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Abstract. We study patterns that appear in discrete circles with integer
center and radius. As the radius goes to infinity, the patterns get closer
to digital straight segments: the notion of tangent words (described in
Monteil DGCI 2011) allows to grasp their shape. Unexpectedly, some
tangent convex words do not appear infinitely often due to deep arith-
metical reasons related to an underlying Pell-Fermat equation. The aim
of this paper is to provide a complete characterization of the patterns
that appear in integer discrete circles for infinitely many radii.
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1 Introduction

Freeman digitization schemes allow to associate a set of pixels to a planar object
and a sequence of adjacent pixels to a planar curve in very natural ways ; the
Freeman code associates a finite word to a sequence of adjacent pixels [6]. The
case of straight segments is well understood, and the associated words are known
to be the balanced words [8], [11]. We are interested here in the words appearing
in the Freeman code of another classical geometrical object: the discrete circles
[3], [1], [7], [5].

In 1979, Zenon Kulpa [7] noticed that some “spikes” appear on the diagonal
for arbitrary big radii in the Grid Intersect Quantization digitization of integer
circles. For big radii, such spikes look unnatural since, as the curvature of circles
of big radii goes to zero, we expect the digitization of the big circle to look
locally like digital straight segments. Unfortunately, Kulpa could not go further
since his remark is based on a visual description about the angle between three
consecutive pixels.

In this paper, we shall use another digitization scheme, namely the Square
Box Quantization (SBQ) described in [6] (see also Section 2.1). As we shall see,
the same phenomenon appears in this case (Fig. 1). It turns out that many finite
patterns not corresponding to digital straight segments do appear in integer
circles for arbitrary large radii. For example, the patterns of Fig. 2 could be
considered as the “next spikes”, (b) is obtained by stretching (a), (c) is obtained
by shearing (a).
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(a) r = 28 (b) r = 29

Fig. 1. The spike coded by 0011 appears in the digitization of big integer circles

(a) 0011 (b) 001011 (c) 000101

Fig. 2. The most elementary spikes

A word is said to be persistent if it appears in the Freeman code of integer
discrete circles for infinitely many radii. Their complete description is the aim
of this paper.

As we can consider the dual point of view where the circle radius does not
grow but the grid mesh vanishes, we know that persistent words are tangent
convex words, which were introduced in [9]. Experimentations lead us to the
observation of an unexpected behaviour: while most tangent convex words seem
to be persistent, some of them are not (Fig. 3).

As we shall see, the difference between both examples of Fig. 3 relies on a
deep arithmetical reason. We can define a rational slope p/q for non-balanced
tangent convex words, and say that it is Pythagorean if p2 + q2 is a square.
Knowing whether a tangent convex word is persistent or not is related to a
system of Pell-Fermat inequalities whose main parameter depends on the slope
of the word. For example, the word (b) is not persistent since its slope 3/4 is
Pythagorean (32 + 42 = 52). We will prove the following

Theorem 1. A word is persistent if, and only if, it is tangent convex with a
non-Pythagorean slope. In particular, balanced words are persistent.



(a) slope 3/5 (b) slope 3/4

Fig. 3. Two tangent convex words: (a) is persistent, (b) is not

2 Preliminaries and tools

2.1 Framework

Discrete geometry introduces various schemes to associate a set of pixels to a
plane continuous object. When the object is a curve, the pixels are ordered and
the Freeman code associates to such a sequence a word over the alphabet Z/4Z
or Z/8Z depending on whether two consecutive pixels have to share an edge or
only a vertex. For example, the Freeman codes of digital straight segments are
known to be precisely the balanced words using two consecutive letters (see e.g.
[8], [11]), no matter the code or the digitization scheme. The case of discrete cir-
cles is wilder, there are various ways to define a discrete circle: the set of pixels
can be described in an algorithmic way like in [3] or [13], it can also be described
as the set of solutions of some analytic equation like in [1] or [5].

The model we are considering is the Square Box Quantization (SBQ) of
integer circles [6]. The SBQ of a curve is the set of pixels that it intersects. An
integer circle is a circle with integer radius r and centered at (0, 0). It is denoted
by C(r).

