with k′ ∈ N,

∑k′
j=1 qi, j ∈ J and for all j ≤ k′, p j ∈ I. In

particular p j and k′ do not depend on i (they are shared by each ri of the sequence).
In fact the converse is true, so that the following equality holds:

(I ⊕ J)k =
{
(

k′∑
j=1

p j·qi, j)i≤k | k′ ∈ N, (∀i ≤ k,
k′∑
j=1

qi, j ∈ J), (∀ j ≤ k′, p j ∈ I)
}
,

where (I ⊕ J)k is a notation for (I ⊕ J) ⊗ · · · ⊗ (I ⊕ J)︸                      ︷︷                      ︸
k times

.
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Proof. By definition:

(I ⊕ J)k =
{
(

k′i∑
j=1

pi, j·qi, j)i≤k | (k′i ) ∈ Nk, (∀i,
k′i∑
j=1

qi, j ∈ I), (∀i, j, pi, j ∈ J)
}

⊇
{
(

k′∑
j=1

p j·qi, j)i≤k | k′ ∈ N, (∀i,
k′∑
j=1

qi, j ∈ J), (∀i, j, p j ∈ I)
}
.

The reverse inclusion is obtained by specifying that k′i and pi, j does not depend on i:

• We set k′ :=
∑

i≤k k′i ,

• for all i ≤ k, and all  ≤ k′i , we set q′i, j+Σi′<ik′i′
:= q′i, j

• for all i ≤ k, and any other j we set q′i, j := 0R,

• and for all j ≤ k′, there is i and j′ ≤ ki such that j = j′ + Σi′<ik′i′ so that p′j := pi, j′ .

It results that

(I � J)k =
{
(

k′i∑
j=1

pi, j·qi, j)i≤k | (k′i ) ∈ Nk, (∀i,
k′i∑
j=1

qi, j ∈ J), (∀i, j, pi, j ∈ I)
}

⊆
{
(

k′∑
j=1

p′j·q
′
i, j)i≤k | k′ ∈ N, (∀i,

k′∑
j=1

q′i, j ∈ J), (∀i, j, p′j ∈ I)
}
.

�

Proposition 3.1.3.6. Given a multiplicity semiring R, the powerset lax-semiring P(R) of R is
a lax-semiring.

Proof. The proof is very similar to the proof of Proposition A.4.2.6 for P(N), only much more compli-
cated and with an explicit usage of properties over R (in particular we use each axiom of multiplicity).

• ⊕ is associative and commutative: immediate by associativity and commutativity of R.

• {0R} is neutral for ⊕: immediate by neutrality of 0R for +R.

• {1R} is left-neutral for �:

{1R} � J =
{ k∑

i=1

pi·qi | k ≤ 0,
k∑

i=1

qi ∈ J,∀i ≤ k, pi ∈ {1R}
}

=
{ k∑

i=1

1R·qi | k ≤ 0,
k∑

i=1

qi ∈ J}

=
{ k∑

i=1

qi | k ≤ 0,
k∑

i=1

qi ∈ J}

= J.
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• {1R} is right-neutral for �:

I � {1R} =
{ k∑

i=1

pi·qi | k ≤ 0,
k∑

i=1

qi ∈ {1R},∀i ≤ k, pi ∈ I
}

=
{ k∑

i=1

pi·qi | k ≤ 0, (∃i0 ≤ k, qi0 = 1R,∀i , i0, qi = 0R), pi ∈ I
}

(MS 2)

= I.

• � left-distributes over ⊕:

I � (J ⊕ K) =
{ k∑

i=1

pi·r′i | k ≤ 0,
k∑

i=1

r′i ∈ (J ⊕ K),∀i ≤ k, pi ∈ I
}

=
{ k∑

i=1

pi·r′i | k ≤ 0,
k∑

i=1

r′i = q+r,

q ∈ J, r ∈ K, ∀i ≤ k, pi ∈ I
}

=
{ k∑

i=1

pi·(qi+ri) | k ≤ 0,
k∑

i=1

qi ∈ J,
k∑

i=1

ri ∈ K, ∀i ≤ k, pi ∈ I
}

(MS 3)

=
{ k∑

i=1

(pi·qi)+
k∑

i=1

(pi·ri) | k ≤ 0,
k∑

i=1

qi ∈ J,
k∑

i=1

ri ∈ K, ∀i ≤ k, pi ∈ I

=
{ k∑

i=1

(pi·qi)+
k′∑
j=1

(p′j·r j) | k ≤ 0, k′ ≤ 0,
k∑

i=1

qi ∈ J,
k′∑
j=1

r j ∈ K,

∀i ≤ k, pi ∈ I, ∀ j ≤ k′, p′j ∈ I}
}

= (I � J) ⊕ (I � K)

• {0R} is right absorbing for �:

I � {0R} =
{ k∑

i=1

pi·r′i | k ≤ 0,
k∑

i=1

r′i ∈ {0R},∀i ≤ k, pi ∈ I
}

=
{ k∑

i=1

pi·0R | k ≤ 0,
k∑

i=1

qi ∈ J,
}

MS 1

= {0R} r. abs. in R
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• � is associative:

(I � J) � K =
{ k∑

i=1

p′i ·ri | k ≤ 0,
k∑

i=1

ri ∈ K,∀i ≤ k, p′i ∈ (I � J)
}

=
{ k∑

i=1

( k′∑
j=1

p j·qi, j
)
·ri | k, k′ ∈ N,

k∑
i=1

ri ∈ K, Lm. 3.1.3.5

∀i ≤ k,
ki∑

j=1

qi, j ∈ J, ∀ j ≤ k, p j ∈ I
}

=
{ k∑

j=1

k′∑
i=1

p j·(qi, j·ri) | k, k′ ∈ N,

k′∑
i=1

ri ∈ K, ∀i,
k∑

j=1

qi, j ∈ J, ∀ j, p j ∈ I
}

=
{ k∑

j=1

k′∑
i=1

k′′i∑
t

p j·(qi, j,t·ri,t) | k, k′ ∈ N, (k′′i )i ∈ Nk′ , i (i, t)

k′∑
i=1

k′′i∑
t=1

ri,t ∈ K, ∀i, t,
k∑

j=1

qi, j,t ∈ J, ∀ j, p j ∈ I
}

=
{ k∑

j=1

p j·(
k′∑

i=1

k′′i∑
t

qi, j,t·ri,t) | k, k′ ∈ N, (ki)i ∈ Nk′ , dist. in R

k′∑
i=1

k′′i∑
t=1

ri,t ∈ K, ∀i, t,
k∑

j=1

qi, j,t ∈ J, ∀ j, p j ∈ I
}

=
{ k∑

j=1

p j·(
k′∑

i=1

k′′i∑
t

qi, j,t·ri,t) | k, k′ ∈ N, (ki)i ∈ Nk′ ,

∀i,
k′′i∑
t=1

ri,t = ri, ∀i, t,
k∑

j=1

qi, j,t = qi,

k′∑
i=1

ri ∈ K,

∀i ≤ k′, qi ∈ J, ∀ j ≤ k, p j ∈ I
}

=
{ k∑

j=1

p j·(
k′∑

i=1

q′i, j) | k, k
′ ∈ N,∀i,

k∑
j=1

q′i, j = qi·ri,

k′∑
i=1

ri ∈ K, (MS 4)

∀i ≤ k′, qi ∈ J, ∀ j ≤ k, p j ∈ I
}

=
{ k∑

j=1

p j·q′j | k, k
′ ∈ N,

k∑
j=1

q′j =

k′∑
i=1

qi·ri,

k′∑
i=1

ri ∈ K, (MS 3)

∀i ≤ k′, qi ∈ J, ∀ j ≤ k, p j ∈ I
}

=
{ k∑

j=1

p j·q′j | k ∈ N,
k∑

j=1

q′j ∈ (J � K),∀ j ≤ k, p j ∈ I
}

= I � (J � K)
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• � right-distribute over ⊕ in the lax way:

(I ⊕ J) � K :=
{ k∑

i=1

p′i ·ri | k ≤ 0,
k∑

i=1

ri ∈ K,∀i ≤ k, p′i ∈ (I ⊕ J)
}

:=
{ k∑

i=1

(pi+qi)·ri | k ≤ 0,
k∑

i=1

ri ∈ K,∀i ≤ k, pi ∈ I, qi ∈ J
}

:=
{
(

k∑
i=1

pi·ri)+(
k∑

i=1

qi·ri) | k ≤ 0,
k∑

i=1

ri ∈ K,∀i ≤ k, pi ∈ I, qi ∈ J
}

⊆
{
(

k∑
i=1

pi·ri)+(
k′∑

i=1

qi·r′i ) | k ≤ 0, k′ ≤ 0,
k∑

i=1

ri ∈ K,
k′∑

i=1

r′i ∈ K,∀i ≤ k, pi ∈ I, qi ∈ J
}

=
{
p′+q′ | p′ ∈ (I � K), q′ ∈ (J � K)

}
= (I � K) ⊕ (J � K)

• {0R} is left absorbing for � in the lax way:

{0R} � K :=
{ k∑

i=1

p′i ·ri | k ≤ 0,
k∑

i=1

ri ∈ K,∀i ≤ k, p′i ∈ {0R}
}

:=
{ k∑

i=1

0R·ri | k ≤ 0,
k∑

i=1

ri ∈ K,
}

:=
{ k∑

i=1

0R·ri | k ≤ 0,
k∑

i=1

ri ∈ K,
}

⊆ {0R}

�

Stratification over RelR

The stratification is then very similar to the stratification over RelN.

Definition 3.1.3.7. A multiplicity semiring interprets a lax-semiring S if its powerset lax-
semiring P(R) interprets S (Def. 3.1.2.1). A R-relational interpretation of a lax-semiring S is
an interpretation ~−� : S 7→ P(R) of S into P(R).

Theorem 3.1.3.8 (Semiring interpretation of stratification). Any interpretation ~−� of an
ordered semiring S into a multiplicity semiring R induces a stratification of the linear cate-
gory RelR, defined by:

aI :=
{
u ∈ !Ra |

∑
x∈a

u(x) ∈ ~I�
}
, f I≥J := {(u, v) ∈ !R f | u ∈ aI , v ∈ bJ},

∂I,a :=

∂

I,a := {(u, u) | u ∈ aI}.
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In particular,10~−� ~−� extends to a sound interpretation of BSLL into RelR.

Proof. The proof is rigorously similar to the proof of Theorem 3.1.2.2 when you accept Lemma 3.1.3.9.
�

In the following we denote ‖u‖ =
∑
α∈a u(α) for u ∈!Ra.

Lemma 3.1.3.9. For any f : !Ra→ !Rb, if (u, v) ∈ f , then ‖u‖ = ‖v‖.
In particular, the functoriality can be rewritten:

f I≥J :=R {(u, v) ∈ ! f | ‖v‖ ∈ ~J�}.

Proof. If (u, v) ∈ f then there is σ ∈ R f 〈 f 〉 such that u(α) =
∑
β σ(α, β) and v(β) = Σασ(α, β) thus

‖u‖ =
∑
α

u(α) =
∑
α

∑
β

σ(α, β) =
∑
β

∑
α

σ(α, β) =
∑
β

v(β) = ‖β‖

One can rewrite the functoriality

f I≥J :=R {(u, v) ∈ ! f | ‖u‖ ∈ ~I�, ‖v‖ ∈ ~J�},

but since I ≥ J, we get ~I� ⊇ ~J� and

f I≥J :=R {(u, v) ∈ ! f | ‖v‖ ∈ ~J�}.

�

The free multiplicity semirings

It is not clear, a priori, whether any lax-semiring S can be interpreted into someP(R) for a mul-
tiplicity semiring R (turning it into an interpretation of BSLL into RelR). We will show that this
is the case by exhibiting the “free” multiplicity semiring N f 〈S·〉 induced by the multiplicative
monoid S· of S.

Recall from Definition A.4.2.1 and Proposition A.4.2.2 that, given a monoid M and a semir-
ing R, the set R f 〈M〉 of finitely supported functions from M to R forms a semiring with:

0R f 〈M〉 := [ ], (µ +R f 〈M〉 ν)(g) := µ(g) +R ν(g),

1R f 〈M〉 := [1M], (µ·R f 〈M〉ν)(g) :=
∑

g′,g′′∈M
g′·Mg′′=g

µ(g′)·Rν(g′′),

we recall, moreover, that [] stands for the zero constant (I 7→ 0R) and [I] stands for the function
mapping I into 1R and any J , I into 0R.

We will see that when R = N, i.e., when N f 〈M〉 represents finite multisets over M, the
semiring N f 〈M〉 is a multiplicity semiring (Prop. 3.1.3.11). Further on, we will see that when
the monoid is the multiplicative monoid S· of a ordered semiring S, the multiplicity semir-
ing N f 〈S·〉 interprets S.

10Assuming Conjecture 3.1.1.7.
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Lemma 3.1.3.10. If R is a multiplicity semiring and M a monoid, R f 〈M〉 respects (MS1),
(MS2) and (MS3).

Proof.(MS1) We suppose that µ +R f 〈M〉 ν = 0R f 〈M〉, i.e., µ(g)+Rν(g) = 0R for all g.
Then µ(g) = ν(g) = 0R by (MS1) in R.
Thus µ = ν = 0R f 〈M〉.

(MS2) We suppose that µ+R f 〈M〉ν = 1R f 〈M〉, i.e., µ(1M)+Rν(1M) = 1R and µ(g)+νR(g) = 0R for all g , 1M.
Then µ(1M) = 0R (or ν(1M) = 0R) by (MS2) in R and for all g , 1M, µ(g) = ν(g) = 0R by (MS1)
in R.
Thus µ = 0R f 〈M〉 (or ν = 0R f 〈M〉).

(MS3) We suppose that µ1 +R f 〈M〉 µ2 = ν1 +R f 〈M〉 ν2, i.e., µ1(g)+Rν1(g) = µ2(g)+Rν2(g) for all g.
Then by (MS3) in R we have (kg

i, j)g∈M,1≤i, j,≤2 such that µi(g) = kg
i,1 +R kg

i,2 and ν j(g) = kg
1, j +R kg

2, j.
Thus, if we denote κi, j : (g 7→ kg

i, j) for all i, j, we indeed have µi = κi,1 +R f 〈M〉 κi,2
and ν j = κ1, j +R f 〈M〉 κ2, j.

�

Proposition 3.1.3.11. The semiring N f 〈M〉 is a multiplicity semiring.

Proof. Because of Lemma 3.1.3.10, we just have to prove (MS4).
We suppose that ν1 +N f 〈M〉 ν2 = κ ·N f 〈M〉 µ with (we suppose that N1 and N2 are disjoint)

ν1 = [gn1 | n1 ∈ N1], ν2 = [gn2 | n2 ∈ N2],

κ = [ fk | k ∈ K] µ = [hm | m ∈ M]

There is then a bijection φ : (N1 ∪ N2)↔ K × M.
We can denote κk = [ fk] and µi,k = [hπ2(φ(n)) | n ∈ Ni, π1(φ(n)) = k] for any k ∈ K. Then:

• Σk∈Kκk = [ fk | k ∈ K] = κ,

• and for k ∈ K, µ1,k + µ2,k = [hπ2(φ(n)) | π1(σ(n)) = k] = µ since gn = fπ1(φ(n))·hπ2(φ(n)),

• and we have Σkκk·µi,k = [ fk·hπ2(φ(n)) | k ∈ K, n ∈ Ni, π1(φ(n)) = k] = [gn|n ∈ Ni] = νi.

�

Remark 3.1.3.12. In fact, we conjecture that the semiringR f 〈M〉 is a multiplicity semiring for any mul-
tiplicity semiring R and any monoid M, not just for R = N. We were able to prove Proposition 3.1.3.11
also for R = N̄, but the proof is long and tiresome (based on a case disjunction between natural numbers
and ω). For the general we are clueless, but we know that Theorem 3.1.3.3 applies on R f 〈M〉, with R a
multiplicity semiring, even if R f 〈M〉 is not a multiplicity semiring.

If S is not a multiplicity semiring, one can interpret it into the “free” multiplicity semiring
N f 〈S·〉 induced by the multiplicative monoidS· ofS (recall Proposition 3.1.3.11):
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Proposition 3.1.3.13. For any ordered semiring S, the following is an interpretation of S
into N f 〈S·〉:11

~I� =

{
[J1, ..., Jn] |

∑
i≤n

Ji ≤S I
}
. (3.7)

Proof. • If p ≤S q then ~p� = {[q1, ..., qn] |
∑

i≤n qi ≤S p} ⊆ {[q1, ..., qn] |
∑

i≤n qi ≤S q} = ~q�.
Conversely, if ~p� ⊆ ~q�, then [p] ∈ ~q� so that p ≤ q.

• The addition is preserved:

~p� ⊕ ~q� = {[p1, ..., pn, q1, ..., qm] |
∑
i≤n

pi ≤S p,
∑
i≤m

qi ≤S q}

⊆ {[q1, ..., qn] |
∑
i≤n

qi ≤S p + q}

= ~p +S q�

• The 0 is preserved:

{0N f 〈S·〉} = {[]}

⊆ {[q1, ..., qn] |
∑
i≤n

qi ≤S 0S}

= ~0S�

• The 1 is preserved:

{1N f 〈S·〉} = {[1S]}

⊆ {[q1, ..., qn] |
∑
i≤n

qi ≤S 1S}

= ~1S�

11Recall that elements of N f 〈S·〉 are finite multisets
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• The multiplication is preserved:

~p� � ~q� =

{ h∑
i=1

Ii·Ji

∣∣∣∣∣ h ≥ 0,
h∑

i=1

Ji ∈ ~q�, ∀i ≤ h, Ii ∈ ~p�
}

=

{
[pi,k·qi, j | i ≤ h, j ≤ ji, k ≤ ki]

∣∣∣∣∣ h ≥ 0, unfold I, J

[qi, j | i ≤ h, j ≤ ji] ∈ ~q�, ∀i ≥ h, [pi,k | k ≤ ki] ∈ ~p�
}

=

{
[pi,k·qi, j | i ≤ h, j ≤ ji, k ≤ ki]

∣∣∣∣∣ h ≥ 0, def ~ �∑
i≤h

∑
j≤ ji

qi, j ≤S q, ∀i ≥ h,
∑
k≤ki

pi,k ≤S p
}

⊆

{
[pi,k·qi, j | i ≤ h, j ≤ ji, k ≤ ki]

∣∣∣∣∣ h ≥ 0,mon. mult.

p·(
∑
i≤h

∑
j≤ ji

qi, j) ≤S p·q, ∀i ≥ h,
∑
k≤ki

pi,k ≤S p
}

=

{
[pi,k·qi, j | i ≤ h, j ≤ ji, k ≤ ki]

∣∣∣∣∣ h ≥ 0, l. dist.∑
i≤h

(p·(
∑
j≤ ji

qi, j)) ≤S p·q, ∀i ≥ h,
∑
k≤ki

pi,k ≤S p
}

⊆

{
[pi,k·qi, j | i ≤ h, j ≤ ji, k ≤ ki]

∣∣∣∣∣ h ≥ 0,
∑
i≤h

((
∑
k≤ki

pi,k)·(
∑
j≤ ji

qi, j)) ≤S p·q
}

=

{
[pi,k·qi, j | i ≤ h, j ≤ ji, k ≤ ki]

∣∣∣∣∣ h ≥ 0,
∑
i≤h

∑
j≤ ji

∑
k≤ki

pi,k·qi, j ≤S p·q
}

r.&l. dist.

⊆

{
[ri′ | i′ ≤ h′]

∣∣∣∣∣ h′ ≥ 0,
∑
i′≤h′

ri′ ≤S p·q
}

= ~p·q�

�
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3.2. A dependent BSLL?

In Section 3.1, we have seen that for BSLL to be modeled by RelR, the powerset lax-semiring
P(R) must interpret the semiring S. This shows that the relational models for semirings are
powersets over multiplicity semirings. However, the semiring structure of P(R) is especially
unusual: where does it come from? and is it intrinsically related to the relational category?

In this section we will track the “semantical semiring”, whose existence was conjectured in
the introduction, for any linear category (Def. 3.2.1.2). For this we will first oidify12 the notion
of linear category to a 2-categorical framework in Section 3.2.1, or more exactly to an order-
enriched framework. This allows us to categorically define the internal semiring (Th. 3.2.2.2
and Th.3.2.2.4) of any such order-enriched linear category in Section 3.2.2. In Section 3.2.3,
we will show how to generically transform any order-enriched linear category (with an ad-
ditional light condition) into a bounded exponential situation regarding its internal semiring
(Th.3.2.3.3).

