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Chapter 1

Tileability

A tiling is a way of covering a given region using a given set of tiles completely and
without any overlap. More precisely here we consider the following problem: is a
finite figure drawn on a plane grid (i.e., a set of cells of Z×Z tilable with a given set
of tiles? We refer the reader to [2] for an introduction to the subject. We first follow a
combinatorial approach, then turn to an algebraic approach based on Gröbner basis.

1.1 Tiling with dominoes

Can we tile a region of Z2 with horizontal or vertical dominioes, that is 1 × 2 and
2× 1 bars ?

The problem can be transformed into the search of a perfect matching (i.e., a set
of edges without common vertices that cover all vertices) in a non-directed graph in
the following way. The vertices of the graph are the cells of the region we want to
tile and there is a non-directed edge between each pair of (horizontally or vertically)
adjacent cells. Then there exists a tiling of the region with dominoes if and only
if there exist a perfect matching in the corresponding graph. The augmenting path
algorithm solves the problem in quadratic time.

Theorem 1.1 A figure of surface n can be tiled by 1 × 2 and 2 × 1 tiles, or proved
not to be tileable, in quadratic time in n.

Moreover in the case of tiling with dominoes, we can easily give a proof of the
fact that there is no tiling (when it is the case). In order to do that, we transform
the graph into a bipartite graph: we color in black and white alls cells of the figure in
such a way that two adjacent cells have different colors. Then a domino always cover
two cell of different colors. By Hall’s theorem [41], there exists a perfect matching
in the graph is and only there are the same number of white and black cells in the
figure and each subset of k white cells have at least k black neighbors (in other words
sufficently many adjacent vertices).

Finally, from a theorem independently due to Kasteleyn [55] and Temperley and
Fisher [98] (see Theorem 2.1 of the chapter Random tiling), the number of tiling of
a figure by dominoes is known.

1



2 CHAPTER 1. TILEABILITY

The statement of this result in the particular case of tilings of rectangles is the
following

Theorem 1.2 (Kasteleyn, Temperley-Fisher) The number of tilings of a 2m×
2n rectangle with 2mn dominoes is equal to

4mn
m∏
j=1

n∏
k=1

(
cos2 jπ

2m+ 1
+ cos2 kπ

2n+ 1

)
.

1.2 Tiling with bars

Can we tile a region of Z2 with horizontal or vertical bars, at least one of them having
a length greater than two? The answer basically depends on the existence of holes in
the figure.

Tiling a polygon. In [58] the authors present a linear, w.r.t. the surface of the
polygon, time algorithm for deciding if a polygon can be tiled with 1 × ` and k × 1
tiles (and giving a tiling when it exists). This algorithm generalizes a domino tiling
algorithm due to Thurston [99] based on ideas of Conway and Lagarias [20] which
rely on geometric group theory and the notion of height function.

Theorem 1.3 (Kenyon-Kenyon [58]) A polygon of surface n can be tiled by 1× `
and k × 1 tiles, or proved not to be tileable, in time linear in n.

A quadratic algorithm for the same problem when the tile types are`×k and k×`
is also given in [58].

Tiling an arbitrary region. In the genaral case, the result is completly different.

Theorem 1.4 (Beauquier-Nivat-Rémila-Robson [4]) Deciding whether a figure
can be tiled with 1× ` and k× 1 bars is an NP-complete problem as soon as k or ` is
greater than 2.

The result is based on a reduction of this problem to a classical NP-complete problem.

1.3 Tiling with rectangles

Tiling a rectangle with another rectangle. When can an m × n rectangle be
tiled with a× b rectangles (in any orientation)?

For example, can a 5× 9 rectangle be tiled with 2× 3 rectangles? This is clearly
impossible, because each 2× 3 rectangle contains 6 cells, while the number of cells in
a 5 × 9 rectangle is 45, which is not a multiple of 6. For a tiling to be possible, the
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number of cells of the large rectangle must be divisible by the number of cells of the
small rectangle. Is this condition enough?

If we try to tile a 11 × 20 rectangle with 4 × 5rectangles, the number of tiles
needed is 11. But if we manage to cover the 11 cells of the first column with 4 × 5
tiles, we will have written 11 as a sum of 4s and 5s, which is impossible. So it may be
impossible to cover the first row or column, because either m or n cannot be written
as a sum of as and bs.

Is it then possible to tile a 10×15 rect- angle using 1×6 rectangles? 150 is in fact
a multiple of 6, and both 10 and 15 can be written as a sum of 1s and 6s. However,
this tiling problem is still impossible!

Theorem 1.5 (de Bruijn-Klarner 1969 [63]) An m × n rectangle can be tiled
with a× b rectangles if and only if:

• The first row and first column can be covered (i.e., m and n can be expressed
in the form ax+ by with x, y ≥ 0).

• m or n is divisible by a, and m or n is divisible by b.

The key ingredient of the proof is the following property: an m× n rectangle can
be tiled with 1× b rectangles if and only if b divides m or n. The proof is then based
on the use of this property together with a coloring argument.

Tiling the square with similar rectangles. Can a square be tiled with finitely
many rectangles similar to a 1 × x rectangle (in any orientation)? In other words,
can a square be tiled with finitely many rectangles, all of the form a × ax (where a
may vary)?

When x = p
q

is a positive rational number, a tiling a the unit square is obtained

with pq tiles 1
p
× 1q that are similar to the 1× = p

q
rectangle some of the tiles.

It can easily be shown that if x is one of the two roots of 5x2− 5x+ 1 = 0, that is
x = 5+

√
5

10
or x = 5−

√
5

10
, the unit square can be tiled with one 1× x rectangle together

with five (1− x)× x(1− x) rectangles.
But the following result, simultaneoulsy established by Freiling-Rinne [36] and

Laczkovich-Szekeres[66], proves that it is not possible to obtain such a kind of tiling
when x =

√
2 for example.

Theorem 1.6 (Freiling-Rinne [36], Laczkovich-Szekeres[66], 1995) Let x be
a positive real number. The three following statements are equivalent

1. It is possible to tile a square with rectangles. similar (up to a rotation) to the
1× x rectangle if and only if:

2. There exist rational positive numbers c1, . . . , cn such that

c1x+
1

c2x+ 1

...+ 1
cnx

= 1.
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3. The real x is algebraic and every (complex) conjugate of x has positive real part.

The Statement 2 easily relies tiling and number theory. On one hand, Statement 2
is the natural characterization of the tileabilty of the square by rectangles similar to
1×x and a tiling of the square can be directly obtained from this continued fraction.