Note that an integer circle cannot meet any pixel vertex since such points
have coordinates of the form (p + 1/2, q + 1/2) for some (p, q) ∈ Z2 and (p +
1/2)2+(q+1/2)2 cannot be an integer. In such a non-ambiguous case, the Square
Box Quantization is also known as the supercover [4] or the standard model [2].
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The Freeman code associated to the Square Box Quantization
of a curve γ also corresponds to what dynamicists call the cutting
sequence c(γ): it is obtained by reading the letters associated to
the edges (see figure on the right) of the pixels that γ intersects
along the time. Such a word defines a pattern, that is, a finite set
of pixels defined up to an integer translation.

Hence, to see if a word u belongs to the cutting sequence of an integer circle
of radius r, we have to ensure that, for some integer translation, each edge of
the associated translated pattern corresponding to each letter is crossed by the



(a) 0101001 (b) 10130101

Fig. 4. Examples of cutting sequences, and their associated pattern (in gray)

circle. This is done by checking that, for each such edge, the distance from the
center to one of the vertices of the edge is less than r, and the distance from the
center to the other vertex is greater than r. Those vertices play a central role
and are called control points (see Fig. 9).

Since the center of an integer circle is also the center of a pixel, the global
symmetries allow us to restrict our study to the seventh octant, where the Free-
man code only uses the letters 0 and 1, and the slope is between 0 and 1.

2.2 Tangent convex words

Tangent convex words were described in [9] Section 4.5. We recall their structure
in a self-contained way and explain the geometric conditions that ensure their
existence as a persistent word.

Let C+ denote the set of convex curves, that is, the set of smooth regular
curves with positive curvature. When γ belongs to C+, we denote by T (γ) the
set of words that appear in the coding of γ with grids of arbitrary small meshes:

T (γ) =
⋂
ε>0

⋃
mesh(G)6ε

F (γ,G) (1)

where F (γ,G) denotes the set of factors appearing in the Freeman code of
γ by the grid G. A word u is tangent to a curve γ if u ∈ T (γ). The tan-
gent convex words are all the words which are tangent to some convex curve:
T (C+) =

⋃
γ∈C+ T (γ). A non-balanced tangent convex word is called a spike.

The relationship with integer circles is the following: up to renormalization,
we can consider that we code a single unit circle centered at (0, 0) with grids of
meshes 1/n (n ∈ N∗). Since the unit circle (parametrized counterclockwise) be-
longs to C+, we deduce that the persistent words of integer circles form a subset
of the set of tangent convex words T (C+). This allow us to restrict our search
among this set, which is well structured and has small complexity: the number
of elements of T (C+) of length n is equivalent to n3/6 [10].

Let γ = (γx, γy) : [0, 1] → R2 be a convex curve. With almost no loss of
generality and since it corresponds to the seventh octant assumption done in



Subsection 2.1, we assume that γ is going in the North and East direction, that
is, ∀t ∈ [0, 1], γ′x(t) > 0 and γ′y(t) > 0. The coding of such curves only uses
the letters 0 and 1 (Fig. 5). For any t ∈ [0, 1], we denote the slope of γ at t by

ρ(γ′(t)) =
γ′
y(t)

γ′
x(t)

.

γ

Fig. 5. u = 00001000100100101001

Let u be a tangent word of γ: there exists a sequence (Gn) of grids whose
meshes go to 0 and such that ∀n ∈ N, u ∈ F (γ,Gn). In particular, for any
integer n, there exist two sequences (t1n), (t2n) in [0, 1] such that u is the Freeman
code of γ|]t1n,t2n[ with respect to the grid Gn. Up to taking a subsequence (the
segment [0, 1] is compact), we can assume that (t1n) and (t2n) both converge to
some t ∈ [0, 1]: we say that ρ(γ′(t)) is a slope of u (it may not be unique since
u can be tangent to various curves).