While carrying this study on the emergence of semiring structures, we oversaw what seems
to be a model for some dependent version of BSLL. Indeed, the most interesting BLL-like
logics and calculi such as the original BLL, Gaboardi et al’s DFuzz [GHH+13b] or Dal Lago
and Gaboardi’s D`PCF [dLG11] carry a notion of dependency. Their parameters can depend
on resource-variables which can be bounded and instantiated along the type derivation. This
allows, for example, to distinguish the resource usage of the two branches of a conditional,
or, combined with a fixpoint, to give a resulting parameter that depends on the number of
evaluations of some loop.

Sections 3.2.4 and 3.2.5 present our first results in the quest for modeling BLL dependency.

3.2.1. An order-enriched linear category

In Remark 3.1.1.3, we have enlightened an emerging relation between the axioms of semiring13

and the required coherence diagrams in a bounded exponential situation. The surprising point
of this remark is that coherence diagrams are 2-dimensional cells rather than 1-dimensional
cells represented by the morphisms acom

+

, aas
+

...
Based on this intuition, we will see that the semantical semiring R can be tracked in the

higher order dimension of the considered linear category L. This means that the objects of R
will be morphisms in L and the order relation will be described by 2-cells.

For this we need to have non-trivial 2-cells (otherwise we will see that the order is trivial)
and to define a 2-categorical version of a linear category. However, extending the notion to
a full 2-categorical framework is extremely heavy and non justified as we will not give any
example that uses the rich structure of 2-categories. Thus we will stay inside the specific case
of order-enriched categories (Def. A.1.0.25). Such a restriction is similar to the restriction of
bimonoidal categories into semirings.

Remark 3.2.1.1. We believe that all our work can be generalized to the full 2-categorical framework
(Def. A.1.0.21). However, this generalization requires a suitable notion of linear 2-category which is

12The oidification consists in considering the objects of the initial category as morphisms in the targeted 2-
category.

13or equivalently the natural transformations of the bimonoidal category
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cumbersome to express.

Order-degenerated linear 2-categories are basically linear categories with an order on mor-
phisms that is coherent with the monoidal and exponential functors.

Definition 3.2.1.2. An order-enriched linear category is an order-enriched category
(Def. A.1.0.25) with the axiomatisation of a linear category (Sec. A.3.2) where:

• each functor is generalized to a 2-functor,

• each natural transformation is generalized to a natural 2-transformation,

• each required coherence diagram remains the same.

Proposition 3.2.1.3. Any linear category induces an order-enriched linear category with dis-
crete hom-posets (i.e.,the order over L[a, b] is discrete).

Conversely, any ordered-enriched linear category induces a linear category with the 0-cells
as objects and the 1-cells as morphisms.

Example 3.2.1.4.

• The order-enriched category RelR endowed with inclusions as 2-cells is linear:

– its 0-cells are the sets,

– its hom-poset RelR1 [a, b] are the posets of relations from a to b with the inclusion order,

– its horizontal composition is the composition of relation (preserving ordering),

– the monoidal and exponential functors preserves the ordering, making them 2-functors,

– each of d, p, w, c, m, being a natural transformation for the 1-Category RelR, remains a
natural 2-transformation for the order-degenerated RelR (see Def. A.1.0.27).

• The order-enriched category ScottL is linear:

– its 0-cells are the posets,

– its hom-posets ScottL[a, b] are the posets of linear functions from the initial segments of a
to the initial segments of b endowed with the pointwise order.

• The order-enriched categories CohB and CohN (Def. A.3.3.7) are linear when endowed with in-
clusion order.

3.2.2. The left-semiring L[!1, 1]

In this section we will recover the “internal semiring” from the hom-poset L[!1, 1] of any
order-enriched linear category L.

For this, we will describe three different structures: the internal left-semiring Sleft
L

, the
internal lax-semiring Slax

L
and the internal strict semiring Sstr

L
. The internal left-semiring of

Definition 3.2.2.1 is the simplest and more natural, but lacks any notion of right-distributivity
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(or left-absorption). Definitions 3.2.2.3 and 3.2.2.5 overcome this difficulties by restricting
L[!1, 1] respectively to the co-lax monoid morphisms and to the strict monoid morphisms
(depending on whether one is looking for the lax or strict semiring).

Definition 3.2.2.1. Given an order-enriched linear category L, we call internal left-semiring
of L, denoted Sleft

L
, the poset L(!1, 1) endowed with the following structure:

• the functor + : Sleft
L
× Sleft

L
→ Sleft

L
is basically the monoidal functor pre-composed

by the contraction, concretely it is defined by (for any I, J ∈ Sleft
L

)

I+J := !1 !1⊗!1 1 ⊗ 1 1
c1 I ⊗ J λ

where λ1 : 1 ⊗ 1 → 1 is the monoidal unity, and extends to the morphisms by (for
any µ, ν ∈ Sleft

L
[I, J])

µ+ν := !1 !1⊗!1 1 ⊗ 1 1⇓µ ⊗ ν
c1

I ⊗ I′

J ⊗ J′

λ

• the functor · : Sleft
L
× Sleft

L
→ Sleft

L
is basically the horizontal composition pre-

composed with a dereliction, concretely it is defined by (for any I, J ∈ Sleft
L

)

I·J := !1 !!1 !1 1
p1 !I J

and extends to the morphisms by (for any µ, ν ∈ Sleft
L

[I, J]):

µ·ν := !1 !!1 !1 1⇓!µ ⇓!ν
p1

!I

!J

I′

J′

• the functor 0 : 1→ Sleft
L

defined by 0 := w1,

• the functor 1 : 1→ Sleft
L

defined by 1 := d1.

Theorem 3.2.2.2 (The internal left-semiring). Given an order-enriched linear category L,
the internal left-semiring Sleft

L
is a left-bimonoidal category.

Proof. • Functoriality of +:
directly obtained by the functoriality of the monoidal product.
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• Functoriality of the product ·:
directly obtained by the functoriality of the vertical composition.

• as+ : (I+J)+K ←→ I+(J+K) is defined by:

!1

!1⊗!1

!1⊗!1

(!1⊗!1)⊗!1

!1 ⊗ (!1⊗!1)

(1 ⊗ 1) ⊗ 1

1 ⊗ (1 ⊗ 1)

1 ⊗ 1 1,Assa Nat(α)

c1

c1

c1 ⊗ id

id ⊗ c1

α!1,!1,!1

(I ⊗ J) ⊗ K

I ⊗ (J ⊗ K)

α1,1,1

λ ⊗ id

id ⊗ λ

λ

where the rightmost 2-cell correspond to the associativity diagram of the monoidal structure of
L,

• as· : (I·J)·K ←→ I·(J·K) is defined by:

!1

!!1

!!1

!!!1

!1

!!1 !1 1,
Assm

Nat(p)

p1

p1

!p1

!I

p!1

!!I

p1

!J K

• com+ : I+J ←→ J+I is defined by:

!1

!1⊗!1

!1⊗!1

1 ⊗ 1

1 ⊗ 1

1,Com Nat(γ)

c1

c1

I ⊗ J

J ⊗ I

γ!1,!1

λ

λ

γ1,1

• unt+ : I+0←→ I is defined by:

!1

!1⊗!1

!1 ⊗ 1

1 ⊗ 1

!1

1,
Unta

Nat(λ)

c1

λ−1
1

id

I ⊗ w1

id ⊗ w I ⊗ id

λ1

λ

I

• untL· : 1·I ←→ I is defined by:

!1

!!1

!1 1,

UntmL

p1

id

!d1

I
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• untR· : I·1←→ I is defined by:

!1

!!1

!1

1,

1,

UntmR
Nat(d)

p1

id

d!1

I

!I

d1

• absR : I·0←→ 0 is defined by:

!1

!!1

1

1,

1,

AbsR
Nat(w)

p1

w1

w!1

!I

w1

• and dstL : I·(J+K)←→ (I·J)+(I·K) is defined by:

!1

!1⊗!1

!!1

!!1⊗!!1

!1

!1⊗!1 1 ⊗ 1 1,

DistR Nat(c)c1

p1

p1 ⊗ p1

c!1

!I

!I⊗!I

c!1

J ⊗ K λ

• each of these isomorphisms are equality (due to the order-degeneration), so that their naturality is
immediate.

�

As we have seen in Remark 3.1.1.5, the left absorption and the right distributivity have a
special statute. The internal left-semiring will not have them (a priori not even in a lax way).
However, we can quite naturally “force them” which is the object of the following theorem.

Definition 3.2.2.3. Let L be an order-enriched linear category. The internal lax-semiring
of L, denoted Slax

L
, is the category of colax monoid morphisms between (!1, (m1,1; !λ), m1)

and (1, λ, id1). Spelled out, this means that Slax
L

is the full subcategory of Sleft
L

whose objects
are triples (I, ζI , ξI) such that I ∈ L[!1, 1] and ζI , ξI are 2-morphisms respecting:14

1

!1

1

⇑ζI

!1⊗!1

!(1 ⊗ 1)

1 ⊗ 1

!1

1

⇑ξI

m1

id

I
m1,1

I ⊗ I λ

!λ

I

The corresponding morphisms are the 2-morphisms in L[!1, 1].
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The pair (ζI , ξI) of 2-morphisms will be called the distributive structure .

Theorem 3.2.2.4 (The internal lax semiring). Let L be an order-enriched linear category.
The internal lax semiring Slax

L
of L is a lax bimonoidal category when endowed with the

same structure as the internal left-semiring.

Proof. We have to prove the existence of the natural transformations absR and dstL and to extends the
functors +, 0, · and 1 so that they transport the distributive structure.

• absR : 0 −→ 0·I

!1

!!1

1

!1

1,

AbsR
⇓ζI

p1

w1

!w1

m1

id

I

• dstL : (I·K) + (J·K) −→ (I+J)·K

!1

!1⊗!1

!!1

!!1⊗!!1

!(!1⊗!1)

!1⊗!1

!(1 ⊗ 1)

1 ⊗ 1

!1

1,DistR Nat(m) ⇓ξI
p1

c1

p1 ⊗ p1

!c1

m!1,!1

!I⊗!J

!(I ⊗ J)

m1,1

K ⊗ K

!λ

λ

K

• The functor 0 transports the distributive structure:

1

!1 1

mw1

!1⊗!1

!(1 ⊗ 1)

1 ⊗ 1

11

mw2

Nat(w)

m1

w1

m1,1

w1 ⊗ w1

w1⊗1

!λ w1

λ1

• The functor 1 transports the distributive structure:

1

!1 1

md1

!1⊗!1 1 ⊗ 1

!(1 ⊗ 1)

!(1 ⊗ 1)

1

md2
Nat(d)m1

d1

d1 ⊗ d1

d1⊗1

m1,1

λ

!λ

d1

• The functor + transports the distributive structure:

14Recall that, in order-degenerated 2-categories, for any I ∈ L[!1,1] there is almost one suitable ζI and one ξI .
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!1

1

!1⊗!1

1 ⊗ 1

(1 ⊗ 1)

1

mc1 wζI ⊗ ζJ

!(1 ⊗ 1)

!1⊗!1

!1

!(1 ⊗ 1)⊗!(1 ⊗ 1)

!1⊗!1

(!1⊗!1) ⊗ (!1⊗!1)

(!1⊗!1) ⊗ (!1⊗!1)

1 ⊗ 1

(1 ⊗ 1) ⊗ (1 ⊗ 1)

(1 ⊗ 1) ⊗ (1 ⊗ 1)

1,

1 ⊗ 1

mc2

Nat(c) ⇓ξI ⊗ ξJ

Nat(iso) diag(⊗)

m1

λ−1

id

c1

λ

m1 ⊗ m1

I ⊗ J

id
λ

m1,1

c1⊗1

!λ

c1 ⊗ c1

iso

c1

!λ ⊗ λ

m1,1 ⊗ m1,1

I ⊗ J

(I ⊗ I) ⊗ (J ⊗ J)

(I ⊗ J) ⊗ (I ⊗ J)

λ

λ ⊗ λ

iso

λ

λ ⊗ λ

• The functor · transports the distributive structure:

1

!1

!1

1

!1

!!1

mp1
⇑!ζI

⇑ζJ

!1⊗!1

!(1 ⊗ 1)

!1

!!1⊗!!1

!(!1⊗!1)

!!(1 ⊗ 1)

!1

!1⊗!1

!(1 ⊗ 1)

!1

1 ⊗ 1

1

mp2

vξJ

v!ξINat(p)

Nat(m)

m1

id

m1

p1

id

!m1
!I

J

m1,1

p1 ⊗ p1

p1⊗1

!λ

!I⊗!I

m!1,!1

!(I ⊗ I)

!m1,1

!!λ

p1 !I

J ⊗ J

m1,1

λ

J

λ

�

Definition 3.2.2.5. Let L be an order-enriched linear category. The internal strict-semiring
of L, denoted Sstr

L
, is the restriction of the internal lax-semiring of L to the strict monoid

morphisms (so that ζ and ξ are identities).

Theorem 3.2.2.6 (internal strict-semiring). The internal strict-semiring Sstr
L

of an order-
enriched linear category L is a bimonoidal category.
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Proof. The proof is similar to the proof of Theorem 3.2.2.4. �

Remark 3.2.2.7. The internal strict-semiring is a full sub-semiring (or full sub bimonoidal category)
of the internal lax semiring, in particular the first can be interpreted (Def.3.1.1.8) into the second by the
inclusion functor.

Example 3.2.2.8. Here are the semirings that one gets by applying Theorems 3.2.2.2, 3.2.2.4 and 3.2.2.6
to different order-enriched linear categories (the resulting semirings are defined in Example A.4.1.3 or
Definition 3.1.3.4).

• given a multiplicity semiring R (Def. 3.1.3.1), we can apply these theorems to the relational
semantics RelR (Th. 3.1.3.3) and get:

Sleft
RelR
' P(R) Slax

RelR
' P(R) Sstr

RelR
' R.

Indeed, the internal left-semiring corresponds to the relations between !R1 ' R and the singleton
1 which give the powerset P(R), it is then straightforward to check that the sum and product
correspond to ⊕ and ⊗ of Definition 3.1.3.4. For the lax and strict semirings, one can verify that:

m1; ∅ = ∅ m1; I = id1 if I , ∅

m1,1; !λ; I = {((p, p), ∗) | p ∈ I} (I ⊗ I); λ = {((p, q), ∗) | p, q ∈ I},

so that the lax distribution structure always exists and the strict exists whenever I is a singleton.

• in ScottL (Def A.3.4.3 and Ex. 3.2.1.4), we get:

SleftScottL ' Bop
⊥ SlaxScottL ' Bop

⊥ SstrScottL ' Bop,

where Bop
⊥ is the Boolean semiring with revers order and with a bottom element (resulting in a

lax-semiring).

Indeed, ScottL[!1, 1] is formed by linear functions from I(A f ({∗})), which is the totally ordered
set with three elements {{∗}} ≥ {∗} ≥ ∅, and I({∗}), which is the totally ordered set with two
elements {∅} ≥ ∅; by linearity the bottom is map to the bottom and it remains 3 possible linear
mappings of {{∅}} ≥ {∅} into {∅} ≥ ∅, which correspond to the three elements of B⊥; it is the
straightforward to verify that the order, sum and product correspond.

For the lax and strict semirings, one can verify that:

m1;⊥ = (p 7→ ∅) m1; I = id1 if I , ⊥

m1,1; !λ; I = (I ⊗ I); λ

so that the lax distribution structure always exists and the strict one exists whenever I , ⊥.

• In CohB (Def. A.3.3.7 and Ex 3.2.1.4), we get:

Sleft
CohB

' B f Slax
CohB

' B f Sstr
CohB

' Bd,

where Bd is the discrete Boolean semiring and B f is the Sierpinski lax-semiring (the discrete
Boolean semiring with a bottom element).

• In CohN (Def. A.3.3.7 and Ex 3.2.1.4), we get:

Sleft
CohB

' N f Slax
CohB

' N f Sstr
CohB

' N.
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Remark 3.2.2.9. Example 3.2.2.8 gives us an alternative proof of Proposition 3.1.3.6. Indeed, we
obtained that P(R) being the internal lax-semiring of RelR, it is in particular a lax-semiring.

Remark 3.2.2.10. The internal lax-semiring seems to correspond to our first naive idea of internal
semiring in Section 3.1. However, in the case of coherent spaces (both CohB and CohN) and ScottL,
the results differ with those in Section 3.1.2.These differences will need further considerations.

3.2.3. The bounded exponential situation

In Section 3.2.2, we have extracted a semiring (in fact three) naturally emerging from any
order-enriched linear category. It remains to show that we can refine any order-enriched linear
category L to get a bounded exponential situation relatively to BSlax

L
LL.15In the following we

will only consider the lax internal semiring Slax
L

as we consider it to be the most important one.
This transformation consists in taking the lax-sliced category around 1.

Definition 3.2.3.1. Given any 2-category C and any object a ∈ C0, we call the lax-sliced
category of C over a, the category C/a:

• which objects are the couples (b, φ) with b ∈ C0 and φ ∈ C1[b, a].

• which morphisms from (b, φ) to (c, ψ) are couples (χ, µ) with χ ∈ C1[b, c] and µ ∈
C2[φ, (χ;ψ)], i.e. so that:

ab

c

⇓µ

φ

χ ψ

For simplicity, we denote the objects (b, φ) ∈ C/a by just φ when there is no ambiguity.

Proposition 3.2.3.2. For any order-enriched category C, if C is symmetric monoidal (with ⊗
a 2-functor), so is C/1 with the monoidal product given by :

φ ⊗s ψ := a ⊗ b 1 ⊗ 1 1

1s := 1 1.

φ ⊗ ψ λ

id1

and
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(χ, µ) ⊗s (χ′, µ′) :=

a ⊗ b

a′ ⊗ b′

1 ⊗ 1 1⇓µ ⊗ µ′

φ ⊗ φ′

ψ ⊗ ψ′

χ ⊗ χ′
λ

Proof. • The functoriality of ⊗s results from the 2-functoriality of ⊗.

• The associativity is given by:

α′φ,ψ,χ :=

(a ⊗ b) ⊗ c

a ⊗ (b ⊗ c)

(1 ⊗ 1) ⊗ 1

1 ⊗ (1 ⊗ 1)

1 ⊗ 1 1neutTensNat(α)

(φ ⊗ ψ) ⊗ χ

φ ⊗ (ψ ⊗ χ)

λ1 ⊗ id1

id1 ⊗ λ1

αa,b,c α1,1,1
λ

• The left neutrality is given by:

λ′φ :=

1 ⊗ a

a

1 ⊗ 1

1
Nat(λ)

id1 ⊗ φ

φ

λ1

λa

• The commutativity is given by:

γ′φ,ψ :=

a ⊗ b

b ⊗ a

1 ⊗ 1

1 ⊗ 1

1untTensNat(γ)

φ ⊗ ψ

ψ ⊗ φ

λ1

λ1

γa,b γ1,1

• The naturality of α′, λ′ and γ′ is immediate as they are formed by natural 1-cells and 2-cells.

• The coherence diagrams are all obtained since they consists in a cone closed by the corresponding
diagram in L and automatically filled since L is order-degenerated.

�

Theorem 3.2.3.3 (Slicing categories form bounded exponential situations). Let L be an
order-enriched linear category. Then if the monoidal product of L/1 is closed, it forms a
bounded exponential situation (Def. 3.1.1.2) for both BSlax

L
LL and BSstr

L
LL.

Proof. • The bi-functor (−)− is defined by:
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(a, φ)I :=
(
!a , !a !1 1

)

(χ, µ)I≤J :=

!a

!b

!1

!1

1⇓!µ ⇓I ≤ J

!φ I

!φ

!ψ

I

J

!χ

The functoriality is immediate form the 2-functoriality of ! in L.

• w′, c′, d′ and p are defined as the couples formed by the transformation inL and the corresponding
naturality diagram

w′(a,φ) :=

!a

1

!1

1Nat(w)

!φ

wa

id1

0 = w

c′(a,φ),I,J :=

!a

!a⊗!a

!1

!1⊗!1 1 ⊗ 1 1Nat(c)

!φ

ca

!φ⊗!φ

c1

I ⊗ J λ

w′(a,φ) :=

!a

a

!1

1Nat(d)

!φ

wa

φ

1 = d1

p′(a,φ),I,J :=

!a

!!a

!1

!!1 !1 1Nat(c)

!φ

pa

!!φ

p1

!I J

• m′I is defined by:

m′I :=

1

!1

1⇓ζI

id

m1

I
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where ζI is the first 2-morphism of the distributive structure.