Take a unit square. Cut off a rectangle of ratio (that is, the length of the horizontal
side divided by the length of the vertical one) c1x from the square by a vertical cut.
The remaining part is a rectangle of ratio

1− c1x+ =
1

c2x+ 1

...+ 1
cnx

.

Now cut off a rectangle of ratio 1
c2x

from the remaining part by a horizontal cut. We
get a rectangle of ratio

c3x+
1

c4x+ 1

...+ 1
cnx

Continue this process alternating vertical and horizontal cuts. Statement 3 guarantees
that after (n − 1) step we get a rectangle of ratio cnx. Since all ck are rational one
can chop the tiling into rectangles similar to the 1× x rectangle.

On the other hand Statement 2 is derived from Statement 3 by a theorem due to
Wall (see Theorem A of [100] or Theorem 47.1 of [101]). The proof of the converse is
more technical and basically use arguments from algebraic number theory.

Tiling a rectangle with distinct squares. Can a rectangle be tiled with finitely
many square of disctinct sizes? When it is possible and the ling contains more one
square, the tiling is said to be perfect.

An m × n rectangle, where m and n are integers, can be tiled by mṅ squares.
Thus a rectangle with rational side ratio can be tiled by squares. The following result
shows that this condition is sufficient:

Theorem 1.7 (Dehn [25] 1903) A rectangle can be tiled by squares (not necessar-
ily equal) if and only if the ratio of two sides of the rectangle is rational.

After original complcated proof, many improvements have been made.
In [12], Brooks, Smith, Stone, and Tutte study perfect tilings of squares introduc-

ing a nice interpretation in terms of electrical networks. Roughly speaking, the study
of squared rectangles is transformed into the study of certain flows of electricity in
networks. More precisely, they constructed a directed graph whose vertices are the
horizontal lines found in the rectangle. There is one edge for each square, which goes
from its top horizontal line to its bottom horizontal line.

Each square of the tiling corresponds to a wire in the network and the current
flowing through each wire is equal to the length of the corrsponding square. The
”horizontal equations” for the side lengths of the squares are equivalent to the equa-
tions for conservation of currrent in this network, and the ”vertical equations” are
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equivalent to Ohm’s law. Then from Kirchhoff’s theorem: The flow in each wire
is determined uniquely, once the potential difference between some two vertices (up
to scaling) is known. Therefore the lengths of the squares can be calculated from
determinants formed from the incidence matrix of the network. The correspondence
between certains networks and squared rectangles can also be used to find all the
squared rectangles of a given (small) order n.

To find tilings of squares instead of rectangles an additional linear equation is
needed, stating that the vertical and horizontal side lengths of the rectangle are equal.
In terms of the electrical network, this is equivalent to saying that the network has
total resistance 1.

Using this technique Duijvestijn [28] with a computer showed that the smallest
possible number of squares in a perfect tiling of a square is 21. We refer the reader
to http://www.squaring.net for a survey and artwork.

Tiling a rectangle with a polyomino. Finally we conclude with the following
related question: Given a polyomino P, does there exist a rectangle which can be
tiled using copies of P?

First recall that roughly speaking an undecidable problem is a decision problem for
which it is known to be impossible to construct a single algorithm that always leads
to a correct yes-or-no answer, in other words any possible program would sometimes
give the wrong answer or run forever without giving any answer.

Theorem 1.8 ([7]) The general problem of whether a given arbitrary polyomino can
tile a rectangle is undecidable.

1.4 Gröbner bases

The theory of Gröbner bases was developed by Bruno Buchberger in 1965. It is a
particular kind of generating set for a polynomial ideal, and it can be considered as
a non-linear generalization of Gaussian elimination for linear systems. The method
of Gröbner bases is a powerful technique that provides algorithmic solutions to a va-
riety of problems in commutative algebra and algebraic geometry. This section gives
a brief overview on the theory of Gröbner bases.

Let K be any field, such as a finite field K = Fp, the rational numbers K = Q, the
real numbers K = R, or the complex numbers K = C. We write R = K[x1, . . . , xn]
for the ring of polynomials in n variables xi’s with coefficients in K. Given a finite
set F = {f1, . . . , fk} ⊂ R of polynomials, the ideal generated by F is the set 〈F 〉
consisting of all polynomial combinations:

〈F 〉 = {h1f1 + · · ·+ hkfk | h1, . . . , hk ∈ R} .

We say that this ideal is generated by {f1, . . . , fk}. By Hilbert’s basis theorem, every
ideal I ⊂ R is generated by a finite set of polynomials.
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To define the Gröbner basis for an ideal, we introduce the concept of monomial
ordering on the set of all monomials in R. Recall that a monomial in R is a power
product of the form xα = xα1

1 · · ·xαn
n with α = (α1, . . . , αn) ∈ Nn. Let us consider

first a univariate polynomial ring K[x]. Then, to sort a finite set of monomials, we
can consider the degree of the monomials. For example, in the set {1, x2, x12}, the
monomial x12 is the largest one. Below, we generalize this concept to the ring of
multivariate polynomials. A term ordering on R is a total order ≺ on the set of all
monomials satisfying the following two properties:

• It is multiplicative: xα ≺ xβ implies xα.xγ ≺ xβ.xγ for all α, β, γ ∈ Nn.

• The constant monomial 1 is the smallest monomial; i.e. 1 ≺ xα for all α ∈ Nn.

An example of a monomial ordering is the lexicographical ordering. We write
xα ≺lex xβ if the left most non-zero entry of β − α is positive. If we fix a term
ordering ≺ on R, then every polynomial f ∈ R has a unique leading monomial.
This is the largest monomial which occurs with non-zero coefficient in the expansion
of f , and we denote it by LM(f). The coefficient of LM(f) is called the leading
coefficient of f and is denoted by LC(f). The multiplication LT(f) = LC(f)LM(f)
is the leading term of f . For instance, let us consider the polynomial ring K[x1, x2]
and ≺lex on this ring. Then, x2

1 is the leading monomial of the following quadratic
polynomial

f = 7x2
1 − 3x2

2 + 5x1x2 + 11x1 + 13x2 − 17

and LT(f) = 7x2
1. Suppose now that I ⊂ R is an ideal and ≺ is a monomial ordering

on R. Then its leading term ideal LT(I) is the ideal generated by the leading term
of all the polynomials in I:

LT(I) = 〈LT(f) | f ∈ I〉.