Slope different from 1: desubstitution. Assume that ρ(γ′(t)) < 1. This
implies that the word 11 is not a factor of u. We can use this information to
construct a word δ0(u) from u such that |δ0(u)| < |u| and δ0(u) ∈ T (δ0(γ)),
where δ0(γ) is another convex curve and T is defined by equation 1. For each n,
we add diagonal edges to the grid Gn which we label by the letter 5. Hence, we
can associate a new cutting sequence u′ by inserting the letter 5 between any
two consecutive 0 (Fig. 6).
Then, we remove the vertical lines of the grid, and associate the corresponding
word u′′ obtained from u′ by removing the letter 0 (Fig. 7).
We then renormalize the parallelogram grid back to Gn by applying the shear
matrix

M0 =

(
1 −1
0 1

)
=

(
1 1
0 1

)−1
.

The word obtained by replacing the letter 5 by 0 in u′′ is denoted by δ0(u) and is
a factor of F (δ0(γ), Gn), where δ0(γ) = M0 ◦γ is the curve obtained by applying
the matrix M0 to γ (Fig. 8).

The matrixM0 corresponds to a linear bijective bi-uniformly continuous map,
it therefore preserves the regularity of the curve. Moreover, since it has positive



γ

Fig. 6. u′ = 0505050105050105010501010501

γ

Fig. 7. u′′ = 55515515151151

γ̃

Fig. 8. δ0(u) = 00010010101101

determinant, the sign of the curvature of the curve is preserved: δ0(γ) belongs
to C+. All the operations are reversible, hence u is in T (γ) if, and only if, δ0(u)
is in T (δ0(γ)).

In the same way, if ρ(γ′(t)) > 1 then 00 is not a factor of u, we insert a
5 between two consecutive 1, and renormalize to obtain a word δ1(u), and the
matrix used for the renormalization is

M1 =

(
1 0
−1 1

)
=

(
1 0
1 1

)−1
.



Slope equal to 1: diagonal words. If ρ(γ′(t)) = 1, we say that the word
u is diagonal. For large n, the curve γ cannot intersect more than one integer
diagonal (a line of slope 1 passing through a corner of Gn). As explained in
[9], the diagonal word can oscillate a lot for smooth curves, but in the case of
a convex curve, the oscillation is very limited: for n large enough, the curve γ
intersects the integer diagonal at most twice between t1n and t2n (Fig. 9).

Fig. 9. A diagonal word and its principal (black) and secondary (white) control points

When the number of such intersections is less than 2, we get a balanced word.
When this number is 2, the first intersection corresponds to an occurrence of 00
in u, and the second corresponds to an occurrence of 11 (in particular the slope
of u is unique and must be equal to 1). The remaining of the diagonal word u of
T (C+) is made by an alternation of 0 and 1, hence it is completely determined
by the three lengths: before 00, between 00 and 11, after 11.

The grid points on the integer diagonal surrounding the two intersections are
called principal control points because they contain all the information concern-
ing the localization of the convex curve coded by u for n large enough. The other
control points are said to be secondary (the satisfaction of those control points
— that is, the satisfaction of the equations derived from those control points —
is guaranteed by the fact that the curve is convex or by the fact that, when n is
large enough, the curve becomes very close to the integer diagonal).

The minimal non-balanced diagonal words of T (C+) are of the form u =
00(10)`11 for some integer ` which is called the width of the spike u. Any non-
balanced diagonal word of T (C+) can be extended in a single way to the left
and to the right, by adding alternately a 0 or a 1. Diagonal words of T (C+) are
the words recognized by the non-deterministic automaton depicted in Fig. 10,
where all states are considered as initial and final.

The two transitions without return correspond to the two possible inter-
sections with the integer diagonal, i.e. to the occurrences of 00 and 11. Both
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Fig. 10. Automaton recognizing diagonal words of T (C+)

transitions are used in recognizing u if, and only if, u is not balanced. The width
` corresponds to the number of central loops made during the recognition of u.

Iteration. Those considerations allow us to recognize the words of T (C+): given
a word u, we apply δ0 (resp. δ1) to u as long as 11 (resp. 00) does not appear in
u. The length of the considered words is strictly decreasing, hence after finitely
many steps, we reach one of the following two cases:

1. the word is empty. Hence, the initial word u is balanced [8], therefore it
belongs to T (C+).

2. 00 and 11 both appear in the word: it suffices to check that it is recognized
by the automaton of Fig. 10 to conclude that the initial word u is in T (C+).

This provides a desubstitution algorithm which recognizes the words of T (C+).