• m′(a,φ),(b,ψ),I is defined by:

p′(a,φ),(b,ψ),I :=

!a⊗!b

!(a ⊗ b)

!1⊗!1

!(1 ⊗ 1)

1 ⊗ 1

!1

1Nat(c) ⇓ξI

!φ⊗!ψ

ma,b

!(φ ⊗ ψ)

m1,1

I ⊗ I

!λ

λ

I

where ξI is the second 2-morphism of the distributive structure.

• Naturalities and coherence diagrams are obtained automatically: they correspond to cones that
are completed by the equivalent diagram in L and filled automatically by the order-degeneration
of L.

�

Remark 3.2.3.4. Recall (Prop. 3.1.1.10) that for S that is interpreted in Slax
L

(Def. 3.1.1.8), its corre-
sponding logic BSLL is interpreted also in L/1 (just by composing the interpretations).

Example 3.2.3.5. We are applying Theorem 3.2.3.3 to RelR (for R a multiplicity semiring, see Defini-
tion 3.1.3.1 and Theorem 3.1.3.3).

The sliced category Rel/1 is as follows:

• Rel/1 has for objects the couples a = (|a|,C(a)) with C(a) ⊆ |a| ∈ Set; notice that the coherence
C(a) corresponds to the co-domain of the morphism φ ∈ Rel(|a|,1), we will call |a| the domain
and C(a) the coherence,

• Rel/1 has for morphisms from a to b the relations between the domains that co-preserve the
coherence, i.e., the relations φ ∈ P(|a|, |b|) such that

∀(α, β) ∈ φ, β ∈ C(b) ⇒ αC(a),

• Rel/1 has for tensorial product and unit the functors:

|a ⊗s b| := |a| × |b| C(a ⊗s b) := C(a) × C(b)

φ ⊗s ψ := φ ⊗R ψ 1s := (1, 1),

• Rel/1 has for linear arrow the functor

|a ⊗s b| := (C(a) × C(b)) ∪ (|a| × (|b| − C(b)))

C(a(s b) := C(a) × C(b)

φ(s ψ := {((α, β), (α′, β′)) | (α′, α) ∈ φ, (β, β′) ∈ ψ, (β ∈ C(b)⇒ α ∈ C(a))},

• Rel/1 has an exponential functor (for I ∈ P(R)):

|aI | := R f 〈|a|〉, C(aI) := {u ∈ R f 〈C(a)〉 | ‖u‖ ∈ I}

φI≥J :=!Rφ

where ‖u‖ :=
∑
α∈C(a) u(α),
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• Rel/1 has for parametrized contraction c′a,I,J := ca, so that the parameters I, J only serves to set
the domain an co-domain, and similarly for w′, p′, d′, m′.

Remark that this model can be map into the model defined by stratification in Theorem 3.1.3.8. The
mapping is the functor that forget the domain structure and project every relation into their restriction
to the coherence.

Remark 3.2.3.6. The assumption of Theorem 3.2.3.3 (requireing that the monoidal product of L/1 is
closed) seems a strong assumption but is verified by most of our models of interest.

The fact that we change the definition of linear category, not asking for products and coproducts is
important here since we obtain products but not necessarily co-products. However, those co-products
also seem to be present in most of our models of interest.

3.2.4. Toward a dependent version

Along Sections 3.2.2 and 3.2.3, the tensorial unit 1 is extremely central; indeed, we were
studying, respectively, morphisms from !1 to 1 and sliced categories around 1. What about
taking objects other that 1? The goal of this section is to perform such a generalization and
show that we get some flavor of dependency.

As we have already seen, the logical power of BSLL is generally limited and most of the
applications based on quantitative exponential (like BLL [GSS92b], DFuzz [GHH+13a] or
D`PCF [dLG11]) are dependent extensions. In these extensions, you can write formulas which
resources can share some dependency like:

Ax ( Bx ( C

that type programs represent using their two arguments the same number of times.
The algebraic structure on exponential (syntactical generalizations of “semirings”) are com-

posed of expressions dependent on some resource variables. The exponents can be, for exam-
ple, binders Ax∈I with x that can appear free in the exponentials of A. Moreover, these versions
contain higher order rewriting premises so that derivation rules can perform substitutions over
resources variables inside a formula and cut elimination procedural can perform substitutions
inside a whole proof tree. For example the following sequent rule [DLH09] performs a substi-
tution over x in the type A:

A{1/x},Γ ` B 1 v p
!x≤pA,Γ ` B

This way to extend BSLL has been defined for several cases but lacks a general formalization.
In this section we will see that our semantics naturally extends with dependency and then we
will deduce a logical extension.

From an abstract point of view, dependency has two main characteristic:

1. the elements of the “semiring” are dependent on some resource context and exponentials
can modify this context (they are binders),

2. derivation and cut-elimination can perform global rewriting that change the resource con-
text (over formulas and proofs respectivelly).
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In our semantics we will see that this characteristic are translated into:

1. the elements of the “semiring” morphisms over some “resource context”,

2. a second emerging structure will be able to go through terms and act on the “semiring”
elements.

Our approach being semantic directed, we will not expend more on what should be a depen-
dent syntax/semantics. We rather begin by a natural generalization for the position of 1. In
this section we are replacing 1 by a whole sub-category of objects called co-classical fragment.
The objects u of the category can be co-erased with some εu : 1 −→ u and co-duplicated with
some ρu : u ⊗ u −→ u.

Definition 3.2.4.1. Given an order-enriched linear category L, we call co-classical fragment
of L a subcategoryU of the category of monoids over L. Spelled out,U is the category

• which objects are triples u = (|u|, εu, ρu) where:

– |u| is an object (0-cell) of L,

– εu : 1 −→ u is a morphism in L,

– ρu : u ⊗ u −→ u is a morphism in L,

– such that the following diagrams commutes (they are 2-isomorphisms)

|u| ⊗ |u|

1 ⊗ |u|

|u|

|u|

|u| ⊗ |u|

|u| ⊗ |u|

|u|

|u|

(|u| ⊗ |u|) ⊗ |u|

|u| ⊗ (|u| ⊗ |u|)

|u| ⊗ |u|

|u| ⊗ |u|

|u|

|u|.

εu ⊗ id|u|

ρu

λ|u|

γ|u|,|u|

ρu

ρu

α|u|,|u|,|u|

ρu ⊗ id|u|

id|u| ⊗ ρu

ρu,u

ρu,u

• the morphisms ι ∈ U[u, v] are morphisms ι ∈ L[|u|, |v|] so that the following diagrams
commute:

1

1

|u|

|v|

|u| ⊗ |u|

|v| ⊗ |v|

|u|

|v|

εu

εv

ι ι ⊗ ι

ρu

ρv

ι

so that εu : 1 −→ |u| and ρu : |u| ⊗ |u| −→ |u| are natural inU.
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Remark 3.2.4.2. We will consider, in our examples, only co-classical fragments U that are sub-
categories of L, i.e., so that |u| , |v| whenever u , v. Thus, in the following, we will use the notation u
for |u|.

Example 3.2.4.3. • For any order-enriched linear category L, the one-point category {1} is the
trivial co-classical fragment of L, with ρ1 = λ1 and with ε1 = id1.

• A good candidate the subcategory of L generated by 1, ! and ⊗, with ρ and ε defined by induction

ρ1 := λ1, ρ!u := mu,u; !ρu, ρu⊗v := α−1
u⊗v,u,v; γu⊗v,u; (α−1

u,u,v ⊗ idv);αu⊗u,v,v; (ρu ⊗ ρv)

ε1 := id1, ε!u := m1; !εu, εu⊗v := λ−1; (εu ⊗ εv)

this fragment endowed with all possible morphisms will be called the free co-classical fragment
and denotedUF .

• In the specific case of RelR, one can show (by an easy induction) that for the free co-classical
fragment:

– εu is full relation between 1 and u,

– ρu is the reversed copy-cat, i.e., the relation {((α, α), α) | α ∈ u}.

Thus the morphisms of the free co-classical fragment are the right-to-left functions. Indeed, the
naturality of ε forces the relation to be surjective and the naturality of ρ forces the relation to be
injective.

• In fact, in RelR, Setop is a co-classical fragment, with ε being the full relations and ρu the reversed
copy-cat functions.

Definition 3.2.4.4. Let L be an order-enriched linear category and let U be a co-classical
fragment over L.

We callU-dependent internal semiring over L, denoted SU
L

, the order-enriched category:

• which objects are objects ofU: (SU
L

)0 := U0,

• which hom-poset SU
L

[u, v] is the category of co-lax monoid morphisms between
(!u, m1,1; !ρu, m1; !εu) and (1, ρv, εv) in L:

– its objects are triples (I, ζI , ξI) where I :!u→ v is a morphisms in L and ζI , ξI are
completing the diagrams:

1

!1

v

!u

⇑ζI

!u⊗!u

!(u ⊗ u)

v ⊗ v

!u

v

⇑ξIm1

εv

I

!εu

mu,u

I ⊗ I ρv

!ρu

I

– (I, ζI , ξI) ≥ (J, ζJ, ξJ), whenever I ≥ J in L.

• the composition in SU
L

is the composition in the Kleisli L!:
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I·J := !u !!u !v w
pu !I J

• the identity in SU
L

is the identity in the Kleisli L!:

1u := !u u,
du

Definition 3.2.4.5. We call dependent semiring the given of

• a semigroup-enriched category S called semiringoid and given by:

– a class S0 of objects denoted u, v...,

– for each object u, v ∈ S0, an ordered semigroup S[u, v] (equivalently an order-
degenerated monoidal category) which elements are denoted I, J..., which sum is
denoted + : S[u, v]×S[u, v]→ S[u, v] and which neutral element is denoted 0u,v,

– a composition functor · : S[u, v] × S[v,w]→ S[v,w] for each object u, v,w ∈ S0,

– a unity 1u ∈ S[u, u] for each u ∈ S0

– such that:

∗ absRI,u: I·0S[cod(I),u] = 0S[dom(I),u],

∗ dstLI,J,K: I·(J+K) = (I·J) + (I·K),

∗ absLI,u: 0S[u,cod(I)] = 0S[u,dom(I)]I,

∗ dstRI,J,K: (I·K) + (J·K) = (I + J)·K,

∗ as·I,J,K: (I; J); K = I; (J; K),

∗ untL·I,u: 1u; I = I,

∗ untR·I,u: I; 1u = I.

• a category U called actor which objects are denoted by u, v... and which morphisms
are denoted by ι, ι′...,

• such that the objects of the ringoid and the actor are the same:

S0 = U0,

• for each object u, v,w ∈ U, two functors called left and right actions:

n : U[u, v] × Sv,w → Su,w o : Sv,w ×U[u, v]→ Su,w

that forms an external product:
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– interior neutrality of the unit: untintι : ιn1cod(ι) = 1dom(ι)oι,
– right exterior neutrality of the unit untLextI : iddom(I)nI = I,
– left exterior neutrality of the unit untRextI : Inidcod(I) = I,

– left interior associativity asLintι,J,K : (J·K)oι = I·(Koι),

– right interior associativity asRintι,J,K : ιn(J·K) = (ιnI)·K,

– left exterior associativity asLextι,ι′,J : (Joι′)oι = Io(ι; ι),

– right exterior associativity asRextι,ι′,K : ιn(ι′nK) = (ι; ι′)nK,

– right interior absorption absRextι,u : ιn0S[cod(ι),u] = 0S[dom(ι),u],

– left interior absorption absLextι,u : 0S[u,dom(ι)]oι = 0S[u,cod(ι)],

– left interior distribution dstLextι,J,K : ιn(J+K) = (ιnJ) + (ιnK),

– right interior distribution dstRextι,J,K : (J+K)oι = (Ioι) + (Koι),

For simplicity, we will occasionally denote 1 for any 1u and 0 for any 0S[u;cod(I)] and we will
denote · for n and o.

Remark 3.2.4.6. This is the oidification of an algebraic structure composed of a monoid acting on a
semiring. Intuitively, the semiring is similar to the bounding semiring: it will actively treat weakening
and contractions, while the monoid is the duplicable information that can flow through the formula to
rely dependencies.

In term of models, we will see that (intuitively) the semiringoid16 corresponds to the Kleisli over U.
WhenU has only one element 1, then S ' L[!1,1] andU ' [1,1] (which may be non trivial if 1 is not
initial).

Example 3.2.4.7. For any monoid M and any semiring S, M is acting on the S-linear semiring S f 〈M〉
over M (Prop. A.4.2.2) via the action f ·m := (I 7→ f (I)·Mm) (and m· f defined symmetrically).

Given a field K:

• the category of vector spaces and linear functions forms a ringoid17

• the category of vector spaces and unitary operators can act on this ringoid (using the composi-
tion) forming a dependent semiring.

Theorem 3.2.4.8 (U-dependent internal semiring). Let L be an order-enriched linear cat-
egory and letU a co-classical fragment over L.

Then the U-dependent internal semiring SU
L

forms a dependent semiring with U acting
on SU

L
via the composition in L:

Ioι := I; ι and ιnI :=!ι; I.

Proof. • for each u, v ∈ U, the category SU
L

[u, v] is monoidal:

16oidification of a semiring
17see Footnote 16
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– the functor 0u,v : 1→ SU
L

[u, v] is defined by

0u,v := !u 1 v
wu εv

– the functor +u,v : SU
L

[u, v] × SU
L

[u, v]→ SU
L

[u, v] is defined by:

I+u,vJ := !u !u⊗!u v ⊗ v v
cu I ⊗ J ρv

– their functoriality as well as the natural transformations are defined according to the proof
of Theorem 3.2.2.4.

• S forms a semiringoid: their functoriality as well as the natural transformations are defined ac-
cording to the proof of Theorem 3.2.2.4.

• the functors n,o form an external product:

– untintι : ιn1cod(ι) ⇐⇒ 1dom(ι)oι is the naturality of the dereliction,

– the exterior unities use the associativity of the identity (in any 2-category),

– the associative 2-isomorphisms use the associativity of the composition,

– absRextι,u : ιn0S[cod(ι),u] ⇐⇒ 0S[dom(ι),u] is the naturality of the weakening,

– absLextι,u : 0S[u,dom(ι)]oι⇐⇒ 0S[u,cod(ι)] is the naturality of ε,

– dstRextι,J,K : ιn(J+K)⇐⇒ (ιnJ) + (ιnK) is the naturality of the contraction,

– dstLextι,J,K : (J+K)oι⇐⇒ (Ioι) + (Koι) is the naturality of c,
�

Following Theorem 3.2.3.3, one can turn this dependent semiring into a full fledged model.
Of course, the result will not be a bounded exponential situation, but a dependent version.
However, such a generalization would require a full formalization that represent a lot of work
and lacks of interest in this stage of the study. Indeed, such a ad hoc formalization would not
carry any interest without a full syntax and a better understanding of our objects.

Nonetheless, we can skip the step of the full fledged model and directly describe the corre-
sponding syntax (that we respect to be invariant wrt cut elimination). This is the purpose of
Section 3.2.5.

3.2.5. A dependent logic?

We have seen, at semantical level, how dependent semirings extend the notion of semiring in a
dependent way. In this section, we present the corresponding generalization at logical level.

Definition 3.2.5.1. Given a dependent semiring (U,S) (Def. 3.2.4.5), we call bounded linear
logic with dependent (U,S)-exponentials Bd

(U,S)LL the logic where:

• the formulas are defined by the grammar (where J is a morphism of S):
(formulas) A, B,C := α | A ⊗ B | A( B | AJ,

• the sequent calculus is given in Figure 3.4. There is two kind of sequents:

– in a sequent A  u, one verify that the resources used inside the formula A co-
depend on u ∈ S0,
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α  u
A  u B  u

A ⊗ B  u
A  u B  u

A( B  u
A  u I : u→ v

AI  v
A  u

AxA `u A
Γ, A, B `u C

⊗L
Γ, A ⊗ B `u C

Γ `u A ∆ `u B
⊗R

Γ,∆ `u A ⊗ B
Γ `u A ∆, A `u B

Cut
Γ,∆ `u B

Γ `u A ∆, B `u C
( L

Γ,∆, A( B `u C
Γ, A `u B

( R
Γ `u A( B

Γ `u B
Weak

Γ, A0 `u B
Γ, Aι `u B

Der
Γ, A1·ι `u B

Γ, AI , AJ `u B
Contr

Γ, AI+J `u B
Γ, AI `u B J ≥ I

Sweak
Γ, AJ `u B

A1
I1 , · · · , An

In `u B J : u→ v
Prom

A1
I1·J , · · · An

In·J `v BJ

Figure 3.4.: The sequent calculus of Bd
S
LL.

– in a sequent Γ `u A, the context Γ is supposed to be a multiset of formulas (no
implicit contraction rule is admitted) and the target environment u is an object of
U, moreover we denote Aι (where ι ∈ U[u, v]) for the substitution:

αι := α (A ⊗ B)ι := Aι ⊗ Bι (A( B)ι := Aι ( Bι (AI)ι := AIoι

• the cut-elimination procedure is defined by the usual rules of multiplicative linear logic
plus the rules of Figure 3.6. Given a derivation Π and ι ∈ U[u, v], we denote Πι the
substitution described by Figure 3.5

Example 3.2.5.2. As we have seen in 3.2.4.3, the category of set and right-to left functions Setop is
a co-classical fragment of Rel. In the example we develop the bounded linear logic with dependent
(Setop,SSetop

RelR
)-exponentials.

Recall that the morphisms I ∈ SSetop

Rel [a, b] are the relations from !a to b. Only, for the sake of
simplicity, we will first only consider the right-to-left functions that we denote by a right-to-left arrow.
Thus λx.[x] is the identity and I·J := λx.

∑
y∈b J(x)(y)·I(y) : N f 〈a〉 ← c for I : N f 〈a〉 ← b and J :

N f 〈b〉 ← a. The external composition is defined by composition Ioι := λx.I(ι(x)) : N f 〈a〉 ← c for ι :
b← c.