Definition 1.1 A finite subset G ⊂ I is called a Gröbner basis for I w.r.t. ≺ if the
leading terms of the elements in G suffice to generate the leading term ideal of I; i.e.

LT(I) = 〈LT(g) | g ∈ G〉.

Note that a finite set G ⊂ R is called a Gröbner basis if it is a Gröbner basis for 〈G〉.
For example, we consider the polynomial ring K[x, y, z] and the monomial ordering
z ≺lex y ≺lex x. Let us consider the polynomials f1 = x− y − z, f2 = x+ y − z2 and
f3 = x2 +y2−1. We set I = 〈f1, f2, f3〉. We observe that LT(f1) = x, LT(f2) = x and
LT(f3) = x2. On the other hand, f1− f2 = −2y− z+ z2 and its leading term is −2y.
Since −2y /∈ 〈x, x, x2〉, then {f1, f2, f3} does not form a Gröbner basis for I. Thus, a
generating set of an ideal is not necessarily a Gröbner basis for the ideal. We will see
later in this chapter that a Gröbner basis for I is {2x−z2−z, 2y−z2 +z, z4 +z2−2}.

Theorem 1.9 Every ideal has a Gröbner basis w.r.t. a fixed monomial odering.

Buchberger, in his PhD thesis, proved this theorem. For more details, we refer the
reader to [6, 22, 21].
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1.5 Buchberger’s algorithm

In this section, we describe Buchberger’s algorithm for computing a Gröbner basis
of a given ideal. It should be noted that polynomial reduction is the corner stone in
this algorithm. Suppose that R = K[x1, . . . , xn] and ≺ is a monomial ordering on R.
Let F = {f1, . . . , fk} ⊂ R and f ∈ R. Then, f is reducible to g modulo F , and we
write f −→F g, if there exist a monomial m appearing in the expression of f and an
integer i with LM(fi) | m and g = f − aufi for some element a ∈ K and monomial
u ∈ R so that g does not contain m.

Definition 1.2 A polynomial g is called a normal form of f modulo F if there exists
a sequence g1, . . . , gt so that f −→F g1 · · · −→F gt −→F g and g is not reducible
modulo F .

We formalize the computation of a normal form of a polynomial as an algorithm.

Algorithm 1 NormalForm

Input: A set of polynomials F = {f1, . . . , fk} and f ∈ R
Output: A normal form of f w.r.t. F
r := f ;
while r is reducible modulo F do
r := g where r −→F g

end while
return(r)

This is the essence of Buchberger’s algorithm to compute Gröbner bases.

Example 1.1 The normal form of a polynomial w.r.t. a given set of polynomials is
not, in general, unique. Let us consider the polynomial ring K[x, y] and y ≺lex x.
Suppose that f1 = y2 − 1, f2 = xy − 1 and f = xy2 + x2y + y2. Then, if we divide f
by f1, f2 we get

f = (x+ 1)(y2 − 1) + x(xy − 1) + 2x− 1

however if we divide f by f2, f1 we have

f = (x+ y)(xy − 1) + (y2 − 1) + x+ y + 1.

Theorem 1.10 A finite set G is a Gröbner basis iff for each f ∈ R the normal form
of f w.r.t. G is unique.

An important consequence of this theorem is the ideal membership problem. Suppose
that I ⊂ R is an ideal and f ∈ R. Then, f ∈ I iff the normal form of f w.r.t. a
Gröbner basis of I is zero.

In order to propose an algorithm to compute Gröbner bases, let us look at some
obstructions that may happen when a finite set cannot be a Gröbner basis. Let
us consider the ring K[x, y] and y ≺lex x. Further, let f1 = xy − x, f2 = x2 − y
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and I = 〈f1, f2〉. Then, we have xf1 − yf2 = y2 − x2 ∈ I. The normal form of
this polynomial w.r.t. {f1, f2} is y2 − y which lies in I and it has the new leading
monomial y2 /∈ 〈xy, x2〉. Based on this construction, we describe the Buchberger’s
algorithm to construct Gröbner basis. In doing so, we define first a new fuction called
Spolynomial to cancel the leading monomials.

Definition 1.3 Let ≺ be a monomial ordering and f and g be two polynomials.
Then, the Spolynomial of f and g is defined to be

Spol(f, g) =
xα

LT(f)
f − xα

LT(g)
g

where xα = lcm(LM(f),LM(g)).

For example, keeping the above notations, Spol(f1, f2) = xf1 − yf2 = y2 − x2. We
state now Buchberger’s criterion which leads us to Buchberger’s algorithm.

Theorem 1.11 (Buchberger’s criterion) A finite set G ⊂ R of non-zero polynomials
is a Gröbner basis iff the normal form of Spol(gi, gj) w.r.t. G is zero for each gi, gj ∈
G.

Algorithm 2 Buchberger

Input: A set of polynomials F = {f1, . . . , fk}
Output: A Gröbner basis for 〈f1, . . . , fk〉
G := F ;
P := {{f, g} | f, g ∈ G};
while P 6= {} do

select and remove {f, g} from P ;
r :=NormalForm(Spol(f, g), G);
if r 6= 0 then
P := P ∪ {{r, h} | h ∈ G};
G := G ∪ {r}

end if
end while
return(G)

This algorithm has been implemented in many systems such as CoCoA, Macaulay2,
Magma, Maple, Mathematica, or Singular.

Example 1.2 Let us consider the monomial ordering y ≺lex x on K[x, y]. Let f1 =
xy − x, f2 = x2 − y and I = 〈f1, f2〉. We set G = {f1, f2} and P = {{f1, f2}}. We
select and remove this pair, and we let r the normal form of Spol(f1, f2) w.r.t. G
which is equal to y2−y. Then, we have P = {{r, f1}, {r, f2}} and G = {f1, f2, r}. We
observe that the Spolynomial of each of these two pairs reduces to zero, and therefore
G is a Gröbner basis for I.
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At the end of this section, we illustrate an application of Gröbner bases to simpli-
fication of expressions. As we already mentioned, the normal form of a polynomial
w.r.t. a given Gröbner basis is unique. This can be used to simplify mathematical
expressions with respect to polynomial relations. In the following, we describe an
example from the Dutch Mathematics Olympiad of 1991. Let a, b, c be real numbers
such that a+ b+ c = 3, a2 + b2 + c2 = 9 and a3 + b3 + c3 = 24. Compute a4 + b4 + c4.
We compute first a Gröbner basis of the ideal

I = 〈a+ b+ c− 3, a2 + b2 + c2 − 9, a3 + b3 + c3 − 24〉

w.r.t. the monomial ordering c ≺lex b ≺lex a. This basis is equal to

G = {a+ b+ c− 3, b2 + c2 − 3b− 3c+ bc, c3 − 3c2 + 1}.

and the normal form of a4 + b4 + c4 is 69. This shows that a4 + b4 + c4−69 ∈ I. Now,
if we set a + b + c = 3, a2 + b2 + c2 = 9 and a3 + b3 + c3 = 24 in I then it becomes
zero, and thus any polynomial in I would be zero. Thereby a4 + b4 + c4 = 69.