Note that when a word u ∈ T (C+) is not balanced, then the iterated desub-
stitution leads to a diagonal word where both 00 and 11 appear: the slope of u
is then unique, and independent of any supporting curve γ, time t or sequence
of grids (Gn). It can be computed using the continued fraction associated to the
alternation of δ0 and δ1 leading to the diagonal word whose slope equals 1. For
balanced words however, the set of possible slopes is an interval of nonempty
interior.

Conversely, we can generate the words of T (C+) by going backward in the
algorithm: we construct a diagonal word by describing a path in the automaton
of Fig. 10. Then we apply one of the following operations, as much as we want:

1. add a 0 to the right of each 1,

2. add a 0 to the left of each 1,

3. add a 1 to the right of each 0,

4. add a 1 to the left of each 0.

The words of T (C+) are the factors of the words we obtain that way. It is im-
portant to notice that the primary control points can be followed during this
construction by applying to the initial primary control points the matrix M−10

in the first two cases and the matrix M−11 in the last two cases. Hence, we know
how to localize a curve around a word of T (C+) of any slope.



2.3 Generalized Pell-Fermat equations

A generalized Pell-Fermat equation is a Diophantine equation of the form x2 −
Dy2 = K, where D is a positive integer parameter, K is an integer parameter,
and x and y are the integer unknowns. When D is not a square, and when the
equation admits at least one solution, then it admits infinitely many solutions
[12]. The set of solutions is a finite union of geometric progressions.

3 Main result

Theorem 1. A word is persistent if, and only if, it is tangent convex with a
non-Pythagorean slope. In particular, balanced words are persistent.

We shall first deal with the spikes, which are somehow more rigid (they have
a single slope and can be studied through a few principal control points), and
then we will extend the obtained results to balanced words.

3.1 Spikes crossing the octants: slopes 0 and 1

Due to the lack of space, the description of persistent spikes for the extremal
slopes 0 (no spike of the form 0k30`10m is persistent) and 1 (all spikes of the
form (01)k00(10)`11(01)m are persistent) is postponed, we will concentrate on
the general case of slopes in the open interval (0, 1) which contains all the ideas.
We can still notice that the behaviour of those two particular cases is coherent
with this general description, since 0/1 is Pythagorean and 1/1 is not.

3.2 Spikes with Pythagorean slopes in (0, 1)

Lemma 1. A spike with a Pythagorean slope in (0, 1) is not persistent.

Proof. Let u be a spike of slope p/q, such that 0 < p/q < 1 and p2 + q2 =
s2 for some integer s. We want to prove that u is not persistent. Assume by
contradiction that for an increasing sequence (rn) of positive integers, u appears
in the cutting sequence of the circle Cn = C(rn).

The position of the principal control points an, bn, cn, dn of u relative to Cn
is depicted in Fig. 11 (it is obtained from Fig. 9 by applying shear matrices).

Since Cn crosses both segments [an, bn] and [cn, dn], the line of equation
y = −(q/p)x crosses the segment [an, dn], so we have a rough localization of the
pattern associated to u. On this line, the points of the form (pi,−qi) where i is

an integer are at distance
√
p2 + q2 from each other. Hence, for each n, there

is a point of coordinate (pin,−qin) in the rectangle whose base is [an, dn] and

whose height has length
√
p2 + q2 (depicted in gray on the figure).

Let (xn, yn) be the vector from (pin,−qin) to the point an. Since (pin,−qin)
has integer coordinates and stays in a bounded rectangle around the pattern
associated to u, the vector (xn, yn) takes only finitely many values. Up to taking
a subsequence, we can assume that it is constant. Since (pin,−qin) is the center
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Fig. 11. Situation around the pattern associated to u for Cn

of a pixel and an is a corner of a pixel, there exists integers X and Y such that,
for any n, (xn, yn) = (X + 1/2, Y + 1/2).