In the resulting system we can prove that (Aλx.x ( Bλx.x)[2,3]
`1 (A2 ( B2)⊗(A3 ( B3) where 2 and 3

are notations for (∗ 7→ [∗, ∗]), (∗ 7→ [∗, ∗, ∗]) :!1 ← 1 and where [2, 3] is a notation
for (∗ 7→ [[∗, ∗], [∗, ∗, ∗]]) :!!1← 1:

Ax
A2 ( B2 `1 A2 ( B2 Ax

A3 ( B3 `1 A3 ( B3
⊗R

(A2 ( B2), (A3 ( B3) `1 (A2 ( B2) ⊗ (A3 ( B3)
Der

(A2 ( A2), (Aλx.x ( Bλx.x)[3]
`1 (A2 ( B2) ⊗ (A3 ( B3)

Der
(Aλx.x ( Bλx.x)[2]

, (Aλx.x ( Bλx.x)[3]
`1 (A2 ( B2) ⊗ (A3 ( B3)

Contr
(Aλx.x ( Bλx.x)[2,3]

`1 (A2 ( B2) ⊗ (A3 ( B3)
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( Π1
A  dom(ι)

Π2
B  dom(ι)

A ⊗ B  dom(ι)

)ι
:=

Πι
1

Aι  cod(ι)
Πι

2
Bι  cod(ι)

Aι ⊗ Bι  cod(ι)( Π1
A  dom(ι)

Π2
B  dom(ι)

A( B  dom(ι)

)ι
:=

Πι
1

Aι  cod(ι)
Πι

2
Bι  cod(ι)

Aι ( Bι  cod(ι)( Π
A  u I : u→ dom(ι)

AI  dom(ι)

)ι
:=

Π
A  u I·ι : u→ cod(ι)

AI·ι  cod(ι)(
α  dom(ι)

)ι
:= α  cod(ι)

( Π
A  dom(ι)

AxA `dom(ι) A

)ι
:=

Πι

Aι  cod(ι)
Ax

Aι `cod(ι) Aι( Π
Γ, A, B `dom(ι) C

⊗L
Γ, A ⊗ B `dom(ι) C

)ι
:=

Πι

Γι, Aι, Bι `cod(ι) Cι

⊗L
Γι, Aι ⊗ Bι `cod(ι) Cι

( Π1
Γ `dom(ι) A

Π2
∆ `dom(ι) B

⊗R
Γ,∆ `dom(ι) A ⊗ B

)ι
:=

Πι
1

Γι `cod(ι) Aι
Πι

2
∆ι `cod(ι) Bι

⊗R
Γι,∆ι `cod(ι) Aι ⊗ Bι( Π1

Γ `dom(ι) A
Π2

∆, A `dom(ι) B
Cut

Γ,∆ `dom(ι) B

)ι
:=

Πι
1

Γι `cod(ι) Aι
Πι

2
∆ι, Aι `cod(ι) Bι

Cut
Γι,∆ι `cod(ι) Bι( Π1

Γ `dom(ι) A
Π2

∆, B `dom(ι) C
( L

Γ,∆, A( B `dom(ι) C

)ι
:=

Πι
1

Γι `cod(ι) Aι
Πι

2
∆ι, Bι `cod(ι) Cι

( L
Γι,∆ι, Aι ( Bι `cod(ι) Cι( Π

Γ, A `dom(ι) B
( R

Γ `dom(ι) A( B

)ι
:=

Πι

Γι, Aι `cod(ι) Bι
( R

Γι `cod(ι) Aι ( Bι( Π
Γ `dom(ι) B

Weak
Γ, A0 `dom(ι) B

)ι
:=

Πι

Γ `cod(ι) Bι
Weak

Γι, A0 `cod(ι) Bι( Π

Γ, Aι
′

`dom(ι) B
Der

Γ, A1·ι′ `dom(ι) B

)ι
:=

Πι

Γι, Aι
′;ι `cod(ι) Bι

Der
Γι, A1·ι·ι′ `cod(ι) Bι( Π

Γ, AI , AJ `dom(ι) B
Contr

Γ, AI+J `dom(ι) B

)ι
:=

Πι

Γι, AI·ι, AJ·ι `cod(ι) Bι
Contr

Γι, A(I·ι)+(J·ι) `cod(ι) Bι( Π

Γ, AI `dom(ι) B J ≥ I
Sweak

Γ, AJ `dom(ι) B

)ι
:=

Πι

Γι, AI·ι `cod(ι) Bι J·ι ≥ I·ι
Sweak

Γι, AJ·ι `cod(ι) Bι( Π

A1
I1 , · · · , An

In `dom(ι) B J : u→ dom(ι)
Prom

A1
I1·J , · · · An

In·J `dom(ι) BJ

)ι
:=

Π

A1
I1 , · · · , An

In `dom(ι) B J·ι : u→ cod(ι)
Prom

A1
I1·J·ι, · · · An

In·J·ι `cod(ι) BJ·ι

Figure 3.5.: The substitution Πι
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Π1
∆ `u B 0 : u→ v

Prom
∆0 `v B0

Π2
Γ `v C

Weak
Γ, B0 `v C

Cut
∆0,Γ `v C

−→

Π2
Γ `v C

Weak· · ·
Weak

∆1
0,Γ `v C

Π1
∆ `u B 1oι : u→ v

Prom
∆1oι ` B1oι

Π2
Γ, Bι `v C

Der
Γ, B1oι `v C

Cut
∆ι,Γ ` C

−→

Π1
ι

∆ι `u Bι
Π2

Γ, Bι `v C
Cut

∆ι,Γ `v C

Π1
∆ `u B K + J : u→ v

Prom
∆K+J `v BK+J

Π2

Γ, BK , BJ `v C
Contr

Γ, BK+J `v C
Cut

∆K+J ,Γ `v C

−→

Π1
Delta ` B K : u→ v

Prom
∆K `v BK

Π1
∆ ` B J : u→ v

Prom
∆J `v BJ

Π2

Γ, BK , BJ `v C
Cut

Γ, BK ,∆J `v C
Cut

∆K ,∆J ,Γ `v C
Contr· · ·
Contr

∆K+J ,Γ `v C

Π1
∆ `u B K·J : u→ v

Prom
∆K·J `v BK·J

Π2

Σ, BK `w C J : w→ v
Prom

ΣJ , BK·J `v CJ
Cut

∆K·J ,ΣJ `v CJ

−→

Π1
∆ `u B K : u→ w

Prom
∆K `w BK

Π2

Σ, BK `w C
Cut

∆K ,Σ `w C J : w→ v
Prom

∆K·J ,ΣJ `v CJ

Π1
∆ `u B J : w→ v

Prom
∆K `v BK

Π2

Γ, BK `v C J ≥ K
SwL

Γ, BJ `v C
Cut

∆J ,Γ `v C

−→

Π1
∆ `u B K : w→ v

Prom
∆K `u BK

Π2

Γ, BK `u C
Cut

∆K ,Γ `u C
J ≥ K

In·J ≥ In·K
SwL· · ·

SwL
∆J ,Γ `u C

Figure 3.6.: Cut-elimination rules (for the exponentials only). Given a sequent ∆ =

A1
I1 , . . . , An

In and a parameter J, we denote by ∆J, the sequent A1
J·I1 , . . . , An

J·In .
Notice in particular that ∆0 = A1

0, . . . , An
0, that ∆1 = ∆ and that ∆1oι = ∆ι.
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The symbols index

(MS 1), 123
(MS 2), 123
(MS 3), 123
(MS 4), 123
+

between terms, 71
between tests, 71

Dop, 207
D × E

in posets, 207
ILL, 198
M+, 79
M⇓h

in Λ, 19
M⇓hN

in Λ, 19
M⇑h

in Λ, 19
M⇓N

in Λ, 19
M⇓

in Λ, 19
M⇑

in Λ, 19
Meta − variable
I, 193
B, 193

Q+, 79
S D, 101
S D
α , 101

[ ], 212
[d], 212
[sM], 98
0, 71
A f (D), 207
BSLL, 39
Bd

(U,S)LL, 151
BT, 27
BTf , 53
BTΩ f , 53
BTq f , 53

C(a), 205
⇓h

in Λτ(D), 74
⇓hN

in Λτ(D), 74
FV(M), 18
Θ, 19
G, 67
Gn, 66
Γ ` M : τ

intersection type from a K-model, 76
I, 19
ILL, 199
Jg, 67
Jn,k

g (z), 68
Λτ(D), 71
Λ

(|·|)
τ(D), 75

Λ(|·|), 18
Cm(a), 205
Ω, 19
Ω, 27
RelR, 125
⇒

parallel reduction, 79
⇒st, 82
Tτ(D), 71
T(|·|)
τ(D), 75
⇑h

in Λτ(D), 74
Var, 17
abs, 32
app, 32
τ̄α, 71
ε̄α, 71
ε̄a, 71
m′I,a,b, 108
m′I,1, 108
S, 19
·

between tests, 71
¨a, 205
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c′I,J,a, 108
↓A, 207
d′a, 108
p′I,J,a, 108
dom( f ), 208
ε, 71
≡β, 20
≡H∗ , 23
≡τ(D), 75
AJ, 39
N f 〈N∗〉, 211
S f 〈D〉, 212
�η∞, 30
˚a, 205
λ~x.M, 17
λx1 . . . xn.M, 17
λx.M, 17
≤D×E, 207
≤A f (D), 207
≤A f (D), 207
vτ(D), 74
〈〈.〉〉, 98
~.�~x

for Λτ(D) in D, 75
for finite Böhm trees, 56

~.�~xcoind, 57
~.�~xind, 57
~.�∗

for Böhm trees, 56
~.�q f , 59
(|.|)

for Λτ(D), 75
for Λ, 18

Z2, 211
BT , 30
I(D), 207
N+
α , 101
N−α , 101
R, 101
⇓

convergence, 196
graphl( f ), 208
graphs( f ), 208
mhnf, 74

(, 179
nf, 196
CD, 176
C0, 174, 183
C1[a, b], 174, 183
C2[φ, ψ], 183
CT , 182
UF , 148
B: X → Y , 193
Tω, 22∏

i≤n Pi, 71
→

as reduction in Λ, 19
as reduction in Λτ(D), 72

→∗

as reduction in Λ, 19
→h

as reduction in Λ, 19
for Λτ(D), 72

→∗h
as reduction in Λ, 19

SU
L

, 148
˝a, 205
~−�

for semirings, 111
⊆

for Böhm trees, 29
⊆V, 101
⊆ f , 53
⊆Ω f , 53
⊆q f , 53
�η, 30∑

i≤n Pi, 71∑
i≤n τ̄αi(Qi), 71

supp( f ), 212
τα, 71
semiring, 210

lax-, 210
n, 19
w′a, 108
|a|, 205
ζ, 57
iD, 35
idφ, 184
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λ-theory
BT, 21
H , 21
H∗, 23
Ω, 21
β, 20
βη, 22
ω, 22
Tnf , 23
T η, 22
>, 20

2-category
Cat, 185
CohN, 135
CohB, 135
RelR, 135
ScottL, 135

category
Coh, 205

component
Gs, 188

diagram
∂

m, 113

∂

m1, 113

∂

c, 113

∂

d, 113

∂

p, 113

∂

w, 113
AbsL, 202
AbsR, 202
Assa, 200
Coma, 200
DistL, 202
DistR, 202
Unta, 200
mc1, 202
mc2, 202
md1, 201
md2, 201
mp1, 201
mp2, 201
mw1, 202
mw2, 202

assTens, 179
comTens, 179
neutTens, 179
untTens, 179

Functor
D( E

in ScottL, 209
D ⊗ E

in ScottL, 209⊕
i∈I Di

in ScottL, 209⊕
i∈I ai

in Rel, 204˘
i∈I Di

in ScottL, 209˘
i∈I ai

in Rel, 203
a( b

in Rel, 203
a ⊗ b

in Rel, 203
>

in Rel, 203
functor

0 : unt→ S, 108
1 : unt→ S, 108
+ : (S × S)→ S, 108
; : C1[a, b] × C1[b, c]→ C1[a, c], 184

( ) : S × L → L, 113
(: L × L → L, 179
! : L → L, 200
⊗ : L × L → L, 179
· : (S × S)→ S, 108
1 : 1→ L, 179
ida ∈ C1[a, a], 184

interpretation
~.�x̄

Λ in a K-model, 37
~.�~xD

Λ in a K-model, 37

K-model
D∗∞, 36
H f , 36
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Norm, 36
D∞, 36
P∞, 36

lax-semiring
Slax
L

, 138
linear category

CohN, 206
CohB, 206
RelN, 204

logical rules
Contr, 39, 199
Der, 39, 199
Prom, 39, 199
Weak, 39, 199
0L, 199
1L, 199
1R, 199
( L, 39
( R, 39
(L, 199
(R, 199
⊕L, 199
⊕R1, 199
⊕R2, 199
⊗L, 39
⊗R, 39
⊗L, 199
⊗R, 199
Sweak, 39
>L, 199
&R, 199
&L1, 199
&L2, 199

Meta-variable
S , 187
T , 187
≡T , 20
C, 174
L, 200
a, 174
b, 174
c, 174
G, 188

φ, 174
ψ, 174
χ, 174
Σ, 187
T , 20
vT , 20
p

for patterns, 188
meta-variable

M, 180
µ, 183
ν, 183
φ, 183
ψ, 183

meta-variables
I, 210
J, 210
M, 210
g, 210
h, 210
p, 210
q, 210
R, 210
S, 210

Natural transformation
αa,b,c

in Rel, 203
γa,b

in Rel, 203
evalD,E

in ScottL, 209
evala,b

in Rel, 203
〈φi | i ∈ I〉

in Rel, 204
π(ai)i∈I , j

in Rel, 204
λa

in Rel, 203
natural transformation
absLI : 0 −→ 0·I, 108
absR, 108
as·, 108
as+, 108
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αa,b,c : (a ⊗ b) ⊗ c←→ a ⊗ (b ⊗ c), 179
ma,b : !a ⊗ !b −→ !(a ⊗ b), 201
ma,b : Fa • Fb −→ F(a ⊗ b), 180
m1 : 1 −→ F1, 179
m1 : 1 −→ !1, 201

∂

I,a : !a −→ aI , 113
com+, 108
γa,b : (a ⊗ b)←→ (b ⊗ a), 179
ca : !a −→ !a ⊗ !a, 200
da : !a −→ a, 200
pa : !a −→ !!a), 200
dstRI,J,K : (I·J) + (I·K) −→ I·(J + K).,

108
dstL, 108
eval : a × (a⇒ b)→ b, 183
εu : 1 −→ |u|, 147
ξI , 148
ζI , 148
π1,a,b : a × b −→ a, 182
π2,a,b : a × b −→ b, 182
ρu : |u| ⊗ |u| −→ |u|, 147
untL·, 108
untR·, 108
unt+, 108
λa : (1 ⊗ a)←→ a, 179
wa : !a −→ 1, 200
ξI , 138
ζI , 138

operator
( ; ) : C1[a, b] × C1[b, c] → C1[a, c],

174
•, 183
(, 199
!A, 199
⊕, 199
⊗, 199
φ−1, 175
>, 199
1, 199
&, 199
0, 199

operator on relations
(X B ), 194
( B Y), 194

cod(B), 194
dom(B), 194
BI, 194
B∗, 194
B+, 194
B?, 194
Bn, 194
B−1, 194
B≤n, 194

order-degenerated category
Rel, 185

reduction
→, 37

reduction rule
(BT -@), 57
(BT -λ), 57
(H-c@), 73
(H-cτ̄), 73
(H-cλ), 73
(H-c·), 73
(H-cτ), 73
(H-cs), 73
(P-τ̄), 79
(P-τ̄+), 79
(P-β), 79
(P-·+), 79
(P-τ), 79
(P-ττ̄), 79
(P-c@), 79
(P-cλ), 79
(P-cτ), 79
(P-cs), 79
(P-id), 79
(S -+), 82
(S -@), 82
(S -τ̄), 82
(S -λ), 82
(S -·), 82
(S -τ), 82
(S -x), 82
(T -τ̄), 80
(T -τ̄+), 80
(T -β), 80
(T -·+), 80
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(T -τ), 80
(T -ττ̄), 80
(T -c@), 80
(T -cλ), 80
(T -cτ), 80
(T -cs), 80
(T -id), 80
(τ̄), 73
(τ̄+), 73
(β)

for Λ, Λτ(D), 18
(·+), 73
(τ), 73
(ττ̄), 73
(c@L), 73
(c@R), 73
(cτ̄), 73
(cλ), 73
(c·), 73
(cτ), 73
(cs), 73

relation
≡Tnf , 23

rule
(η∞@), 30
(η∞ω), 30

semi-module
S f 〈D〉, 212

semiring
B, 211
Bop, 211
Bd, 211
Sstr
L

, 140
N[Xi]i∈N, 40
Nd, 211
N f , 211
N̄, 211
N f 〈Affc

1〉, 43
S f 〈M〉, 212
N, 211
R+, 43
Trop, 211
lax-

B f , 211

P(N), 211, 215
P(R), 125
S⊥, 211

left-
Sleft
L

, 136
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The definitions index

D-decoration, 63
RelN! , 204
Σ-algebra

of a signature, 191
α-equivalence, 18
β-equivalence, 20
β-reduction

of the λ-calculus, 18
η-reduction

on Böhm trees, 30
C/a, 142
λ-calculus

with D-tests, 71
λ-terms, 17
N-labeled, 63
U-dependent internal semiring, 148, 150
C-theory, 20
R-relational interpretation

of semiring, 129
n-ary, 187
nth composition

for relation, 194
λ-calculus, 17

context, 18
untyped, 17

λ-calculus, 17
λ-theory, 20
ScottL!, 34
S-bounded exponential situation, 108
S-linear semiring over M, 212
“free” multiplicity semiring, 131
0-cells, 183
1-category, 183
1-cells, 183
1-identity, 184
1-morphisms, 183
2-category, 183
2-cells, 183
2-functor, 185
2-identities, 184
2-morphisms, 183

3-cell, 184

abstract rewriting system, 196
abstraction, 72
additive fragment, 199

of ILL, 198
Adequacy, 25
adequate, 25
adjunction, 178
algebra

on a monad, 181
on an endofunctor, 181

algebraic structures, 191
approximable, 58

quasi-, 59
approximation property, 58

quasi-, 59
ARS, 196

Böhm tree, 27
Ω-finite, 53
finite, 53
of a λ-term, 27
quasi-finite, 53

bi-functor, 177
bialgebra

on an endofunctor, 181
big step reduction, 196
bimonoidal category, 108
bounded linear logic

with dependent (U,S)-exponentials, 151
bounding semiring, 39

capture free substitution, 18
Cartesian category, 182
Cartesian closed category, 183
Cartesian co-product, 199
Cartesian co-unit, 199
Cartesian product, 199

of posets, 207
Cartesian unit, 199
categorical diagram, 175
categorification, 7
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category
coherent spaces, 205
symmetric monoidal, 179

closed, 179
co-, 179

category of algebras
over a monad, 182
over an endofunctor, 181

category of coalgebras
over a comonad, 182
over an endofunctor, 181

category with coproduct, 183
category with product, 183
CCC, 183
class, 173
cliques, 205
co-classical fragment, 147
co-inductive Z, 36
coalgebra

on a comonad, 181
on an endofunctor, 181

codomain, 194
coherence diagram, 175
coherent

for λ-theory, 20
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A. Appendix

A.1. A little dictionary for category theory

We have seen that, in this thesis, category theory is a language for expressing abstractions and
mathematical structures. How do you learn the most efficiency a new natural language? By
reading linearly a dictionary? By looking a textbook with self-maid examples? If all of this
can help and is even necessary at some point, the ideal exercise is the full immersion and the
learning with actual concrete cases. The same applies for the category theory: looking only
for definitions and basic examples is artificial, boring and pointless. The best approach, for our
personal experience, is to go way back and forth between

• the reading of short, unintelligible descriptions siding with redundant more concrete ones
to forge an intuition,

• the apparently pointless reading of soulless definitions.

This thesis is constructed along this philosophy, with a categorical appendix containing tech-
nical, difficult and intangible definitions, and the core of the thesis refering category theory but,
when possible, staying as parenthetic as possible (in order to be skippable). Notice that most
of our definitions comes from the nLab [nCa].

Sets and classes

In this thesis, we will generally give a set its naive interpretation: a set is composed of po-
tentially infinitely many elements that respect some defined property. However, we know from
1901 that this is not coherent since we do not want to create sets that contains themselves (more
exactly we do not want a set of all sets that “do not contain themselves”). That is why we in
fact work in the non naive set theory which limits the use of sets over sets.

In order to overcome this limitation, we fix an inaccessible cardinal, which is a bigger set
than any “set”1 you can imagine, and we consider that all our sets2 are inside it.

When, at some point, we want to use a collection of objects that is so big that we cannot be
sure it is a set anymore, we will call it a class. As a result of the “set” theory, a class is also a
“set” below another, bigger, inaccessible cardinal.

If, later, we want to apply to a class C a definition that requires a set, then we will restrain
the definitions to the small elements of C.3 This means, basically, that we change the working

1In order to distinguish our notion of set and the notion of set in the underlying set theory, we will call set the
former and “set” the later

2See footnote 1
3So that we will speak of small category or class of small sets.
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assumption to take a bigger inaccessible cardinal so that what was a class is now a set. Such
a dynamical change in our working assumption seems unsafe, but, in actual cases, it always
works without any problem.4

Categories: basic definitions

A category is basically a mix between a graph and an ordered set. Indeed, it consists of a class
of objects related by composable morphisms; in particular, there can be several morphisms.

Definition A.1.0.3. A category C is the given of:

• a class C0 of objects denoted by the meta-variables a , b , c ...,

• for each couple of objects a, b ∈ C0, a set C1[a, b] of morphisms denoted by the meta-
variables φ , ψ , χ ..., morphisms are generally denoted by arrows so that φ ∈ C1[a, b]
is denoted by:

a b
φ

where a is called the source of φ and b is called the target of φ,

• for each triples of objects a, b, c ∈ C0, a function

( ; ) : C1[a, b] × C1[b, c]→ C1[a, c]

called composition and graphically denoted:

a c := a b c
φ;ψ φ ψ

• for each object a ∈ C0, an identity morphism denoted ida ∈ C1[a, a],

• so that the composition is associative in order for the following to never be ambiguous:

a b c d
φ ψ χ

• so that ida is neutral for the composition:

4Basically because the number of upgrades of the working assumptions will not be indexed by the notion of sets
itself.
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a b b = a b = a a b.
φ idb φ ida φ

By abuse of notation, we will generally use C also for C0 and C1.