1.6 Gröbner bases and tilings

In this section, we review the application of Gröbner bases in tiling problems. The
main reference for this section is [10]. The main problem in this section is as follows:
Given a polyomino (a polyomino is a finite set of unit sqares) P and a finite set F
of polyominoes (the tiles). Z-tiling problem consists of a finite number of translated
tiles to cover P so that the sum of signs on P at each cell is +1. A celle in the square
lattice is the set c(i, j) = {(x, y) | i ≤ x < i + 1, j ≤ y < j + 1}. Thus we call lable
c(i, j) by its lower left corner; the point (i, j). Thereby, we can associate to c(i, j)
the monomial xiyj, and we denote it by Pc(i,j). Since each polyomino (or tile) is the
union of some celles, thus we can give the following definition.

Definition 1.4 If the polyomino (or tile) T is a union of celles c(i, j) for (i, j) ∈ Λ,
then we define the asssociate polynomial of T to be PT =

∑
(i,j)∈ΛPc(i,j).

Fig. 1.6 illustrates this.
If we would like to cover a given polyomino P by a finite set F of tiles, then

we shall consider all rotations of the tiles in F , say F̃ . Now, for each tile A ∈ F̃ ,
we consider PA. Thus, the Z-tiling problem is equivalent to the fact that whether
PP ∈ 〈PA |A ∈ F̃ 〉. However, we shall note that this ideal lies in the polynomial ring
Z[x, y]. Thus, to check this ideal membership we need to define and compute the
Gröbner bases over the ring of integers. In the following, we give an overview on this
topic. We mimic the constructions of Section 1.4 as much as we can. We keep the
notations of the mention section. Let R = Z[x1, . . . , xn], ≺ be a monomial ordering
and I ⊂ R be an ideal.

Definition 1.5 A finite subset G ⊂ I is called a Gröbner basis for I w.r.t. ≺ if

LT(I) = 〈LT(g) | g ∈ G〉.
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Figure 1.1: Left, the tile associated with the polynomial 1+x+xy+xy2. Right, a 4×4
square polyomino P whose associate polynomial is PP = (1+x+x2+x3)(1+y+y2+y3).

For example, the set {2x} ⊂ K[x] is a Gröbner basis for the ideal I = 〈2x, 3x〉,
however, it is not a Gröbner basis when we consider I in Z[x]. Indeed, we note
that x ∈ I but 2x does not divide x in Z[x]. As a more challenging example, let
I = 〈4x−1, 6y+1〉 ⊂ Z[x, y] and y ≺lex x. Then, we can see easily that if we consider
this ideal in a polynomial ring over a field, then {4x−1, 6y+1} is a Gröbner basis for I.
However, that does not hold in Z[x, y]. Indeed, we observe that Spol(4x−1, 6y+1) =
−2x − 3y and −2x /∈ 〈4x, 6y〉. To state the Buchberger like algorithm, we need to
define a new concept of reduction.

Definition 1.6 Let us consider the polynomials f, g ∈ R and F = {f1, . . . , fk} ⊂ R.
We say that f reduces to g modulo F and we write f −→F g if g = f − (c1m1f1 +
· · · + ckmkfk) for ci ∈ Z and monomials m1, . . . ,mk where miLM(fi) = LM(f) for
all i such that ci 6= 0 and LT(f) = c1m1LT(f1) + · · ·+ ckmkLT(fk).

Based on this definition, we can define the normal form of a polynomial modulo a
given set of polynomials. Finally, we shall note that the normal form algorithm,
Buchberger’s criterion, Buchberger’s algorithm and all the results in Section 1.4 hold
for the polynomial ring over integers. Specially, using Gröbner bases over Z we can
test the membership problem, and answer the Z-tiling problem.



Chapter 2

Random Tilings

2.1 Dimer model and random tilings

The dimer model was introduced in the physics and chemists communities to represent
the adsorption of di-atomic molecules on the surface of a crystal. It is first mentioned
in a paper by Fowler and Rushbrooke [35] in 1937. Mathematicians studied related
questions as for example the enumeration of plane partitions by Mac Mahon [74],
the understanding of geometric and combinatorial properties of tilings of regions of
the plane by dominos or rhombi. To the best of our knowledge, the latter problem
was first introduced in a paper by David and Tomei [23]. A major breakthrough was
achieved in the paper [99] Thurston, where the author interprets rhombus tilings as
2-dimensional interfaces in a 3-dimensional space. The goal of this section is to define
the dimer model and equivalent random tilings.

2.1.1 The dimer model

A graph G = (V,E) consists of:

• a set of vertices V ,

• a set of (unoriented) edges E, where an edge is a pair of vertices e = {v, w}.
The unoriented edge e is also denoted vw.

Vertices can be represented by points, and edges, as lines (or simple curves) connecting
pairs of points. In what follows, we shall simply denote a graph by G.

We say that a vertex v is incident to an edge e if v is one of the vertices in the
pair representing e. We say that v and w are adjacent if {v, w} is an edge of G.

A dimer configuration of a graph G, also known as a perfect matching, denoted
by D, is a subset of E such that every vertex v ∈ V is incident to exactly one edge
of D. Let D(G) denote the set of dimer configurations of a graph G.

Figure 2.1 gives an example of a dimer configuration when the graph G is a finite
subgraph of the honeycomb lattice H.

11
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Figure 2.1: Dimer configuration of a subgraph of the honeycomb lattice.

Since a dimer of a perfect matching covers exactly two vertices, a necessary con-
dition for the existence of a dimer configuration of a graph G is that the number of
vertices of G is even.

In general, it is a difficult problem to compute the number of dimer configurations
of a graph. We will see that if the graph is planar, i.e., if the graph (vertices and
edges) can be drawn in the plane in such a way that edges do not intersect except at
vertices, this problem is much easier.