Since the point an is outside the circle Cn, we have

r2n ≤ (pin +X + 1/2)2 + (−qin + Y + 1/2)2

which can be rewritten as R2
n − I2n ≤ Ka, where Rn = 2srn, In = 2s2in +

(2X+1)p−(2Y +1)q and Ka = ((2X+1)p−(2Y +1)q)2+(X+1/2)2+(Y +1/2)2.
The same argument with the point bn inside the circle Cn leads to an in-

equality of the form Kb ≤ R2
n − I2n, where Kb is another constant (Rn and In

are the same thanks to a nice cancellation).
Now, both sequences (Rn) and (In) are nonnegative integer sequences tending

to infinity. Since the difference between their squares is bounded, it eventually
equals zero. Hence, for n large enough, Rn = In. Since (p, q, s) is a primitive
Pythagorean triple, exactly one of p or q is odd, hence In is odd. Unfortunately,
Rn is even, a contradiction.

3.3 Spikes with non-Pythagorean slopes in (0, 1)

Lemma 2. A spike with a non-Pythagorean slope in (0, 1) is persistent.

Proof. Let u be a spike of slope p/q, such that 0 < p/q < 1 and p2 + q2 is not a
square. Let ` be its width. We want to prove that u is persistent.

We start by finding an integer circle C which is well located with respect to
the principal control points of u, that is, we require that C crosses both segments
[a, b] and [c, d] (we do not care about the secondary control points, hence u need
not be a factor of the cutting sequence of C but this will become true for larger
circles).

Let c1 denote the center of the pixel located down-left of the control point b
(see Fig. 12), and let C1 denote the circle centered at c1 with radius 1. For any



positive integer i, let ci denote the integer point c1 + (i−1, 0), and let Ci denote
the circle with center ci and radius i.

c1 c2 c3 c4 c5 c6 c7 c8

a

b

c

d

2

<2

Fig. 12. Construction of an integer circle satisfying the principal control points of u

By construction, each Ci is an integer circle that crosses the segment [a, b].
There is another intersection between Ci and the line defined by (a, d): from i to
i+ 1, this intersection goes forward in the direction from a to d and the distance
between two intersections is a positive constant strictly less than 2. Since the
length of the segment [c, d] is

√
p2 + q2 >

√
5 > 2, there is an integer i such that

Ci crosses [c, d]. Let c = ci and C = Ci. The integer circle C satisfies the control
points of u.

Now, for any integer radius r, we try to find a solution by locating the pattern
associated to u in such a way that the point c coincides with some (pi,−qi) where
i is an integer. Similarly to the case of Pythagorean slope, the fact that the circle
of radius r is well located with respect to the control points is equivalent to the
existence of some integer i such that

max(Kb,Kc) ≤ 4(p2 + q2)r2 − I2 ≤ min(Ka,Kd)

where I = 2(p2 + q2)i + (2X + 1)p − (2Y + 1)q and Ka, Kb, Kc, Kd are some
constants.

Hence, the radii for which the circles are well located with respect to the
principal control points of u and such that the point c corresponds to some
(pi,−qi) satisfy a Pell-Fermat inequation, whose set of solutions is the union of
the solutions of the family of generalized Pell-Fermat equations: 4(p2 + q2)r2 −
I2 = K for K in the set [max(Kb,Kc),min(Ka,Kd)] ∩ Z.

By construction of C, the pair (r0, 0) is a particular solution of one of those
equations. Hence, since D = 4(p2 + q2) is not a square, Subsection 2.3 ensures
that that equation has infinitely many solutions: there are infinitely many radii
r such that the circle C(r) is well located with respect to the principal control
points of u. When such an r is large enough, the secondary control points become
automatically satisfied as well, hence u appears in the cutting sequence of C(r).

Therefore, u is persistent.



3.4 Balanced persistent words

Lemma 3. Every balanced word is persistent.

Proof. Let u be a balanced word. As already noticed, the set of slopes associated
to u contains a open interval I, hence, by density, there exists a non-Pythagorean
rational number p/q in I (it suffice to ensure that p and q are odd). Then, the
word u can be extended to a spike of slope p/q, which is persistent. Hence, u is
persistent, since it is the factor of a persistent word.

Proof of Theorem 1. Since persistent words are tangent convex, since the tangent
convex words are either spikes or balanced, we just proved the Theorem 1.

Decision algorithm. As explained in [9], deciding whether a word belongs to
T (C+) can be done in linear time. The computation of the slope can be done
along the process described in Section 2.2, “Iteration”, hence deciding whether
a given word is persistent can be done in linear time.
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