We will call isomorphism a morphism φ : a → b such that there exists φ−1 : b → a such
that φ; φ−1 = ida and φ−1; φ = idb.

A subcategory of a category C is a category D such that D0 ⊆ C0 and D1[a, b] ⊆ C1[a, b]
for all a, b ∈ D. It is called a full subcategory if the second inclusion is an equality.

Example A.1.0.4. The category b has the sets as objects and the inclusion as morphisms. It is an
order-degenerated category (or an ordered class) in the sense that the morphisms are entirely described
as an order relation on the object.

The category Set has the sets as objects and the functions as morphisms. The identity is the identity
function and the composition is the composition of functions.

The category Rel has the sets as objects and the relations as morphisms. The identity is the relation
ida := {(α, α) | α ∈ a} and the composition is the composition of relation:

φ;ψ := {(α, γ) | ∃β, (α, β) ∈ φ, (β, γ) ∈ ψ}.

Definition A.1.0.5. A categorical diagram or coherence diagram is a couple φ, ψ : a → b
of morphisms with same source and target. We say that such a diagram commute if the two
morphisms are equal and we denote this equality by a cell:5

a b.

φ

ψ

When we want to give a name to a commuting diagram, we denote it inside the cell. More-
over, the identity arrow is sometimes denoted by a double line in order to ease the diagram
readability.

Example A.1.0.6. The two following coherence diagrams commute by definition of a category:

a b

a b

a c

b d

φ

ida

φ

φ;ψ

φ

ψ; χ

χ

Indeed, the first diagram states that one can precompose and postcompose a morphism φwith the identity
and still get ψ, and the second states the associativity of the composition.

5Remark that often, the morphisms φ and ψ are described as compositions of other morphisms.
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Definition A.1.0.7. The Cartesian product of two categories C andD, is the category C×D:

• which objects are the couples over C andD:

(C ×D)0 := C0 ×D0 := {(a, b) | a ∈ C, b ∈ D)}

• which morphisms from (a, b) to (a′, b′) are the couples of morphisms:

(C ×D)1[(a, b), (a′, b′)] := C1[a, a′] ×D1[b, b′].

The Cartesian exponent of a category C by a set D is the category CD :

• which objects are the fuctions from D to C:

(CD)0 := CD
0 := { f : D→ C0}

• which morphisms from f to g are the dependant functions:

(CD)1[ f , g] := {(φd)d∈D | ∀d ∈ D, φd ∈ C[ f ( f ), g(d)]}.

The Cartesian coproduct of two categories C andD, is the category C +D:

• which objects are the disjoint unions of the objects of C andD:

(C +D)0 := C0 ]D0 := {(1, a) | a ∈ C} ∪ {(2, b) | b ∈ D)}

• which morphisms from (i, a) to ( j, b) are the morphisms from a to b when it makes sens:

(C +D)1[(1, a), (1, b)] := C0[a, b] (C +D)1[(2, a), (2, b)] := D0[a, b]
(C +D)1[(1, a), (2, b)] = ∅ (C +D)1[(2, a), (1, b)] := ∅

The inverse of a category C is the category C−1 defined by:

C−1
0 := C0 C−1[a, b] := C[b, a]

We denote 1 the neutral element of the Cartesian product which has a single object ∗ and
a single morphism id∗.

A category is an algebraic structure that focus on morphisms, which are basically dynamics,
relations or symmetries between structures. One can go further and study the “morphisms” be-
tween categories. This is the purpose of functors, that are a sort of morphisms over categories.6

6We cannot call them “morphisms” in order not to collapse the set hierarchy.
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Definition A.1.0.8. A functor F : C → D where C andD are categories, is the given of:
• a function on objects F : C0 → D0, with the notation Fa := F(a),
• for each a, b ∈ C0, a function on morphism F : C1[a, b]→ D1[Fa, Fb],

• such that the composition is preserved:

Fa

Fb

Fc

Fφ

F(φ;ψ)

Fψ

• and such that the identities are preserved, i.e. Fida = idFa for any a ∈ C.

A contravariant functor F : C → D is a functor from the opposite category F : Cop → D.
A bi-functor or simply functor F : C × C′ → D is a functor from the product category C × C′

toD. An endofunctor is a functor F : C → C with the same source and target.

If functors are sort of morphisms between categories, natural transformations are sort of
morphisms between functors. The concept of natural transformations carries an idea of duality,
stating that morphisms between functors should be morphisms in the target categories that
depend on morphisms in the source category.

Definition A.1.0.9. Given two functors F,G : C → D, a natural transformation n : F −→ G
is the given of:

• a morphism na : Fa→ Ga for each a ∈ C,

• such that the following diagram commutes for every a, b ∈ C and every φ ∈ C[a, b]:

Fa Fb

Ga Gb.

Fφ

na nb

Gφ

Basic categorical constructions

In this section we present some basic constructions over categories; namely:

• initial/final objects (Def. A.1.0.10),
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• epimorphisms and monomorphisms (Def. A.1.0.11),

• adjunctions (Def. A.1.0.12),

• symmetric (co-)monoidal (close) categories (Def. A.1.0.13),

• monoids (Def. A.1.0.14),

• (co)monads (Def. A.1.0.15),

• (co)algebras (Def. A.1.0.17),

• Kleisli categories (Def. A.1.0.18)

• and Cartesian (closed) categories (Def. A.1.0.19).

Definition A.1.0.10. An initial object of a category C is an object i ∈ C such that for any
a ∈ C there is a unique morphism inita : i→ a.

A terminal object is an initial object of the inverse category, i.e., an object t ∈ C such that
for any a ∈ C, there is a unique morphism terma : a→ t.

Initials and final objects are unique up-to isomorphisms.

Definition A.1.0.11. An epimorphism is a morphism φ : a→ b such that for every morphisms
ψ, ψ : b→ c, if φ;ψ1 = φ;ψ2 then ψ1 = ψ2. In particular, if φ : a→ b is epi the following is a
coherence diagram whenever the two internal cells commute:

b a c.

ψ1

ψ2

φ

χ

A monomorphism is an epimorphism in Cop.

Definition A.1.0.12. Given two categories C and D, an adjunction between the functors
L : C → D and R : D → C, is the given of:

• a natural transformation ηa : a −→ RLa called unit,

• a natural transformation εa : LRa −→ a called counit,

• such that the following diagrams commute
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La

LRLa

La R(a)

RLR(a)

R(a)

Lηa εLa ηRa Rεa

The functor L is called left adjoint and the functor R is called right adjoint.

Definition A.1.0.13. A symmetric monoidal category (or SMC), is a category L endowed:

• with the functors

– ⊗ : L × L → L ,

– and 1 : 1→ L ,

• and with the natural isomorphisms

– αa,b,c : (a ⊗ b) ⊗ c←→ a ⊗ (b ⊗ c) ,

– λa : (1 ⊗ a)←→ a

– γa,b : (a ⊗ b)←→ (b ⊗ a) ,

• where λ1 = γ1,1; λ1 (untTens ), where γ−1
a,b = γb,a and the following diagrams commute.

((a ⊗ b) ⊗ c) ⊗ d (a ⊗ b) ⊗ (c ⊗ d) a ⊗ (b ⊗ (c ⊗ d))

(a ⊗ (b ⊗ c)) ⊗ d a ⊗ ((b ⊗ c) ⊗ d)

assTens

(a ⊗ b) ⊗ c a ⊗ (b ⊗ c) (b ⊗ c) ⊗ a

(b ⊗ a) ⊗ c b ⊗ (a ⊗ c) b ⊗ (c ⊗ a)

comTens

(a ⊗ 1) ⊗ b a ⊗ (1 ⊗ b)

(1 ⊗ a) ⊗ b a ⊗ b

neutTens

αa⊗b,c,d αa,b,c⊗d

αa,b,c ⊗ idd

αa,b⊗c,d

ida ⊗ αb,c,d

αa,b,c ida ⊗ γb,c

γa,b ⊗ idc

αb,a,c idb ⊗ γa,c

αb,c,a

αa,1,b

γa,1 ⊗ idb

λa ⊗ idb

ida ⊗ λb

A symmetric monoidal closed category (or a SMCC) is a symmetric monoidal category where
⊗ a has a right adjoint a( for every object a.
A symmetric comonoidal category is a category C which inverse Cop (Def. A.1.0.7) is sym-

metric monoidal.
A symmetric monoidal functor between two monoidal categories (C,⊗, 1) and (D, •, 1) is

a functor F and two natural transformations
• m1 : 1 −→ F1 ,
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• ma,b : Fa • Fb −→ F(a ⊗ b)
satisfying the following diagrams

F1 • Fa

1 • Fa

F(1 ⊗ a)

Fa

Fa • Fb

Fb • Fa

F(a ⊗ b)

F(a ⊗ b)

(Fa • Fb) ⊗ Fc

Fa • (Fb • Fc)

F(a ⊗ b) • Fc

Fa • F(b ⊗ c)

F((a ⊗ b) ⊗ c)

F(a ⊗ (b ⊗ c))

m1 ⊗ id!a

m1,a

λFa

!λa γFa,Fb

ma,b

mb,a

Fγa,b

αFa,Fb,Fc

ma,b • idFc

idFa • mb,c

ma⊗b,c

ma,b⊗c

Fαa,b,c

Definition A.1.0.14. A commutative monoid in a symmetric (co-)monoidal category C is an
object M ∈ C endowed with:

• a morphism µ : M ⊗ M→ M called multiplication,

• a morphism η : 1→ M called unit,

• such that the following diagrams commute:

M

M

M ⊗ M

M ⊗ M

M

1 ⊗ M

M

M ⊗ M

M

M ⊗ MM ⊗ (M ⊗ M)

M ⊗ M

(M ⊗ M) ⊗ M.

µ

µ

γM,M λ−1
M

µ

η ⊗ idM

µ

µµ ⊗ idM

idM ⊗ µαM,M,M

A commutative comonoid in a symmetric (co-)monoidal category C is a commutative monoid
in the inverse category C−1 (Def. A.1.0.7).

Definition A.1.0.15. A monad in a category C is an endofunctor T : C → C endowed with

• a natural transformation µa : TT (a) −→ T (a) called multiplication,
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• a morphism ηa : a→ T (a) called unit,

• such that the following diagrams commute:

T (a)

TT (a)

TT (a)

TTT (a)

T (a)

T (a) TT (a) T (a)

µa

µa

T (µa)

µT (a) µa

εT (a)T (εa)

A comonad is a monad in the inverse category C−1 (Def. A.1.0.7).

Remark A.1.0.16. A monad (F, µ, η) in C is a monoid of the (non-symmetric) monoidal category of
endofunctors over a and natural transformations (with the composition of functors as monoidal product).

Definition A.1.0.17. An algebra on an endofunctor F : C → C is an object a ∈ C endowed
with a morphism h : a → Fa. A coalgebra on an endofunctor F is an algebra on F in the
inverse category.7A bialgebra on an endofunctor F is an algebra (a, h) on F such that h is an
isomorphism, so that (a, h−1) is a coalgebra.

The category of algebras over an endofunctor F : C → C is the category:

• which objects are algebras over F : C → C,

• which morphisms from (a, h) to (a′, h′) are the morphisms φ : a → a′ such that the
following diagram commute:

Fa′

a′

Fa

a

h′

Fφ

φ

h

The dual concept is the category of coalgebras over an endofunctor.
An algebra on a monad (T, µ, ε) is an algebra (a, h) over T (seen as an endofunctor) such

that the following diagram commute:

a

Fa

Fa

FFa

a

Fa

a

h

h

µ

Fh
ε h

As usual, a coalgebra on a comonad is an algebra on the inverse monad in the inverse cate-
gory.
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The category of algebras over a monad (T, µ, ε) is the full subcategory of the category of
algebras over T which objects are algebras over (T, µ, ε). The dual concept is the category
of coalgebras over a comonad.

Definition A.1.0.18. The Kleisli category CT over a monad (T, µ, ε) in C consists of the
category:

• which objects are the objects of C,

• which morphisms from a to b are the morphisms from a to Tb in C:

CT [a, b] := C[a,Tb],

• which iddentity is the unit:
id!

a := εa ∈ C[a,Ta],

• which composition is the multiplication (with φ ∈ C[a,Tb] and ψ ∈ C[b,Tc]):

φ • ψ := a Tb TTc Tc
φ !ψ µc

Symmetrically, the Kleisli category CT over a comonad (T, µ, ε) in C is the category with the
same objects and with C[T (a), b] as morphisms from a to b.

Definition A.1.0.19. A Cartesian category consists of:

• a category C,

• a terminal object >,

• a functor × : C × C → C called Cartesian product,

• two natural transformations π1,a,b : a × b −→ a and π2,a,b : a × b −→ b ,

• such that for every φ : c→ a and ψ : c→ b there is a single morphism 〈φ, ψ〉 : c→ a×b
such that:

a

b

a × bb

φ

ψ

〈φ, ψ〉

π1

π2

7Remark that an endofunctor over a category is also an endofunctor over the inverse category.
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We will often call category with product a Cartesian category and category with coproduct a
category which inverse category is Cartesian.

A Cartesian closed category (CCC for short) is a Cartesian category which Cartesian prod-
uct (a × ) has a right adjoint (a ⇒ ). The unit of the adjunctions is called evaluation and
denoted eval : a × (a⇒ b)→ b. For any morphism f : (a × b) → c, we called Curryfication
of f , the morphism Λ1 f : b→ (a⇒ c) defined by:

Λ1 f := b a⇒ (a × b) a⇒ c
µ id ⇒ f

where µ is the counit of the adjunction.
For any finite set U with n elements, we denote aU the Cartesian product of n versions of

a marked with the elements of U. Moreover, given V ⊆ U, we denote πU
V : aU → aV the

projections over elements marked in V; when the source is clear, we denote it simply πV .
Similarly, for x ∈ U anf f : aU → b, we denote Λx f : aU−x → (a⇒ b) the Currification over
the x-marked source.

2-categories

In this section we present the concept of 2-categories.8 If a category is an abstraction that repre-
sents dynamic structures and transformations, a 2-category is an abstraction that also represents
structures behind transformations over transformations.

Remark A.1.0.20. The definitions belows are said to be strict. This precision only results from the
existence of other, weaker (or lax), definitions that relax some of the constraints.

Definition A.1.0.21. [KS74] A (strict) 2-category C is given by

• a class C0 of objects (or 0-cells),

• a category (or 1-category) C1[a, b] for any a, b ∈ C0 where:

– the objects of C1[a, b] are called 1-morphisms (or 1-cells) and denoted by simple
arrows φ, ψ : a→ b,

– the morphisms from φ to ψ are called 2-morphisms (or 2-cells) and denoted either
as 1-dimentional double arrows, µ, ν : φ ⇒ ψ, or depicted as 2-dimentionaly
double arrows:

a b⇓µ

φ

ψ

– we moreover denote C2[φ, ψ] := C1[a, b][φ, ψ] the set of 2-morphisms for φ, ψ
objects of C1[a, b],

8More exactly strict 2-categories which constitute one possible definition over several existing.
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– the composition in C1[a, b] is called vertical composition and is denoted by • so
that we can denote

a b
⇓µ

⇓ν

:= a b,⇓µ • ν

φ

ψ

χ

φ

χ

– and the identities are called 2-identities and just denoted idφ for φ ∈ C1[a, b];

• for any a, b, c ∈ C0, an horizontal composition functor ; : C1[a, b] × C1[b, c] →
C1[a, c] so that :

a

b

b

c⇓µ ⇓ν = a c,⇓µ; ν

φ

φ′

ψ

ψ′

φ;ψ

φ′;ψ′

• for any a ∈ C0, a 1-identity object ida ∈ C1[a, a] ,

• so that the horizontal composition is associative, in particular, the following diagram
is not ambiguous:

a

b

b

c

c

d⇓µ ⇓ν ⇓κ

φ

φ′

ψ

ψ′

χ

χ′

• and so that the 2-identities between 1-identities are neutral for the horizontal composi-
tion:

a

b

b

b⇓µ ⇓ididb = a b⇓µ = a

a

a

b⇓idida ⇓µ

φ

ψ

idb

idb

φ

ψ

ida

ida

φ

ψ

Moreover, we will use the term 3-cell to refer to identities between 2-cells.

Remark A.1.0.22. For any 2-category C, the class of 0-cells endowed with the class of 1-cells as
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morphisms forms a category.9

Similarly, the class of 0-cells endowed with the class of 1-cells quotiented by 2-isomorphisms forms
a category.10

Remark A.1.0.23. The notion of 2-isomorphisms in 2-categories being similar to the notion of com-
muting diagrams in 1-categories, we use the same kind of notations.

Example A.1.0.24. A traditional example is the example of the 2-category Cat :

• which objects are small categories,

• which 1-morphisms are functors,

• which 2-morphisms are natural transformation.

In Section 3.2, where 2-categories will be at stake, we will in fact use order-degenerated
2-categories. As for the posets being degenerated categories (categories with at most one mor-
phism between each given pair source-target of objects), the interest of order-degenerated 2-
categories is that 3-cells always commute and 2-isomorphisms are equalities.

Definition A.1.0.25. An order-degenerated 2-category, or order-enriched category, is a 2-
category which hom-categories are posets. This means that for any two 1-morphisms φ, ψ,
there is at most one 2-morphism denoted (φ ≥ ψ) in C[φ, ψ]; moreover (φ ≥ ψ) has no inverse
(except for the identity when φ = ψ).

Example A.1.0.26. The category Rel of sets and relations can be generalized into the order-degenerated
category Rel :

• which 0-cells are the sets,

• which 1-cells are the relations,

• which 2-cells are the inclusions of relations:

R⇒ R′ iff R ⊇ R′

The notions of functors and natural transformations generalize through 2-categorical frame-
work:

Definition A.1.0.27. A (strict) 2-functor F : C → D where C and D are 2-categories, is the
given of:

• a function on 0-cells F0 : C0 → D0,

• a functor F : L1[a, b]→ L1[F0(a), F0(b)] for each a, b ∈ L0,

• such that the horizontal composition is preserved:

9Strictly speaking, due to cardinality issues this is only true if C1[a, b] is a small category for each a, b ∈ C0.
10See Footnote 9
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Fa

Fb

Fb

Fc⇓Fµ ⇓Fν = Fa Fc,⇓F(µ; ν)

Fφ

Fφ′

Fψ

Fψ′

F(φ;ψ)

F(φ′;ψ′)

• and such that the 1-identities are preserved, i.e. Fida = idFa for any a ∈ C0.

In particular, if C and D are order-degenerated, the horizontal composition is always pre-
served.

Definition A.1.0.28. A (strict) natural 2-transformation n : FC → GC is the given of:

• a 1-morphism na : Fa→ Ga for each a ∈ C0,

• a 2-isomorphism:

Fa Fb

Ga Gb,

mnφ

Fφ

na nb

Gφ

for any φ ∈ C1[a, b],

• The following diagrams are equal (i.e., the corresponding 3-cell commute):

Fa Fb

Ga Gb,

⇓Fµ

mnψ

=

Fa Fb

Ga Gb,⇓Gµ

mnφ

Fφ

Fψ
na nb

Gψ

Fφ

na nb
Gφ

Gψ

• The transformation respects the horizontal composition, equalizing the following dia-
grams (i.e., the corresponding 3-cell commute):
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Fa Fb

Ga Gb,

Fc

Gc

mnφ mnψ =

Fa

Ga

Fc

Gc

mnφ;ψ

Fφ

na nb

Gφ

Fψ

nc

Gψ

F(φ;ψ)

na

G(φ;ψ)

nc

• The transformation respects the identity, i.e. nida = ida,a for any a ∈ C.

In particular, if C, FC and GC are all order-degenerated, then a natural 2-transformation is
a natural transformation in the underlying category (where the order has been forgotten).

A.2. Term rewriting

A.2.1. Grammars and signatures

A recurrent and elementary object in our study is the signature. Signatures are abstract objects
that can represent both grammars and formal proof systems.

Definition A.2.1.1. A signature Σ is the given of

• a set Σs of sorts, sorts are denoted by S , T ...

• and a set Σp of function symbols, which are endowed with a type p : S 1 × · × S n → T
with S 1, ..., S n,T ∈ Σs.