Dimer configurations represent di-atomic molecules adsorbed on the surface of a
crystal. A given dimer configuration has a certain probability of occurring, where
this probability is given by the Boltzmann measure. Suppose that the graph G is
finite, and suppose that edges are assigned a positive weight function ν, that is every
edge e of G has weight ν(e). The Boltzmann measure µ is a probability measure on
the set of dimer configurations D(G), defined by:

∀D ∈ D(G), µ(D) =
ν(D)

Z(G)
,

where ν(D) is the weight of the dimer configuration defined as ν(D) =
∏
E∈D

ν(E).

The term Z(G) is the normalizing constant known as the partition function. It is the
weighted sum of dimer configurations, that is,

Z(G) =
∑

D∈D(G)

ν(D).

When ν ≡ 1, the partition function counts the number of dimer configurations of the
graph G, and the Boltzmann measure is simply the uniform measure on the set of
dimer configurations.

2.1.2 Dimers on planar graphs and tilings

Let G be an infinite, connected planar graph, embedded in the plane. Cutting along
the edges, we obtain several pieces that are homeomorphic to disks. These pieces are
known as the faces1 of the graph G.

1There may be several ways to embed G in the plane. Faces of G depend on the graph structure
of G and on the choice of embedding.
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From the embedded graph G, one define a new graph G∗ = (V ∗, E∗), known as
the dual graph of G: vertices of G∗ correspond to faces of G, and there is a dual edge
connecting two dual vertices if the corresponding faces are bordered by the same
edge. There is a bijection between edges of G and edges of G∗. The dual of G∗ can
be identified with G. When the graph G is finite, we consider a version of the dual
graph modified along the boundary, see Figure 2.2. With a slight abuse of notation,
we also denote this modified dual by G∗.

The tiling model on the dual graph G∗ is defined as follows. A tile of G∗ is
a polygon consisting of two adjacent inner faces of G∗ glued together. A tiling of
G∗ is a covering of the graph G∗ with tiles, such that there are no holes and no
overlaps. Figure 2.2 gives an example of a tiling of a finite subgraph of the triangular
lattice T, the dual graph of the honeycomb lattice. Tiles of the triangular lattice are
60◦-rhombi, and are also known as lozenges or calissons.

Figure 2.2: Dual graph of a finite subgraph of the honeycomb lattice (left). Tiling of
this subgraph (right).

Another classical example is the tiling model on the graph Z2, the dual of the
graph Z2. Tiles are made of rectangles consisting of two adjacent squares, and are
known as dominos.

Dimer configurations of the graph G are in bijection with tilings of the graph
G∗ through the following correspondence, see also Figure 2.3: dimer edges of perfect
matchings connect pairs of adjacent faces forming tiles of the tiling. As an exercise,
prove that this indeed defines a bijection.

Using the bijection between dimers and tilings, the Boltzmann measure can be
seen as a probability measure on tilings of the dual graph G∗.

2.1.3 Height function

By means of the height function, Thurston [99] interprets lozenge tilings of the trian-
gular lattice as discrete surfaces in a rotated version of Z3 projected onto the plane.
He gives a similar interpretation of domino tilings of the square lattice. This ap-
proach can be generalized to dimer configurations of bipartite graphs using flows.
This yields an interpretation of the dimer model on a bipartite graph as a random
interface model in dimensions 2 + 1, and offers more insight into the model. In this
section we exhibit Thurston’s construction of the height function on lozenge tilings.
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Figure 2.3: Bijection between dimer configurations of the graph G and tilings of the
graph G∗.

Faces of the triangular lattice T can be colored in black and white, so that black
faces (resp. white ones) are only adjacent to white ones (resp. black ones). This
is a consequence of the fact that its dual graph, the honeycomb lattice, is bipartite.
Orient the black faces counterclockwise, and the white ones clockwise, see Figure 2.4
(left). Consider a finite subgraph X of T which is tileable by lozenges, and a lozenge
tiling T of X. Then the height function hT is an integer valued function on vertices
of X, defined inductively as follows:

• Fix a vertex v0 of X, and set hT (v0) = 0.

• For every boundary edge uv of a lozenge, hT (v)− hT (u) = +1 if the edge uv is
oriented from u to v, implying that hT (v) − hT (u) = −1 when the edge uv is
oriented from v to u.

The height function is well defined, in the sense that the height change around any
oriented cycle is 0. An example of computation of the height function is given in
Figure 2.4 (right).
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Figure 2.4: Orientation of faces of the triangular lattice (left). Height function cor-
responding to a lozenge tiling (right).
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As a consequence, lozenge tilings are interpreted as stepped surfaces in Z̃3 pro-

jected onto the plane, where Z̃3 is Z3 rotated so that diagonals of the cubes are
orthogonal to the plane. The height function is then simply the “height” of the sur-
face (i.e. third coordinate). This construction gives a mathematical sense to the
intuitive feeling of cubes sticking in or out, which strikes us when watching a picture
of lozenge tilings.

Height functions characterize lozenge tilings as stated by the following lemma.

Lemma 2.1 Let X be a finite simply connected subgraph of the triangular lattice T,
which is tileable by lozenges. Let h be an integer valued function on the vertices of
X, satisfying:

• h(v0) = 0, where v0 is a fixed vertex of X.

• h(v)− h(u) = 1 for any boundary edge uv of X oriented from u to v.

• h(v)− h(u) = 1 or −2 for any interior edge uv of X oriented from u to v.

Then, there is a bijection between functions h satisfying these two conditions, and
tilings of X.

Thurston uses height functions to determine whether a subgraph of the triangular
lattice can be tiled by lozenges. More details are to be found in the paper [99].

2.2 Kasteleyn/Temperley and Fisher’s theorem

The explicit computation of the partition function is due to Kasteleyn [56, 57] and
independently to Temperley and Fisher [98]. The goal of this section is to state their
theorem in the case where the graph G is planar and bipartite. To this purpose, we
first introduce the Kasteleyn matrix of the graph G. Note that the statement in the
planar, non-bipartite case, is similar in spirit, but involves a Pfaffian instead of a
determinant.

A graph G = (V,E) is bipartite if the set of vertices V can be split into two
subsets W ∪B, where W denotes white vertices, B black ones, and vertices in W are
only adjacent to vertices in B. We suppose that |W | = |B| = n.

An orientation of the edges the graph G is said to be clockwise odd if all cycles
bounding faces are clockwise odd, meaning that when traveling clockwise along such
a cycle, there is an odd number of co-oriented edges. Such an orientation exists when
the graph is embedded in the plane, and we fix one.

Now, label the white vertices w1, . . . , wn and the black ones b1, . . . , bn. Then the
corresponding oriented, weighted, adjacency matrix is the n×n matrix K whose lines
are indexed by white vertices, whose columns are indexed by black ones, and whose
entry K(wi, bj) is:

K(wi, bj) =


ν(wibj) if wi ∼ bj, and wi → bj

−ν(wibj) if wi ∼ bj, and wi ← bj

0 if the vertices wi and bj are not adjacent.
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The matrix K is known as a Kasteleyn matrix. Then, Kasteleyn [56] and Temperley
and Fisher [98] prove the following theorem.

Theorem 2.1 ([56, 98]) Let G be a finite planar graph. Let K be a Kasteleyn
matrix of G. Then

Z(G) = |detK| .

In particular, when the weight function ν ≡ 1, this formula gives the number of
perfect matchings of the graph G.

2.3 Explicit expression for natural probability mea-

sures on dimers

From Kasteleyn’s theorem and Jacobi’s formula, one can deduce and explicit expres-
sion for the Boltzmann measure µ when the graph is finite. This is the subject of
Section 2.3.1. Then, in Section 2.3.2, we give a hint at what happens in the case
where the graph G is infinite.

2.3.1 The finite case

Let us first state Jacobi’s formula. For a matrix A = (ai,j)1≤i,j≤n, and I, J two subsets
of [1..n], we denote by AJI the sub-matrix extracted from A with rows (resp. columns)
indexed by I (resp. J).

Theorem 2.2 (Jacobi’s formula) Let I = {i1, . . . , ik} and J = {j1, . . . , jk} two
subsets of [1..n] of size k. If A is invertible,

detAJI = (−1)i1+···+ik+j1+···+jk det(A) det(A−1)J̄Ī .

Using Jacobi’s formula, it is possible to write a compact expression for the proba-
bility that a given edges appear in a dimer configuration sampled according to the
Boltzmann measure µ.

Theorem 2.3 ([60]) Suppose that the graph G is planar and bipartite, with at least
one dimer configuration. Let E = {e1, . . . , ek} be a subset of edges, such that for all
j, ej = {wj, bj}. Then:

P(edges of E are dimers) =

(
k∏
j=1

K(wj, bj)

)
× det

1≤i,j≤k
K−1(bi, wj).
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2.3.2 A hint at infinite volume Gibbs measures

Since dimers represent di-atomic molecules, one is typically interested in very large
graphs. It is actually easier to study infinite graphs rather than very large ones. In
this case, the Boltzmann measure is not well defined, since one divides by infinity.
The notion of Boltzmann measure is thus replaced by that of Gibbs measure, which
is a probability measure on D(G) satisfying the DLR 2 conditions: if the perfect
matching in an annular region of G is fixed, matchings inside and outside of the
annulus are independent, and the probability of any interior matching is proportional
to the product of its edge-weights.

Suppose that the graph G is infinite, Z2-periodic, and bipartite. Then, there is
a natural exhaustion of the infinite graph G by toric graphs {Gn}n≥1, where Gn =
G/nZ2. A natural way of constructing a Gibbs measure is to take the limit of the
Boltzmann measures on cylinder sets of D(Gn), where a cylinder set consists of all
perfect matchings containing a fixed subset of edges of Gn.

Kenyon, Okounkov and Sheffield [62] prove that there is a two-parameter family
of translation invariant, ergodic Gibbs measures defined on the infinite graph G. The
two parameters come from the fact that the graph is Z2-periodic, and from the height
function defined on dimer configurations of planar, bipartite graphs.

2.4 Computation of the number of tilings : a few

examples

In some specific cases, there are techniques, other than the one of Kasteleyn, for
computing the number of dimer configurations. In this section, we present two such
types of results.

2.4.1 Tilings of a hexagon and non intersecting paths

Let Ha,b,c the subgraph of the hexagonal lattice whose dual is a hexagon cut in the
triangular lattice with side-length a, b, c. See Figure 2.5.

A dimer configuration of Ha,b,c (or equivalently a tiling of H∗a,b,c with rhombi)
can be encoded by a family of c left to right non-intersecting paths of length a + b,
connecting points {Li = (i− 1

2
, 0), 1 ≤ i ≤ c} on the left and {Ri = (i+b− 1

2
, a+b), 1 ≤

i ≤ c} on the right. During one step to the right, the height of a path of this family
either stays the same, or increases by one.

The number of non-intersecting families of paths can be written as a determinant:

Proposition 2.1 (Lindström-Gessel-Viennot’s lemma [37]) Let Ni,j be the num-
ber of lattice paths connecting Li to Rj. Then the number of ways to connect {Li} to

2DLR stands for Dobrushin, Lanford and Ruelle.
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a
b

c

Figure 2.5: Left: the hexagon H∗3,4,5 and the three types of tiles. Coordinates are
defined, with an origin at the lower leftmost corner, and axes with directions indicated
by the arrows. Middle: a tiling of hexagon H∗3,4,5. Right: the corresponding family of
intersecting paths.

{Rj} with a collection of c paths without intersection is

Z = det
1≤i,j≤c

(Ni,j) . (2.1)

In this particular case, Ni,j has a simple form:

Ni,j =

(
a+ b

b+ j − i

)
.

. The corresponding determinant (2.1) can be computed exactly using method similar
to the one used for the Vandermonde determinant [64]. One gets then the beautiful
Mac Mahon’s formula, giving the number of non intersecting path families connecting
the left side and the right side of H∗a,b,c (and thus the number of tilings of the hexagon
H∗a,b,c with rhombi):

Za,b,c =
a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2
.

2.4.2 Tilings of the Aztec diamond

Let An be the subgraph of the square lattice (shifted by one-half in both directions)
whose vertices are the points of the plane (x, y) ∈ Z2+(1/2, 1/2) , such that |x|+|y| ≤
n. The graph An is called the Aztec diamond of size n. See Figure 2.6

Theorem 2.4 ([31]) The number of dimer configurations of the Aztec diamond of
size n is 2n(n+1)/2.

We now explain how to generate a uniform domino tiling of the Aztec diamond
of size n with a random algorithm which allows one to grow step by step. This
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Figure 2.6: Left: a dimer configuration of the Aztec diamond A3. Right: the corre-
sponding domino tiling.