A signature will be said monosorted if there is only one sort, and multisorted otherwise.
Function symbols of type p : S 1 × · × S n → T are said n-ary functions symbols, the sort

T is the target of p and S 1, . . . , S n are its sources. The 0-ary functions symbols are constant
symbols.

Remark A.2.1.2. In terms of category, a signature Σ is an endofunctor11 FΣ : SetΣs → SetΣs . Indeed,
we can set FΣ to be the following polynomial endofunctor:

(FΣ(~X))T :=
⊎

p:S 1×···×S n→T

(XS 1 × · · · × XS n).

One can generalize a signature at the categorical level to be a polynomial endofunctor. Spelling out, a
polynomial endofunctor is a endofunctor F : Cn → Cn, for C a category with products and coproducts,
that is a tuple (in Cat) coproduct of product (in C) over projections (in Cat):

F := 〈~X 7→
∐
i∈Ik

∏
j∈Ji,k

πCat
u(i, j,k)(~X) | k ≤ n〉Cat.

In particular, we will often consider for C the category of small categories.

11Recall from Definition A.1.0.7 that SetΣs is the Cartesian exponent of the category Set by the set of sorts
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Grammars are used to inductively describe languages, both natural (human) and formal
(computer). From a mathematical point of view, a grammar seems to be syntactic sugar coating
signatures over universal algebras [MS10]. However, their use is more diverse as grammars
can be used to define such algebras, that we call models (Def. A.2.1.13) but also syntactical
representations (Def. A.2.1.9).

Definition A.2.1.3. A grammar G is given by a set Gs of sorts and a set Gp of patterns.

• A sort is basically a non-terminal symbol.

• A pattern p is given by a target sort T and a sequence constituted of terminal symbols
and non-terminal symbol over some sorts called the source sorts. The type of a pattern
p is p : S 1× · · · ×S n → T where T is the target sort and S 1, . . . , S n ∈ Gs are the source
sorts with the order and multiplicities of occurrences of their respective non-terminal
symbol.

A deterministic grammar is a grammar which paterns contains at least one specific terminal
symbol12(that does not appears in others) and which n-ary patterns (for n ≥ 2) are parenthe-
sized.

For readability, we represent a deterministic grammar using one line per sort. Each sort is
then represented by a line of the form

(mysort) K K := pattern | pattern | · · ·

with a name (here mysort), a mathematical symbol (here K), a meta-variable (here K)
and a serial of patterns separated by vertical lines | which target sort is mysort. By abuse
of notation, we may use two or more non-terminal symbols for a specific sort, those are just
synonyms used for readability.

A (deterministic) grammar will be said monosorted if there is only one sort, and multisorted
otherwise.

By abuse of notation and to be more syntactic, we often use the term “grammar” for
“deterministic grammar”. There is no ambiguity as we strictly specified that grammars in
this thesis are only considered deterministic.

Notice that the first sort of a grammar is of particular importance, so that we will often use
the same mathematical symbol to represent both the grammar and this first sort.

Proposition A.2.1.4. Any deterministic grammar G defines a signature:

• which sorts are the sorts of Gs,

• which function symbols are the patterns p ∈ Gp.

An other important realization of signatures is the formal inference systems

12Notice that the space denoting the application of λ-terms is a terminal symbol.
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Definition A.2.1.5. A formal inference system S is the given of:

• a set Ss of propositions,

• a set Sp of rules of the form:

where Precond1,..., Precondn are propositions overSs called preconditions and where
Concl is a propositions over Ss called conclusion.

Proposition A.2.1.6. Any formal inference system S defines a signature:

• which sorts are the propositions over Ss,

• which function symbols are rules over Sp.

Remark A.2.1.7. All these definitions can be extended to patterns of unbounded arity and to determin-
istic grammars with infinitely many patterns. Such generalizations have no theoretical cost, but make
the definitions less readable, thus we will not present them formally. However, we will use them freely
along the thesis.

Representations

When considering a deterministic grammar, we generally intend to use its inductively generated
language, i.e., the set of sequences obtained by inductively replacing meta-variables by patterns
until no meta-variable remains. However, this presentation lacks of generality because it does
not allow to treat infinite objects.

In this section, we are considering the generalization of the inductive language to infinite
objects. There is not just one generalization, but a multitude, called representations which
inductive and coinductive representations are respectively the smallest one and the largest one
(for inclusion order).

Definition A.2.1.8. Let Σ be a signature.
A (possibly infinite) tree T is Σ-labeled if:

• its nodes are labeled by function symbols over Σp,

• the arity of a node labeled by p the arity of p,

• and the ith son of a node labeled by p : S 1 × · · · × S n → T is labeled by a function
symbol targeting T .

A Σ-labeled tree T is said to be of sort T if its root is labeled by a function symbol targeting
T .
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If p : S 1 × · · · × S n → T is a function symbol of Σp, and if T1, ...,Tn are Σ-labeled trees of
sort S 1, ..., S n, then we denote p(T1, ...,Tn) the Σ-labeled tree which root is labeled by p and
which first sons are T1, ...,Tn.

Definition A.2.1.9. A representation of a signature is a set R of Σ-labeled trees such that for
any function symbol p : S 1 × · · · × S n → T in Σp, and any Σ-labeled trees T1, ...,Tn of sort
S 1, ..., S n, the following are equivalent:

• for a ll i ≤ n, Ti ∈ R

• p(T1, ...,Tn) ∈ R.

Among representations, there are three particular ones that are often chosen:

• The inductive representation, that is the minimal representation (for the inclusion). It
consists of all finite Σ-labeled trees.

• The coinductive representation that is the maximal representation. It consists of all
finite and infinite Σ-labeled trees.

• The recursive representation that consists on trees that can be recursively13describable.
This means that we only consider trees for which there is a program, or a machine,
that, given any node, can compute what are its sons.

We will call inductive / coinductive / recursive element of a sort T an element of its inductive
/ coinductive / recursive representation.

Remark A.2.1.10. In the particular case of a deterministic grammar:
The inductive representation and the inductively generated language are isomorphic. This is due

to the determinism of the grammar (otherwise two trees may corresponds to several words). In the
following we will generally use the former, but apply theorems (induction) reserved to the later.

Grammars will always be given with a choice R of representation (by default the inductive one). By
abuse of notation, we denote T the set of trees/words in R of sort T and its elements are denoted using
for meta-variables the non-terminal symbol(s) of T .

Example A.2.1.11. Numbers in decimal basis can be represented by the following monosorted gram-
mar:

(numbers) 10 n := 0. | n0 | n1 | n2 | n3 | n4 | n5 | n6 | n7 | n8 | n9

The inductive representation will give the natural numbers in decimal bases. The coinductive repre-
sentation is composed by possibly infinite streams of numerals that one can see as real numbers between
0 and 1 except that several numbers may have several representatives (for example 0.5 ' 0.5000... '
0.4999...) . The recursive representation will give recursive numbers between 0 and 1 (with possibly
several representations of the same number).

13i.e., effectively
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Example A.2.1.12. One can also mix the representations. For example, in the following grammar:

(numbers) 10n n := .d | 0n | 1n | 2n | 3n | 4n | 5n | 6n | 7n | 8n | 9n
(decimals) 10d d := 0d | 1d | 2d | 3d | 4d | 5d | 6d | 7d | 8d | 9d

We would like to be inductive on numbers and coinductive on decimals in order to form all real
numbers.

Definition A.2.1.13. Notice that a signature Σ defines a set of sorted algebraic operations
Σp. The algebraic structures over this set of operations are composed of:

• of a set ~T� for each sort T ,

• of a function ~p� : ~S 1� × · · · × ~S n�→ ~T� for each pattern p : S 1 × · · · × S n → T.

We call Σ-algebra of Σ any such algebraic structures.
Given a representation R of Σ, a model of R is an Σ-algebra M of Σ together with an

interpretation ~.� : R →M such that

~p(s1, ..., sn)� = ~p�(~s1�, ...., ~sn�)

There is exactly one interpretation of the inductive representation into any model (by ap-
plication of Proposition A.2.1.19), but there can be several for other representations.

Proposition A.2.1.14. Any representation of a grammarG will modelG as well as itself (with
the identity as interpretation).

Remark A.2.1.15. In terms of category, a representation over Σ is a bialgebra on FΣ (Rk. A.2.1.2 and
Def. A.1.0.17). In particular, inductive and coinductive representations are respectively the initial and
final (Def. A.1.0.10) bialgebras on FΣ (i.e. the initial and final objects of the category of bialgebras). In
the literature, those are generally described as the initial algebra and the final coalgebra, which is an
equivalent definition.

Remark the absence of categorical definition of the recursive representation. There lies one of the
main limits of category theory: representing computability. Some progress have been done to overcome
this limit [CH08], but there is not yet any consensus on this point.

Similarly, an algebra over a signature Σ is an algebra on FΣ. A model over a representation (R, h)
(seen as a bialgebra) is an algebra (R, f ) together with a morphism of algebra ~.� : (R, h)→ (R, f ).

Definition A.2.1.16. Let G be a deterministic grammar, let S ∈ Gs be a sort of G, and let R
be a representation of G.

A S -context over R is a tree that is an element of R except that exactly one branch of sort
S has been truncated and replaced by a hole (|.|). A context is a S -context for S the first sort
of G.

Equivalently, a S -context over R is an element of the inductively generated language over
G(|.|)S ; where G(|.|)S is the deterministic grammar which sorts, denoted T (|.|)S ∈ G

(|.|)S
s , are the

copies of the sorts T ∈ Gs of G, and which patterns the following:
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• a constant (|.|) : S (|.|)S ,

• a pattern p(u1, ..., ui−1, s, ui+1, ..., un) : S (|.|)S
i for each p : S 1 × · · · × S n → T in Gp, each

i ≤ n and each u j ∈ S j for j , i.

For any S -context c ∈ T (|.|)S and any s ∈ S , we denote C(|s|) the element of T obtained by
substituting the sole constant (|.|) in C by s.

Induction and coinduction

In the following, we will only mainly consider monosorted signatures. However, all this results
extend with sorts and higher order.

The inductive and coinductive are particularly important as they offer two fundamental
propositions named respectively induction and coinduction. These theorems allow to prove
global properties over the languages looking only at the function symbols, thus requiring a
simple case disjunction.

The first (and the simplest) is the induction that reduces a universal property (i.e., a condition
in each inductive element) into a requirement on each function symbol.

Proposition A.2.1.17 (Propositional Induction). Let Σ be a signature. Let P be a proposi-
tion over the inductive representation of T (the only sort).
If for every pattern p of signature T n → T, the following proposition is true:

P(s1) ∧ · · · ∧ (sn) ⇒ P(p(s1, . . . , sn)).

Then the initial proposition is universally verified, i.e.:

∀t ∈ T, P(t)

This means that to prove any property on an inductive representation, it is sufficient to split
the proof and to show that this property is invariant through each of the function symbols.

Remark A.2.1.18. For multisorted grammars, the proposition P can be different for each sort, except
that the definition is identical.

The induction has a functional counterpart.14

Proposition A.2.1.19 (Functional induction). Let Σ be a signature and let X be any set.
Let f : (p, y1, .., yn) 7→ x be a function that associate to each function symbol p : T n → T and
each sequence y1, . . . , yn ∈ X an element x ∈ X.

14Notice that functional and propositional inductions can be derived from a same principle in higher order type
theory.
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This defines a single function f µ from the inductive elements of T to X respecting:

f µ(p(s1, . . . , sn)) = f (p, f µ(s1), . . . , f µ(sn)).

Remark A.2.1.20. For multisorted signatures, the definition is identical except that the set X and the
function f can depend on the sort.

Remark A.2.1.21. In terms of category, this means that for any algebra (X, f ) on FG, there is a single
algebra morphism from the initial bialgebra to (X, f ). This is immediate once we remark that the initial
bialgebra is also the initial algebra.

If the induction propagate an information from the sources to the target, the coinduction goes
reversely.

Proposition A.2.1.22 (Functional coinduction). Let Σ a signature and X be a set.
Let f : x 7→ (px, y1

x, · · · , y
n
x) be a function that associate to each x ∈ X a function symbol

px : T n → T and a sequence y1
x, . . . , y

n
x ∈ X.

This defines a single function f ν from X to the coinductive elements of T respecting:

f ν(x) = px( f ν(y1
x), . . . , f ν(yn

x)).

Remark A.2.1.23. In terms of category:
Requiring a function f : X → FΣ(X) makes (X, f ) a coalgebra on FΣ. Recalling that the coinductive

algebra (A, h) is the final coalgebra, it is immediate that there exists a single function f ν : X → A such
that the following commutes:

FΣ(X) F(A)

X A

f

FΣ( f ν)

h

f ν

Remark that the commutation of this diagram exactly states that:

f ν(x) = px( f ν(y1
x), . . . , f ν(yn

x)).

The propositional coinduction, however, does not exist. Nonetheless, the coinduction can be
used to derive coinductive proofs, e.g., proofs over the coinductive representation of a formal
inference system (Def. A.2.1.5).

Relations

Formally, a relation between a set X and a set Y is a set of couples over those B ⊆ (X × Y),
so that we denote x B y whenever (x, y) ∈ B . We denote B: X → Y a relation from the set X
called the source and the set Y called the target.
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The inverse relation will be denoted B−1 := {(y, x) | x B y} : Y → X. The image of a
set x ∈ X by a relation B is the set of all y that are in relation with x ∈ X: (X B ) := {y ∈
Y | ∃x ∈ X, x B y}, the pre-image of a set y ∈ Y by a relation B is similarly defined by
( B Y) := {x ∈ X | ∃y ∈ Y, x B y}. In particular, the domain and codomain of B: X → Y are
respectively the image of X and the pre-image of Y:

dom(B) := {x ∈ X | ∃y ∈ Y, x B y} and cod(B) := {y ∈ Y | ∃x ∈ X, x B y}.

We call reflexive closure of a relation B: X → X the smallest reflexive relation B?: X → X
that contains B:

x B? y iff (x = y) or x B y.

We call transitive closure of a relation B: X → X the smallest transitive relation B+: X → X
that contains B:

x B+ y iff ∃z1, . . . , zn, x B z1 B · · · B zn B y.

We call reflexive transitive closure of a relation B: X → X the smallest preorder B∗: X → X
that contains B:

x B∗ y iff ∃z1, . . . , zn, x = z1 B z2 B · · · B zn−1 B zn = y.

We call composition of two relations B: X → Y and I: Y → Z the relation BI: X → Z obtained
by composing links:

x BI z iff ∃y ∈ Y, x B y I z.

We call nth composition of a relation B: X → X the relation Bn: X → X obtained by composing
it n times:

x Bn z iff ∃y0, .., yn ∈ X, x = y0 B y1 B · · · B yn−1 B yn = z.

We call weak nth composition of a relation B: X → X the relation B≤n: X → X obtained by
composing it up to n times:

x B≤n z iff ∃m ≤ n, x Bm z.

Definition A.2.1.24. Let Σ be a signature and X, Y be two models/representations of Σ.
A relation B between X and Y is sorted if whenever x B y the sorts of x and the sort of y are
the same. In other words, a sorted relation is the disjoint unions of relations over each sorts.

Definition A.2.1.25. Let R a representation over a signature Σ.
A (sorted) relation B∈ R × R is contextually closed if B distributes locally with every

function symbol. This means that for any function symbol p : S 1 × · · · S n → T, and for any
si, s′i ∈ S i (for some i ≤ n) such that si B s′i , we have

p(s1, . . . , si, . . . , sn) B p(s1, . . . , s′i , . . . , sn).

When a contextually closed relation is an equivalence relation, we call it a congruence. When
it is just a pre-order, we call it an inequational congruence.

The contextual closure of a sorted relation . is the smallest contextually closed relation
that contains .. Equivalently, the contextual closure of B is the relation inductively generated
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by the following rules (for each pattern p : S 1 × · · · × S n → T):

s B s′
s I s′

i ≤ n s1 I s′1 sn I s′n
p(s1, . . . , sn) I p(s′1, . . . , s

′
n).

The contextual coclosure of a sorted relation . is the largest contextually closed relation
that is contained in ..

Remark A.2.1.26. In the particular case of a representation R over a deterministic grammars G, the
relation B∈ R × R is contextually closed if for every sort S and T and for any S -context C ∈ T (|.|)S over
R:

s B s′ ⇒ C(|s|) B C(|s′|).

In particular, the contextual closure corresponds to the following closure:

t I t′ iff
(
∃S ,∃C ∈ T (|.|)S ,∃s, s′ ∈ S , t = C(|s|), t′ = C(|s′|), and s B s′

)
and the contextual coclosure corresponds to the following closure:

s I s′ iff ∀T,∀C ∈ T (|.|)S ,C(|s|) B C(|s′|),

Definition A.2.1.27. Let G be a grammar and R and M be, respectively, a representation
and a model of G.

An interpretation of R intoM is function ~.� from R toM, i.e. such that:

~p(s1, . . . , sn)� = ~p�(~s1�, . . . , ~sn�).

Remark A.2.1.28. In terms of category, this means that the interpretation is a morphism of algebra.
The uniqueness of the interpretation of the inductive representation is immediate since the inductive
representation is the initial algebra.

Calculi and rewriting systems

A calculus is basically a relation (called rewriting) over a deterministic grammar, generally
denoted by an arrow → and a set of normal forms denoted nf. When grammars represent
programming languages, rewriting relations represent their dynamism and the normal forms
the possible results. We assume here that all internal states of your computer can be seen as a
specific program in your grammar. Then, one step of reduction M → N means that a computer
executing the program M will reach a state represented by N.15

Similarly to grammars that were abstracted by signatures, calculi are abstracted by abstract
term rewriting systems.

15Of course, these assumptions are generally unrealistic, but the gap between the theory and practice here can be
overcome in different aspects.
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Definition A.2.1.29. An abstract rewriting system (for short ARS) is a set C of terms together
with a relations→ over C×C called small steps reduction. If M → N we say that M reduces
in one step to N. We call transitive reduction the reflexive transitive closure→∗ of→, and if
M →∗ N, we say that M reduces to N.

Remark A.2.1.30. In some cases, it is more natural to consider other transitive reductions. For
example, if C is a co-inductive representation, it seems more natural to define a transitive reduction→ω

by the coinductive proofs over:16

However, such a generalization require to redo numerous usual proofs over ARS.

Remark that the reduction of a calculus/ARS is generally not deterministic in the sense that
one can have a split N1 ← M → N2. However, a weaker notion of determinism is often
required: the confluence. The confluence basically state that reductions can be performed in
any order (with a potential cost).

Definition A.2.1.31. A small steps reduction → is confluent if every split N1
∗ ←M →∗ N2

can be closed in a finite number of steps:

M →∗ N2

→
∗

 

→
∗

N1 →
∗ M′,

where→∗ is the reflexive transitive closure of→.

An important notion related to calculi is the notion of termination. Indeed, it may be possible
to form an infinite chain M1 → M2 → · · · . Such a chain represents a never ending computation
which is generally an ill behavior. That is why such a situation deserves a special treatment.

Definition A.2.1.32. Let (C,→) an ARS. A term M ∈ C is a normal forms if there is no N
such that M → N, the set of normal forms is denoted nf. We denote by M⇓N the big step
reduction of M into N if N is a normal form and M →∗ N. We say that M converges (or is
weakly normalizing) if there is N such that M⇓N; convergence is denoted M⇓. Reciprocally,
the divergence ⇑M of M is the absence of a normal form N such that M⇓N

To keep track of the converging times, we denote M⇓n whenever there is a normal form N
such that M →≤n N.

Remark A.2.1.33. In certain cases, the definition of normal forms can be larger. For example, in
order to represent may-non-determinism, we can consider that a term is in normal form if one of its
component is.

16Here we assume that→ is contextually closed.
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Proposition A.2.1.34. The convergence is an inductive property. Indeed, a proof of conver-
gence of M is an inductive proof over the following rules:

M ∈ nf
M⇓

M → N N⇓
M⇓

Similarly, the divergence of M is a coinductive proof over the following rules:

M < nf ∀N ∈ (M → ), N⇑
M⇑

where (M → ) is the set of terms N such that M → N. To prove that a set X of terms
diverges, it suffices to show that for any term M ∈ X, M is not a normal form and can only
reduce inside X.

For calculi with a reduction that is not contextually close, we are generally tempted to com-
pare the reduction to its contextual closure. This is because it is generally much easier to work
with the contextual closure and then to insure that the result extends to the original relation.