Figure 2.7: The four types of dominos and their associated direction. Below, the two
types of good blocks (left) and the two types of bad blocks (right).

algorithm, introduced in [31] to compute the number of dimer configurations of An,
is called the domino shuffling algorithm.

An iteration of the algorithm to go from the Aztec diamond of size n to that
of size n + 1 can be decomposed into 3 steps. In order to perform these steps, we
need to associate to each domino a direction, according to its orientation and the
checkerboard coloring. See Figure 2.7.

deletion Remove dominos forming bad blocks, i.e., 2× 2 squares filled with dominos
sharing a long edge, with arrows pointing to the center of the square.

migration Move all remaining dominos one step in the direction of their arrow. (and
switch at the same time the checkerboard coloring).

creation Fill the remaining space, formed by 2 × 2 squares, by good blocks, i.e.,
dominos sharing a long edge, with arrows pointing toward the exterior of the
square. For each square, there are two possibilities. Pick one at random with
probability 1/2, independently for each square.

All the randomness of the algorithm is located in the last step of the iteration.

2.5 Arctic curves

When generating several uniform tilings of a large Aztec diamond, something inter-
esting happens. Whereas the tiling is still random at a microscopic level, all the
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generated samples look almost the same at large scale, with the presence of ordered
regions close to the corner, and a disordered region in the middle.

The North polar region of a domino tiling of the Aztec diamond is the connected
component of (horizontal) dominos with a north going arrow touching the top edge
of the Aztec diamond. Define similarly the South, East and West polar regions.

The union of the polars region is called the arctic (or frozen) region. Its com-
plement in the Aztec diamond is called the temperate (or liquid) region. The curve
separating the temperate region from the arctic region is called the arctic curve.

If we rescaled the edges by a factor 1
n
, Gn is contained in the square S = {(x, y) ∈

R2 ; |x|+ |y| ≤ 1}. Let D be the disk inscribed inside S, centered at the origin, with
radius 1√

2
. The following theorem states that in the scaling limit, the arctic curve for

the Aztec diamond converges to a circle:

Theorem 2.5 (Arctic circle theorem [49]) For all ε > 0, the probability that the
liquid region rescaled by a factor 1

n
contains (1 − ε)D and is contained in (1 + ε)D

converges to 1 as n goes to infinity.

This result is a kind of geometric law of large numbers.
Similar results hold for a more general class of domains. For tilings with rhombi

of polygonal shape with sides parallel to directions of the triangular lattices, Kenyon
and Okounkov [61] showed that the arctic curve is in the scaling limit an algebraic
curve inscribed in the domain: an ellipse when the domain is a hexagon, a cardioid
if the domain is a hexagon with a corner removed. See Figure 2.8. Many aspects of
their work apply also to the case of domino tilings. For more general domain, the
arctic curve, and more generally, the limit shape (i.e., the deterministic scaling limit
of the height function) is given by the solution of a variational principle [19].

Figure 2.8: Tiling by rhombi of a hexagon (left) and with a corner cut off (right).
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Symbolic dynamics

3.1 Preliminaries

3.1.1 Symbolic spaces

Consider a finite alphabet A of at least two letters, and some free Abelian group
Zd. We note Br := [[−r, r]]d. A pattern is a map p ∈ AU for some finite support
U ⊂finite Zd. A configuration is a map x ∈ AZd

. We note by x|U its restriction to
some finite support U ⊂finite Zd. A pattern p appears in a configuration x if it is
equal to x|U+i for some finite support U ⊂finite Zd and some i ∈ Zd; we note p @ x.

The set AZd
of configurations can be endowed with the product of the discrete

topology, which makes it a Cantor (compact, metrizable, perfect, totally discontin-
uous) space, by the Tychonov theorem (see [65] for background on topology). A

basis for this topology is the set of (clopen) cylinders [[p]] :=
{
x ∈ AZd

∣∣∣x|U = p
}

for

p ∈ AU and U ⊂finite Zd. Actually any Cantor space is homeomorphic to AZd
.

Example 3.1 We often use A = {0, 1} and represent 0 as and 1 as .

These two configurations are in the same cylinder [[p]], where p ∈ AB2.

3.1.2 Topological dynamics

A (topological, discrete) dynamical system is a continuous map F : X → X
from some compact space X into itself. The orbit of point x ∈ X is the sequence
(F t(x))t∈N (or sometimes the corresponding set). x is called periodic if its orbit is
finite, transitive if it is dense (in which case the system is called transitive as well).

21
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A subsystem is the restriction of F to some closed set Y ⊂ X such that F (Y) ⊂
Y. The closure of any orbit is a transitive subsystem. A system which has no
proper nonempty subsystem is called minimal. Equivalently, all orbits are dense.
It is clear that a minimal system which is not a single finite orbit is aperiodic: it
has no periodic orbit. Zorn’s lemma allows all dynamical system to admit a minimal
subsystem.

A continuous onto map Φ : X � Y is called a factor map from F : X → X to
G : Y → Y if ΦF = GΦ. In that case, G is called a factor of F . Φ is a conjugacy
if it is also one-to-one. In that case, by compactness, Φ−1 is also a conjugacy, and F
and G are called conjugate.

Example 3.2 Let X be the circle S1 = R/Z, and F : x 7→ x + θ mod 1 the rotation
by some angle θ ∈ S1. It is known that if θ is rational, then all orbits are periodic,
whereas if θ is irrational, then all orbits are dense.

3.1.3 Graphs

A (finite directed) graph is a pair (V,E) of finite sets, the set of vertices and the
set of edges, endowed with two maps s, t : E → V , representing the initial and
terminal vertices of each edge. A path is a sequence (ei)i∈I of edges such that
s(ei+1) = t(ei) whenever i, i + 1 ∈ I, and where I = [[0, n[[ for some length n ∈ N
(finite path) or I = N (infinite path) or I = Z (biinfinite path).

If V is [[0, n[[ for some n ∈ N and E is considered up to bijection, then a graph
corresponds to a n× n-matrix with nonnegative entries: the entry i, j stands for the
number of edges from vertex i to vertex j. The number of paths of length k from
vertex i to vertex j is then given by the entry i, j of the matrix to the power k.