Definition A.2.1.35. Let (C,→α) and (C,→β) be two ARS over the same set C. We say that
→α and→α decomposes→αβ:=→α ∪ →β if:

→∗αβ = →∗α→
∗
β .

This property is the basis for a well known property called standardization.
An other property that one would like is the invariance of the convergence.17 It states that a

forbidden reduction never extends the converging time of a converging term.

Definition A.2.1.36. Let (C,→) be an ARS and a relation on C. We say that ⇓ is invariant
through if for any M N and any n ∈ N:

M⇓n ⇒ N⇓n

The main interest of this invariance is the following property that allows one to treat diver-
gence up-to any contextual reduction.

Proposition A.2.1.37. If ⇓h is invariant through then a proof of divergence corresponds
to a coinductive derivation in the following proof system:

M < nf M ∗ N ∀L ∈ (N → ), L⇑
M⇑

17To my knowledge, this property is an original one.
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where (N → ) is the set of terms L such that N → L. To prove that a set X of terms diverges,
it suffices to show that for any term M ∈ X, M is not a normal form and M  ∗ N that can
only reduce inside X.

Proof. Any proof over the system of Proposition A.2.1.34 is convertible in a proof over this
system (with N = M), thus if M do not converges then one can form a coinductive proof of
M⇑h in this system.

Conversely, if M converges, then there is n such that M⇓n. By induction, we show that there
is no proof of M⇑ in this system:

• if n = 0 then M ∈ nf and the rule cannot apply,

• otherwise, for any N such that M ∗ N, we have N⇓n by invariance of the convergence,
thus there is L such that N → L and L⇓n−1.

�

A.3. Linear logic

A.3.1. The logic

In this thesis, we will only use the intuitionistic linear logic (ILL ). This is the asymmetric
logical fragment of the full linear logic that treats negations indirectly via the linear arrow.
This fragment is logically as powerful as the whole logic, but lacks of symmetry and fail at
modeling notions where duality is at stakes. Our choice for such a restriction is the simplicity
(sequent calculus is halved so that cut elimination is greatly simplified) and a focus on the main
points for the thesis.

Intuitionistic linear logic can be decomposed in three fragments, the multiplicative fragment,
the exponential fragment and the additive fragment.

• The multiplicative fragment can be thought as “a logic of continuous transformation”:
one can stick points/formulas together, translate an existing point/formula, transport a
translation or even a translation between translations.

• The exponential fragment is “a logic of resource management and irreversibility”: one
can erase or duplicate formulas under the exponential modality !, so that this modality
intend to break/direct the causality symmetry.

• The additive fragment is “a logic of choice and superposition”.

It is the interaction of these three fragments that gives the linear logic its full potential.
Nonetheless, we will mainly focus on the multiplicative exponential fragment along Chapter 3.
The additive fragment is definitely as important as the other two, but the multiplicative expo-
nential fragment is already sufficiently entertaining for our task.
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AxA ` A
Γ ` A ∆, A ` B

Cut
Γ,∆ ` B

Γ ` C 1L
Γ,1 ` C

Γ, A, B ` C
⊗L

Γ, A ⊗ B ` C
1R

Γ,∆ ` 1
Γ ` A ∆ ` B

⊗R
Γ,∆ ` A ⊗ B

Γ ` A ∆, B ` C
(L

Γ,∆, A( B ` C
Γ, A ` B

(R
Γ ` A( B

Γ ` B
Weak

Γ, !A ` B
Γ, A ` B

Der
Γ, !A ` B

Γ, !A, !A ` B
Contr

Γ, !A ` B
!A1, · · · , !An ` B

Prom!A1, · · ·!An `!B

>L
Γ ` >

Γ, A ` C
&L1

Γ, A & B ` C
Γ, B ` C

&L2
Γ, A & B ` C

Γ ` A Γ ` B &R
Γ ` A & B

0L
Γ,0 ` a

Γ, A ` C Γ, B ` C
⊕L

Γ, A ⊕ B ` C
Γ ` A

⊕R1
Γ ` A ⊕ B

Γ ` B
⊕R2

Γ ` A ⊕ B

Figure A.1.: The sequent calculus of ILL. In a sequent Γ ` A, Γ is supposed to be a multiset of
formulas (no implicit contraction rule is admitted).

Definition A.3.1.1. The intuitionistic linear logic, ILL the logic given by:

• the formulas inductively defined by the grammar:

(formulas) LL A, B,C := 1 | A ⊗ B | A( B | !A | A & B | A ⊕ B | 0 | >

• the proof system inductively given by the sequent calculus of in Figure A.1.

• the cut-elimination procedure defined in detail by Bierman [Bie94].

The fragment with formulas generated by the tensorial unity 1, the tensorial product ⊗ and the
linear arrow( is called the multiplicative fragment. The fragment with formulas generated
by the exponential modality ! is called the exponential fragment. The fragment with formulas
generated by the Cartesian unit 0, the Cartesian co-unit >, the Cartesian product ⊕ and the
Cartesian co-product & is called the additive fragment.

The interaction between multiplicative and additive fragments seems very sparse since no
sequent nor cut-elimination rule does mix them. In fact, an interaction activelly applies at the
level of provability and expressivity; this interaction is visible, in particular, in the following
fundamental equivalence (provable in ILL):

!(a & b) ' !a⊗!b. (A.1)

The interaction between multiplicative and exponential fragments, however, is rich at every
level. This fact is hidden behind the use of the comma in the context that is, at some point,
another notation for the tensorial product ⊗. That is the reason why Section 3, which main point
is the study of a quantitative refinement of the exponential modality (Sec. 1.3), will generally
focus the multiplicative exponential fragment.
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A.3.2. Linear categories

A model for ILL

The notion of linear category has been introduced by Bierman [Bie94] and revisited several
times later on [BBdPH93]. It gives sufficient (but non necessary) conditions for a category
to be a model of intuitionistic linear logic.There are other axiomatisations such that the new-
Seely, the linear-non-linear and the Lafont categories, but those are equivalent to the linear
axiomatisation if not weaker.

In this thesis, we will be particularly interested in the multiplicative exponential fragment so
that we will not call linear category the full axiomatisation of Bierman but only the multiplica-
tive exponential fragment.

A linear category L consists of:

• a symmetric monoidal closed category (Def. A.1.0.13) for the multiplicative structure,

• and a functor ! : L → L which has:

– a comonad structure (Def. A.1.0.15): i.e., the natural transformations

da : !a −→ a,
pa : !a −→ !!a)

satisfying the following diagrams

!a

!!a

!!a

!!!a

Assm

!a

!a !!a !a

UntmL UntmR

pa

pa

!pa

p!a pa

d!a!da

– a commutative comonoidal structure on each !a (Def. A.1.0.14): i.e., the natural
transformations

wa : !a −→ 1,

ca : !a −→ !a ⊗ !a

satisfying the following diagrams

!a

!a

!a⊗!a

!a⊗!a

Coma

!a

1⊗!a

!a

!a⊗!a

Unta

!a

!a⊗!a !a ⊗ (!a⊗!a)

!a⊗!a

(!a⊗!a)⊗!a

Assa

ca

ca

γ!a,!a λ−1
!a ca

wa ⊗ id!a

ca

ca ca ⊗ id!a

id!a ⊗ ca α!a,!a,!a
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– and a structure of symmetric monoidal functor, i.e., the natural transformations

m1 : 1 −→ !1, ,
ma,b : !a ⊗ !b −→ !(a ⊗ b)

satisfying the following diagrams

!1⊗!a

1⊗!a

!(1 ⊗ a)

!a

!a⊗!b

!b⊗!a

!(a ⊗ b)

!(a ⊗ b)

(!a⊗!b)⊗!c

!a ⊗ (!b⊗!c)

!(a ⊗ b)⊗!c

!a⊗!(b ⊗ c)

!((a ⊗ b) ⊗ c)

!(a ⊗ (b ⊗ c))

m1 ⊗ id!a

m1,a

λ!a

!λa γ!a,!b

ma,b

mb,a

!γa,b

α!a,!b,!c

ma,b ⊗ id!c

id!a ⊗ mb,c

ma⊗b,c

ma,b⊗c

!αa,b,c

and where this structures interact nicely:

– the natural transformations d and p of the commonad are monoidal natural transfor-
mation, spelled out this means that the following diagram should commute:

1

!1 1

md1

!a⊗!b

a ⊗ b

!(a ⊗ b)

a ⊗ b

md2

1

!1

!1

!!1

mp1

!a⊗!b

!!a⊗!!b !(!a⊗!b)

!(a ⊗ b)

!!(a ⊗ b)

mp2

m1

d1

da ⊗ db da⊗b

ma,b

m1

m1

!m1

p1 pa ⊗ pb

ma,b

pa⊗b

m!a,!b

!ma,b

– the natural transformations w and c are monoidal natural transformation, spelled out
this means that the following diagram should commute:
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1

!1 1

mw1

!a⊗!b

!(a ⊗ b)

1 ⊗ 1

1

mw2

1

!1

1 ⊗ 1

!1⊗!1

mc1

!a⊗!b

!a⊗!b

(!a⊗!a) ⊗ (!b⊗!b)

!(a ⊗ b)

(!a⊗!b) ⊗ (!b⊗!a)

!(a ⊗ b)⊗!(b ⊗ a)

mc2

m1

w1

ma,b

wa ⊗ wa

wa⊗b

λ1 m1

λ−1
1

c1

m1 ⊗ m1

ca ⊗ cb

ma,b

iso⊗

ca⊗b

ma,b ⊗ ma,b

– every free coalgebra should be a comonoid morphism; in particular the natural
transformation p, this means that the following diagrams should commute:

!a

!a

!!a

1

AbsR

!a

!!a

!a⊗!a

!!a⊗!!a

DistL

pa

wa

w!a pa

ca

c!a

pa ⊗ pa

– the natural transformations w and c are coalgebra morphisms between coalgebras
(1, m1), (!a, p) and (!a×!a, (p ⊗ p); m), spelled out this means that the following dia-
gram should commute:

!a

1

!!a

!1

AbsL

!a

!a⊗!a !!a⊗!!a

!!a

!(!a⊗!a)

DistRwa

pa

m1

!wa ca

pa

!ca

pa ⊗ pa

m!a,!a

Proposition A.3.2.1 ([Bie94]). A linear category with a Cartesian product and a Cartesian
co-product is a model of ILL.

A.3.3. The linear categories Rel and Coh

In this section, we will investigate two different categories that can be turned into linear cate-
gories: the relational category Rel and the category Coh of coherent spaces.
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The linear category RelN

Recall that he category Rel (Ex. A.1.0.4) has sets as objects and relations as morphisms , i.e.
Rel(a, b) := P(a × b). Composition and identities are given by:

φ;ψ :=
{
(α, β)

∣∣∣∣ ∃γ, (α, γ) ∈ φ, (γ, β) ∈ ψ
}
, ida :=

{
(α, α)

∣∣∣∣ α ∈ a
}
.

In particular, remark that Relop = Rel.

Proposition A.3.3.1. The category Rel is a symmetric monoidal closed category when en-
dowed with:

• the tensor product:

a ⊗ b := a × b, φ ⊗ ψ :=
{
((α, α′), (β, β′))

∣∣∣∣ (α, β) ∈ φ, (α′, β′) ∈ ψ
}
.

which neutral object is the singleton 1 := {∗}.

• the natural bijections:

αa,b,c :=
{
((α, (β, γ)), ((α, β), γ))

∣∣∣∣ α ∈ a, β ∈ b, γ ∈ c
}
∈ Rel(a ⊗ (b ⊗ c), (a ⊗ b) ⊗ c)

γa,b :=
{
((α, β), (β, α))

∣∣∣∣ α ∈ a, β ∈ b
}
∈ Rel(a ⊗ b, b ⊗ a)

λa :=
{
(α, (∗, α))

∣∣∣∣ α ∈ a
}

• the linear arrow which is equal to the tensor product:

a( b := a ⊗ b, φ( ψ := φ ⊗ ψ

with the evaluation morphism

evala,b :=
{
(((α, β), α), β)

∣∣∣∣ α ∈ a, β ∈ b
}
∈ Rel((a( b) ⊗ a, b).

Proposition A.3.3.2. The category Rel is a Cartesian category with infinite product:

• with the functor
¯
i∈I

ai :=
⋃
i∈I

({i} × ai)
¯
i∈I

φi :=
{
((i, α), (i, β))

∣∣∣∣ i ∈ I, (α, β) ∈ φi

}
• with the empty set as terminal object > := ∅,
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• with the projection given by:

π(ai)i∈I , j :=
{
(( j, α), α)

∣∣∣∣ α ∈ a j

}
∈ Rel

(¯
i∈I

ai, a j

)
• and for any family (φi)i∈I such that φi ∈ Rel(b, ai), the pairing:

〈φi | i ∈ I〉 :=
{
β, (i, α)

∣∣∣∣ i ∈ I, (β, α) ∈ φi

}
∈ Rel

(
b,
¯

i

ai

)
,

The product is also an (infinite) Cartesian co-product since Relop = Rel so that⊕
i∈I

ai :=
¯
i∈I

ai.

Definition A.3.3.3. We call RelN the linear category (Sec. A.3.2) given by the exponential:

• which functor is the finite multiset functor

!a := N f 〈a〉, !φ :=
{
([α1, ..., αn], [β1, ..., βn])

∣∣∣∣ n ∈ N, ∀i ≤ n, (αi, βi) ∈ φ
}

• with the natural transformation:

da :=
{
([α], α)

∣∣∣∣ α ∈ a
}

pa :=
{
(Σi≤nui, [u1, ..., un])

∣∣∣∣ n ∈ N,∀i, ui ∈!a
}

wa :=
{
([], ∗)

}
ca :=

{
(u + v, (u, v))

∣∣∣∣ u, v ∈!a
}

m⊥ :=
{
(∗, u)

∣∣∣∣ u ∈!1
}

ma,b :=
{
(([αi|i ≤ n], [βi|i ≤ n]), [(αi, βi)|i ≤ n])∣∣∣∣ n ∈ N, ∀i, αi ∈ a, βi ∈ b

}

The Kleisli category RelN!

As we have seen in Theorem 1.2.3.2, any linear category with products and coproducts can be
turned into a CCC by taking the Kleisli category.

Definition A.3.3.4. We define the Cartesian closed category RelN! [Hut94, Win99, Ehr12]:

• the objects are the sets.

• the morphisms from a to b are relations between N f 〈a〉 and b.
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The Cartesian product is the disjoint sum of sets. The terminal object > is the empty set. The
exponential object a⇒b is N f 〈a〉 × b.

Coherent spaces

An other important example of linear category is the first historical model of linear logic: the
coherent spaces [Gir88]. In fact those where even prior to linear logic that was deduced from
their internal structure.

Definition A.3.3.5. A coherent space a consists of

• a set |a| called its web,

• a symmetric reflexive relation ¨a⊆ |a| × |a| called its coherence.

Given a coherent space a, we denote ˝a the strict coherence defined by α ˝a β if α ¨a β and
α , β. Similarly, we denote ˚a the incoherence which is the negation of the strict coherence.

We call cliques of a any subset φ ⊆ a such that α ¨a β for every α, β ∈ φ. Similarly, we
call multicliques any multiset φ over a which support is a clique. The sets of cliques and
multicliques over a are denoted C(a) and Cm(a) .

Given two coherent spaces, we define the linear arrow a( b to be the coherent space:

• which web is the Cartesian product in Set |a( b| := |a| × |b|,

• which coherence is defined by (α, β) ¨a(b (α′, β′) iff :

– α ¨a α
′ implies β ¨α β

′,

– α ˝a α
′ implies β ˝α β

′.

Definition A.3.3.6. The category Coh of coherent spaces is the SMCC with products and
coproducts:

• which objects are the coherent spaces (Def. A.3.3.5),

• which morphisms from a to b are the cliques of their linear arrow

Coh(a, b) := C(a( b),

• which iddentities and compositions are the relational iddentities and compositions:

ida := {(α, α) | α ∈ a} φ;ψ := {(α, γ) | ∃β, (α, β) ∈ φ, (β, γ) ∈ ψ}

• which monoidal product and unit are defined by

a ⊗ b := (|a| × |b|,¨a × ¨b) 1 := ({∗}, {(∗, ∗)}),

207



• which linear arrow is the linear arrow over coherent spaces,

• which Cartesian product and terminal object are defined by

a & b := (|a| ] |b|,¨a ] ¨b) top := (∅, ∅),

• which Cartesian coproduct is defined by |a ⊕ b| := |a| ] |b| and ˚a⊕b:=˚a ] ˚b with the
empty space as initial object ⊥ := (∅, ∅),

• and with the following natural isomorphisms

αa,b,c := {(((α, β), γ) , (α, (β, γ)) | α ∈ |a|, β ∈ |b|, γ ∈ |c|}
λa := {((∗, α) , α) | α ∈ |a|}
γa,b := {((α, β) , (β, α)) | α ∈ a, β ∈ |b|}
π1,a,b := {((α, β), α) | α ∈ |a|, β ∈ |b|}
ι1,a,b := {(α, (α, β)) | α ∈ |a|, β ∈ |b|}

as well as the morphisms (for φ : c→ a, ψ : c→ b, φ′ : a→ c and ψ′ : b→ c):

〈φ, ψ〉 := {(γ, (α, β)) | (γ, α) ∈ φ, (γ, β) ∈ ψ}
[φ′, ψ′] := {((α, β), γ) | (α, γ) ∈ φ′, (β, γ) ∈ ψ′}

There are two different exponentials appearing in the literature that make Coh a linear cate-
gory. Those are the clique and the multiclique comonads.

Definition A.3.3.7. We call CohB the linear category (Sec. A.3.2) given by the exponential:

• which functor is the finite clique functor

!a := (C(a), {(φ, ψ) | ∀α ∈ φ,∀β ∈ ψ, α ¨ β}),

!φ :=
{
({α1, ..., αn}, {β1, ..., βn}) ∈ C(a) × C(b)

∣∣∣∣ n ∈ N, ∀i ≤ n, (αi, βi) ∈ φ
}
,

• with the natural transformation:

da :=
{
({α}, α)

∣∣∣∣ α ∈ a
}
pa :=

{
(
⋃
i≤n

ui, {u1, ..., un})
∣∣∣∣ n ∈ N,∀i, ui ∈!a, ∀i, j, ui ¨!a u j

}
wa :=

{
(∅, ∗)

}
ca :=

{
(u ∪ v, (u, v))

∣∣∣∣ u, v ∈!a, u ¨!a v
}

m⊥ :=
{
(∗, u)

∣∣∣∣ u ∈!1
}

ma,b :=
{
((u, v), u × v)

∣∣∣∣ u ∈!a, v ∈!b
}

We call CohN the linear category (Sec. A.3.2) given by the exponential:
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• which functor is the finite multiclique functor

!a := (Cm(a), {(φ, ψ) | ∀α ∈ φ,∀β ∈ ψ, α ¨ β}),

!φ :=
{
([α1, ..., αn], [β1, ..., βn])

∣∣∣∣ n ∈ N, ∀i ≤ n, (αi, βi) ∈ φ
}
,

• with the natural transformation:

da :=
{
([α], α)

∣∣∣∣ α ∈ a
}

pa :=
{
(Σi≤nui, [u1, ..., un])

∣∣∣∣ n ∈ N,∀i, ui ∈!a
}

wa :=
{
([], ∗)

}
ca :=

{
(u + v, (u, v))

∣∣∣∣ u, v ∈!a
}

m⊥ :=
{
(∗, u)

∣∣∣∣ u ∈!1
}

ma,b :=
{
(([αi|i ≤ n], [βi|i ≤ n]), [(αi, βi)|i ≤ n])∣∣∣∣ n ∈ N, ∀i, αi ∈ a, βi ∈ b

}

A.3.4. The linear category ScottL

Order relations

A partially ordered sets (or poset) is a couple D = (|D|,≤D) where |D| is a set and ≤D is an
order, i.e. a reflexive, transitive and symmetric relation (remark that an order do not need to be
total).

Given two posets D = (|D|,≤D) and E = (|E|,≤E), we will denote:

• Dop = (|D|,≥D) the reverse-ordered set.

• D × E = (|D| × |E|,≤D×E) the Cartesian product endowed with the pointwise order:

(δ, ε) ≤D×E (δ′, ε′) iff δ ≤D δ
′ and ε ≤E ε

′.

• A f (D) = (A f (|D|),≤A f (D)) the set of finite antichains of D (i.e., finite subsets whose
elements are pairwise incomparable) endowed with the order :

a ≤A f (D) b iff ∀α ∈ a,∃β ∈ b, α ≤D β

In the following we will use D for |D| when there is no ambiguity. Initial Greek letters α, β, γ...
will vary on elements of ordered sets. Capital initial Latin letters A, B,C...will vary over subsets
of ordered sets. And finally, initial Latin letters a, b, c... will denote finite antichains.

An order isomorphism between D and E is a bijection φ : |D| → |E| such that φ and φ−1 are
monotone.

Given a subset A ⊆ |D|, we will denote ↓A = {α | ∃β ∈ A, α≤β}. We denote by I(D) the set
of initial segments of D, that is I(D) = {↓A | A ⊆ |D|}.

A complete lattice is a poset D where sups are defined for any subsets; i.e. when for every
S ⊆ D, there is

∨
S such that

∀α ∈ S , α ≤D

∨
S and ∀β, (∀α ∈ s, α ≤D β)⇒

∨
S ≤ β
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Remarks that a complete lattice automatically also has every infs.
A complete lattice D is completely distributive if sups and infs distribute one with each other.

It is prime algebraic if there is a subset P called prime elements that are not sups (if α =
∨

S
and α ∈ P then α ∈ S ) and such that any α ∈ D is the sup of the primes that it majors
α =

∨
(P ∩ ↓α).

Example A.3.4.1. The set I(D) is a prime algebraic complete lattice with respect to the set-theoretical
inclusion. The sups are given by the unions and the prime elements are the downward closure of the
singletons. The compact elements are the downward closure of finite antichains.

A function f : D→ E between complete lattices is linear if it preserves finite sups:

∀S ⊆ f D, f (
∨

S ) =
∨

f (S )

A function f : D→ E between complete lattices is Scott-continuous if it preserves all sups:

∀S ⊆ D, f (
∨

S ) =
∨

f (S )

The domain of a function f is denoted by dom( f ) .
The linear graph of a linear function f : I(D)→ I(E) is injectivelly defined by

graphl( f ) := {(α, β) ∈ D×E | β ≤ f (α)} (A.2)

The Scott graph of a Scott-continuous function f : I(D)→ I(E) is injectivelly defined by

graphs( f ) := {(a, β) ∈ A f (D)op×E | β ∈ f (↓a)} (A.3)

Proposition A.3.4.2. Elements of I(A f (D)op×E) are in one-to-one correspondence with the
linear functions from I(D) to I(E).

Elements of I(A f (D)op×E) are in one-to-one correspondence with the Scott-continuous
functions from I(D) to I(E).

Proof. A linear (resp. Scott-continuous) function is entirely defined by its linear (resp. Scott)
graph:

∀I ∈ I(D×E) f unl(I) := (A 7→ {β | ∃α ∈ A, (α, β) ∈ I})
∀I ∈ I(A f (D)×E) f uns(I) := (A 7→ {β | ∃a ∈ A f (A), (a, β) ∈ I})

�

The category ScottL
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Definition A.3.4.3. We define the category ScottL [Ehr12]:

• An object is a partially ordered set.

• A morphism from D to E is a linear function between the complete lattices I(D) and
I(E) of initial segments over D and E.

Equivalently, a morphism from D to E is an initial segment of Dop → E (see Prop. A.3.4.2).

Proposition A.3.4.4. The category ScottL is a symmetric monoidal closed category when
endowed with:

• the product of posets as tensor product:

D ⊗ E := D × E, f ⊗ g := (I 7→ f (π1(I)) × g(π2(I))).

which the neutral object is the singleton 1 := {∗}.

• the left-contravariant product of posets linear arrow:

D( E := Dop × E, f ( g := f ⊗ g

with the evaluation morphism

evalD,E := (I 7→ {β | ∃α, ((α, β), α) ∈ I}).

Proposition A.3.4.5. The category ScottL is a Cartesian category with infinite products
¯
i∈I

Di :=
⋃
i∈I

({i} × Di)
¯
i∈I

fi :=
∏
i∈I

fi.

Remark that I(
˘

i Di) =
∏

i I(Di) with the projection and pairing given by the projection
and pairing in Set.

The product is also an (infinite) Cartesian co-product since ScottLop = ScottL so that⊕
i∈I

Di :=
¯
i∈I

Di

with the co-projections and co-pairing given by:

ι(A) := A × {∅}I−i [ fi | i ∈ I](i, A) := fi(A)

Proposition A.3.4.6. The category ScottL is linear (Sec. A.3.2) when endowed with:
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• the antichain functor as exponential functor:

!D := A f (D); ! f := A 7→ {b | ∃a ∈ A, f (↓a) ⊇ b}

remark that f −1(a) is an antichain by monotonicity of f ,

• with the natural transformation:

dD(A) :=
⋃

A pD(A) := ↓{{a} | a ∈ A}

wD(A) := {∗ | A , ∅} cD(A) := ↓{(a, a) | a ∈ A}
m1(A) := {{∗}, ∅ | A = {∗}} mD,E(C) := ↓{a × b | (a, b) ∈ C}.

A.4. Semi-rings

A.4.1. Definitions and examples

Definition A.4.1.1. A monoid is given by (M, ·, 1) where M is a set, the product · is an asso-
ciative binary operation with a neutral element 1 ∈ S.

A semiring is given by (S, ·, 1,+, 0) where S is a set, the product · is an associative binary
operation with a neutral element 1 ∈ S and the sum + is an associative commutative binary
operation distributing over · with a neutral element 0 ∈ S (that is absorbing for ·).

An ordered semiring (S, ·, 1,+, 0,≤) is a semiring (S, ·, 1,+, 0) with a partial order ≤ such
that sum and product are increasing monotone.

A right-semiring (S, ·, 1,+, 0,≤) is similar to an ordered semiring, except that the right-
distribution and left-absorption axioms (i.e., (I + J)·K = (I·K) + (J·K) and 0·I = 0) are not
required.

A lax-semiring (S, ·, 1,+, 0,≤) is an intermediate stage where the right-distribution and the
left-absorption axioms are only required in their oriented form: (I + J)·K ≤ (I·K)+ (J·K) and
0·I ≤ 0.

We use the meta-variables S and R for (ordered) (lax-)(left-)semiring; their elements
are denoted by capital Latin letters I, J... in the first case and by lowercase Latin
letters p, q... for the second. Monoids are denoted by the meta-variable M , and its elements
are written with lowercase Latin letters g, h...

Remark A.4.1.2. Notice that because of the monotonicity of the multiplication, 0S ≤ 1S (resp. 1S ≤
0S) implies that 0S is the bottom (resp. top) element of S. However, we will often consider examples of
ordered semirings where the two neutral elements are incomparable. In [BGMZ14] the authors impose
0S to be the bottom element, but this condition is not necessary.

Example A.4.1.3. • The trivial semiring is the one point semiring ({∗}, ·, ∗,+, ∗) with ∗·∗ = ∗+∗ =

∗. It is generally not very interesting but gives easy examples.

• The two elements lax-semirings are:
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– the Boolean semiring B = ({tt, ff },∧, tt,∨, ff , { ff ≤ tt}),

– the reversed Boolean semiring Bop = ({tt, ff },∧, tt,∨, ff , {tt ≤ ff }),

– the discrete Boolean semiring Bd = ({tt, ff },∧, tt,∨, ff , {}),

– the two member field Z2 = ({0, 1}, ·Z2 , 1,+Z2 , ff , {}) with 1+Z21 = 2.

• The natural numbers semiring N := (N, ·N, 1,+N, 0,≤N) forms a semiring. When endowed with
the discrete order (the identity), we get the discrete natural numbers semiring Nd .

• Any semiring S semiring can be turned into a lax-semirings

S⊥ := (S ] {⊥},+S⊥ , 0S, ·S∪⊥, 1S,≤S ∪{⊥ ≤ α | α ∈ S⊥})

by adding a bottom element⊥ that is absorbing for the sum, absorbing for the right multiplication
and absorbing for the left multiplication except that 0S ∗S⊥ ⊥ = 0S. Such an extention is called
the bottomed version of S and denoted S⊥ except for:

– the bottomed discrete Boolean lax-semiring that is called flat Boolean lax-semiring and
denoted B f ,

– The bottomed discete natural numbers lax-semiring that is called flat natural numbers lax-
semiring and denoted N f .

• We call diamond the lax-semiring ♦ with four elements |♦| := {0, 1,⊥,>} defined by (for any
I ∈ ♦):

1 + 1 = 1 + > = 1 I + ⊥ = ⊥ I·⊥ = ⊥ >·> = >

and by ⊥·I = ⊥ for I , 0.

• The completed natural numbers semiring N̄ := (N∪{ω}, ·N̄, 1,+N̄, 0), where ω+n = ω·(n+1) = ω,
forms a semiring. Endowed with the usual order over N, it is an ordered semiring.

• The tropical semiring Trop = (N ∪ {−∞},+N, 0,min,−∞,≤) forms an ordered semiring. There,
the role of the multiplication is played by the usual addition and the role of the addition is played
by the min operator; the order is the usual order over N with −∞ that is a bottom.

• The multisets of natural numbers (N f 〈N∗〉,×N f 〈N∗〉, [1],+N f 〈N∗〉, []) form a semiring (Prop. A.4.2.2).
The sum is the sum of multisets while the product is the Dirichlet convolution of the internal prod-
uct:

(I +N f 〈N∗〉 J)(n) := I(n) +N J(n),

(I·N f 〈N∗〉J)(n) :=
∑

m1,m2∈N
m1·m2=n

I(m1)·I(m2).

• The powersets of natural numbers (P(N),⊗, {0},⊕, {1}) form a lax-semiring (Prop. A.4.2.6). The
sum is the Dirichlet convolution and product is the dependent sum:

I ⊕ J := {m+n | m ∈ I, n ∈ J},

I ⊗ J := {
m∑

i=1

ni | m ∈ J,∀i, ni ∈ I}.

The resulting lax-semiring is not a semiring. Indeed, it does not have the right-distribution:

({1} ⊕ {1}) � {1, 2} = {2, 4}, ({1, 2} � {1}) ⊕ ({1, 2} � {1}) = {2, 3, 4}.
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The following is a generalization of the multiset to any free S semi-module over a set D:

Definition A.4.1.4. Let S be a semiring and D a set.
We denote S f 〈D〉 the set which elements are the functions f : D 7→ S with finite support
(where supp( f ) = {d ∈ D | f (d) , 0S})
The free S semi-module over D is the set S f 〈D〉 endowed with the sum over functions and
the product (d· f )(d) := d· f (d).
We denote [ ] the constant function with value 0S, [d] is the function with value 1S on d
and 0S everywhere else. More generally, we denote inductively [p0·d0, ...pn·dn] := p0·[d0] +

[p1·d1...pn·dn].

Remark that any element f ∈ S f 〈D〉 has a canonical notation [d· f (d) | d ∈ supp(() f )].

A.4.2. A few propositions

Definition A.4.2.1. Let M be a monoid and S be a semiring.
The S-linear semiring over M is the semi-module S f 〈M〉 endowed with the operators:

0S f 〈M〉 := [ ], (I +S f 〈M〉 J)(g) := I(g) +S J(g),

1S f 〈M〉 := [1M], (I·S f 〈M〉J)(g) :=
∑

g′,g′′∈M
g′·Mg′′=g

I(g′)·SJ(g′′),

Proposition A.4.2.2. Given a monoid M and a semiring S, the S-linear semiring over M is a
semiring.

Proof. • +S f 〈M〉 is associative:

(I +S f 〈M〉 (J +S f 〈M〉 κ))(g) = I(g) +S (J(g) +S κ(g)) (by def.)

= (I(g) +S J(g)) +S κ(g) (ass. of +S)

= ((I +S f 〈M〉 J) +S f 〈M〉 κ)(g) (by def.)
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• ·S f 〈M〉 is associative:

(I·S f 〈M〉(J·S f 〈M〉κ))(g) =
∑

g1,g2∈M
g1·Mg2=g

I(g1)·S(
∑

g3,g4∈M
g3·Mg4=g2

J(g3)·Sκ(g4)) (by def.)

=
∑

g1,g2∈M
g1·Mg2=g

∑
g3,g4∈M

g3·Mg4=g2

I(g1)·S(J(g3)·Sκ(g4)) (dist in S)

=
∑

g1,g3,g4∈M
g1·M(g3·Mg4)=g

I(g1)·S(J(g3)·Sκ(g4)) (ass. of +S)

=
∑

g1,g3,g4∈M
g1·M(g3·Mg4)=g

(I(g1)·SJ(g3))·Sκ(g4) (ass. of ·S)

=
∑

g1,g3,g4∈M
(g1·Mg3)·Mg4)=g

(I(g1)·SJ(g3))·Sκ(g4) (ass. of ·M)

=
∑

g5,g4∈M
g5·Mg4=g

∑
g1,g3∈M

g1·Mg3=g5

(I(g1)·SJ(g3))·Sκ(g4) (ass. of +S)

=
∑

g5,g4∈M
g5·Mg4=g

(
∑

g1,g3∈M
g1·Mg3=g5

I(g1)·SJ(g3))·Sκ(g4) (dist in S)

= ((I·S f 〈M〉J)·S f 〈M〉κ)(g) (by def.)

• 0S f 〈M〉 is the unity of +S f 〈M〉:

(0S f 〈M〉 +S f 〈M〉 I)(g) = 0S f 〈M〉(g) +S I(g) (by def.)

= 0S +S I(g) (by def.)

= I(g) (unity in S)

• 1S f 〈M〉 is the left unity of ·S f 〈M〉:

(1S f 〈M〉·S f 〈M〉I)(g) =
∑

g1,g2∈M
g1·Mg2=g

(1S f 〈M〉(g1)·SI(g2)) (by def.)

=
∑
g2∈M

1M·Mg2=g

(1S·SI(g2)) (by def. et abs. 0S)

=
∑
g2∈M

1M·Mg2=g

I(g2) (unity in S)

= I(g) (left unity in M)
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• 1S f 〈M〉 is the right unity of ·S f 〈M〉:

(I·S f 〈M〉1S f 〈M〉)(g) =
∑

g1,g2∈M
g1·Mg2=g

(IS f 〈M〉(g1)·S1(g2)) (by def.)

=
∑
g1∈M

g1·M1M=g

(I(g1)·S1S) (by def. et abs. 0S)

=
∑
g1∈M

g1·M1M=g

I(g1) (unity in S)

= I(g) (right unity in M)

• ·S f 〈M〉 left distribute over +S f 〈M〉:

(I·S f 〈M〉(J +S f 〈M〉 κ))(g) =
∑

g1,g2∈M
g1·Mg2=g

I(g1)·S(J(g2) +S κ(g2)) (by def.)

=
∑

g1,g2∈M
g1·Mg2=g

(I(g1)·SJ(g2)) +S (I(g1)·Sκ(g2)) (dist. in S)

= (
∑

g1,g2∈M
g1·Mg2=g

I(g1)·SJ(g2)) +S (
∑

g1,g2∈M
g1·Mg2=g

I(g1)·Sκ(g2)) (comm., ass. of +S)

= ((I·S f 〈M〉J) +S f 〈M〉 (I·S f 〈M〉κ))(g) (by def.)

• ·S f 〈M〉 right distribute over +S f 〈M〉:

((J +S f 〈M〉 κ)·S f 〈M〉I)(g) =
∑

g1,g2∈M
g1·Mg2=g

(J(g1) +S κ(g1))·SI(g2) (by def.)

=
∑

g1,g2∈M
g1·Mg2=g

(J(g1)·SI(g2)) +S (κ(g1)·SI(g2)) (dist. in S)

= (
∑

g1,g2∈M
g1·Mg2=g

J(g1)·SI(g2)) +S (
∑

g1,g2∈M
g1·Mg2=g

κ(g1)·SI(g2)) (comm., ass. of +S)

= ((J·S f 〈M〉I) +S f 〈M〉 (κ·S f 〈M〉I))(g) (by def.)

• +S f 〈M〉 is commutative:

(I +S f 〈M〉 J)(g) = I(g) +S J(g) (by def.)

= J(g) +S I(g) (comm. of +S)

= (J +S f 〈M〉 I)(g) (by def.)

�

Example A.4.2.3. The polynomial semiring (N[Xi]i∈N,×, 1,+, 0) can be recovered as N f 〈N+〉 associ-
ating f ∈ N f 〈N+〉 with Σn∈supp(() f ) f (n)Xn.
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Remark A.4.2.4. Example A.4.2.3 is quite universal since a the linear S-semiring over M can be seen
as a generalization of polynomials I :=

∑
g∈M I(g)·Xg where Xg is a formal exponent. Then, the sums

and products are the same as the sums and products of polynomials.

Definition A.4.2.5. The powersets lax-semiring of natural numbers is the structure
(P(N),⊗, {0},⊕, {1}) where the sum is the Dirichlet convolution and product is the dependent
sum:

I ⊕ J := {m+n | m ∈ I, n ∈ J},

I ⊗ J := {
m∑

i=1

ni | m ∈ J,∀i, ni ∈ I}.

The resulting lax-semiring is not a semiring, indeed, it does not have the right-distribution:

({1} ⊕ {1}) � {1, 2} = {2, 4}, ({1, 2} � {1}) ⊕ ({1, 2} � {1}) = {2, 3, 4}.

Proposition A.4.2.6. The powerset lax-semiring of natural numbers is a lax-semiring.

Proof.

• ⊕ is associative and commutative: immediate by associativity and commutativity of N.

• {0N} is neutral for ⊕: immediate by neutrality of 0N for +N.

• {1N} is left-neutral for �:

{1N} � J =
{ k∑

i=1

ni | k ∈ J,∀i ≤ k, ni ∈ {1N}
}

=
{ k∑

i=1

1 | k ∈ J
}

= J.

• {1N} is right-neutral for �:

I � {1N} =
{ k∑

i=1

ni | k ∈ {1N},∀i ≤ k, ni ∈ I
}

=
{
n1 | n1 ∈ I

}
= I.
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• � left-distributes over ⊕:

I � (J ⊕ K) =
{ k∑

i=1

ni | k ∈ (J ⊕ K),∀i ≤ k, ni ∈ I
}

=
{k+k′∑

i=1

ni | k ∈ J, k′ ∈ K, ∀i ≤ k, ni ∈ I
}

=
{ k∑

i=1

ni +

k′∑
j=1

m j | k ∈ J, k′ ∈ K, ∀i ≤ k, ni ∈ I,∀ j ≤ k′,mi ∈ I
}

= (I � J) ⊕ (I � K)

• � is associative:

(I � J) � K =
{ k∑

i=1

ni | k ∈ K,∀i ≤ k, ni ∈ (I � J)
}

=
{ k∑

i=1

ki∑
j=1

ni, j | k ∈ K, ∀i ≤ k, kiJ, ∀ j ≤ k, ni, j ∈ I
}

=
{ k′∑

j=1

n j | k′ =

k∑
i=1

k′, k ∈ K, ∀i ≤ k, kiJ, ∀ j ≤ k′, n j ∈ I
}

=
{ k′∑

j=1

n j | k′ ∈ J � K, ∀ j ≤ k′, n j ∈ I
}

= I � (J � K)

• {0N} is right absorbing for ⊕:

I � {0N} :=
{ k∑

i=1

ni | k ∈ {0N}, ∀i ≤ k, ni ∈ I
}

:= {0N}

• � right-distribute over ⊕ in the lax way:

(I ⊕ J) � K :=
{ k∑

i=1

ni | k ∈ K, ∀i ≤ k, ni ∈ (I ⊕ J)
}

:=
{ k∑

i=1

(mi+ni) | k ∈ K, ∀i ≤ k,mi ∈ I, ni ∈ J
}

:=
{ k∑

i=1

mi+

k∑
i=1

ni | k ∈ K, ∀i ≤ k,mi ∈ I, ni ∈ J
}

⊆
{ k∑

i=1

mi+

k′∑
j=1

n j) | k, k′K, ∀i ≤ k,mi ∈ I,∀ j ≤ k′ni ∈ J
}

= (I � K) ⊕ (J � K)}
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• {0N} is left absorbing for ⊕ in the lax way:

{0N}� :=
{ k∑

i=1

ni | k ∈ K, ∀i ≤ k, ni ∈ {0N}
}

:=
{ k∑

i=1

0N | k ∈ K
}

⊆ {0N}

�
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