Example 3.3 Here is how we represent the graph with V := {v0, v1, v2, v3, v4}, E :=
{e0, . . . , e8}, s(e0) = s(e1) = v0 = t(e7) = t(e8), s(e2) = s(e3) = v1 = t(e0) = t(e2),
s(e4) = s(e5) = v2 = t(e1) = t(e3), s(e6) = s(e7) = v3 = t(e4) = t(e6), s(e8) = v4 =
t(e5).

v0

v1

v2

v3 v4

The corresponding matrix is: 
0 1 1 0 0
0 1 1 0 0
0 0 0 1 1
1 0 0 1 0
1 0 0 0 0

 .
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A labeled graph is a graph endowed with a map l from E to an alphabet A,
representing a label for each edge. The label of a path (ei)i∈I is the sequence
(l(ei))i∈I ∈ AI .

Example 3.4 Here is how we represent the labeled graph supported on the graph of
Example 3.3 and with labels l(e0) = l(e4) = l(e7) = 0, l(e1) = l(e2) = l(e5) = 1,
l(e3) = l(e8) = 2, l(e6) = 3.

v0

v1

v2

v3 v4

0

11

2 0

1

3

0

2

The graph is strongly connected (all vertices are pairwise connected by a path) if
and only if the matrix is irreducible, i.e., for every i, j, there exists k ∈ N such that
Mk

i,j 6= 0. By the Perron-Frobenius theorem, such a matrix with nonnegative entries
has a unique eigenvalue of maximal modulus, which is actually nonnegative.

3.2 Symbolic dynamics

A lot on topological and symbolic dynamics can be found in [65].
We are interested in the shift action, defined by Si(x)j := xj+i for any x ∈ AZd

and i, j ∈ Zd, and d ∈ N being the dimension. Any subsystem corresponds to a set
X ⊂ AZd

, called a subshift, which is closed and such that Si(X) ⊂ X for any i ∈
Zd. Equivalently, X is the set

{
x ∈ AZd

∣∣∣ ∀p @ x, p /∈ U
}

of configurations avoiding

some forbidden family U ⊂
⋃

U⊂finiteZd AU of patterns. Let us denote LU(X) :={
x|U
∣∣x ∈ X

}
.

A configuration x ∈ AZd
is periodic if there is a nontrivial vector i ∈ Zd \ (0, 0),

called a period, such that Si(x) = x.

Example 3.5 Consider θ ∈ S1 irrational, and Y ⊂ {0, 1}Z the set of so-called Stur-
mian sequences y such that yi := biθ+ xc − b(i− 1)θ+ xc for every i ∈ Z and every
x ∈ X := S1. For every such y there is exactly one corresponding x = Φ(y) ∈ X. Y is
a minimal subhift, of which the rotation in Example 3.2 is a factor, by the factor map
Φ : X → Y. Φ is injective except over the countable set of configurations x ∈ θZ,
which have two preimages.

Block maps. The following is sometimes called the Hedlund theorem, and justifies
that we sometimes talk about sliding block maps.
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Proposition 3.1 Any factor map Φ from a subshift X ⊂ AZd
onto a subshift Y ⊂

BZd
admits a radius r ∈ N and a local map φ : Lr(X) → B such that for any

i ∈ Zd and any x ∈ X, Φ(x)i = φ(x|i+Br ).

Subshifts of finite type. If X =
{
x ∈ AZd

∣∣∣ ∀p @ x, p /∈ U
}

for some finite forbid-

den family U of patterns, then X is called a subshift of finite type (SFT). In that
case, it admits some order k ∈ N, i.e., all supports of patterns in U are included in
Bk. Any conjugate of a SFT is a SFT.

Sofic subshifts. If X is a subshift which is a factor of a SFT, then X is called a
sofic subshift. Any factor of a sofic subshift is sofic.

Entropy. The (topological) entropy of subshift X is infr∈N
log |LBr (X)|
|Br| ∈ [0, logA],

which is known to be a limit when r → ∞, by subadditivity and Fekete’s lemma.
Entropy cannot increase via factor maps and restrictions to subsystems.

3.3 1D subshifts

Assume here that d = 1. Most results in this section, and many more, can be found
in [72].

Factorial extendable languages. Up to shifting the support, the language L(X) :=⊔
n∈N LBn(X) is its set of patterns. It is factorial, in the sense that if the concate-

nation pq is in L(X), then both p and q also. It is also extendable, in the sense
that for any pattern p ∈ L(X), there are letters a, b ∈ A such that apb ∈ L(X).
Conversely, any factorial extendable language is the language of a unique subshift.

Edge subshifts. An edge subshift is the set of biinfinite paths in a graph. It is
rather clear that edge subshifts are SFT, with order 2.

Proposition 3.2 Every 1D SFT is conjugate to an edge subshift.

Proposition 3.3 Let X be an edge subshift and M the corresponding matrix.

1. The entropy of X is the logarithm of the Perron-Frobenius eigenvalue of M .

2. X is transitive if and only if M is irreducible.

3. X is empty if and only if Mn is the zero matrix for some n ∈ N.

4. The number of configurations with period n ∈ N in X is the trace of Mn.

5. X has no periodic configuration if and only if for any n ∈ N, Mn has a diagonal
of 0s.
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6. X is empty if and only if it has no periodic configuration.

As a consequence, all of these properties are decidable, i.e., checkable by some com-
puter program that takes the matrix as input. Note that there are always periodic
configurations in every nonempty SFT (by the pigeon-hole principle, an infinite path
involves a loop).

Example 3.6 The one-border subshift, defined over alphabet B := {0, 1, 2} by the
forbidden family U := B2 \ {00, 01, 12, 22}, is represented below.

0
1

2

Its entropy is 0, since the number of patterns of length n is n+ 2. The corresponding
matrix is: [

1 1
0 1

]
.

It is not transitive: the left-lowest entry of all powers of M is always 0.

Example 3.7 The golden mean edge subshift, defined over alphabet B := {0, 1, 2}
by the forbidden family U := B2 \ {00, 01, 12, 20}, is represented by the graph below.

0

1

2

The corresponding matrix is: [
1 1
1 0

]
.

Its entropy is the logarithm of the highest eigenvalue: log 1+
√

5
2

(golden ratio). It is
transitive: all entries of M2 are positive.

The golden mean subshift, defined over alphabet A := {0, 1} by the forbidden
family U := {11}, can be represented by the graph below.

0

1

0

It is not an edge subshift, but is conjugate to the subshift above by the conjugacy
Φ : AZ → BZ defined by Φ(x)i = 2 if xi−1 = 1, xi otherwise, for every x ∈ AZ and

i ∈ Z. Like its conjugate, it is transitive and has entropy log 1+
√

5
2

.
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Label subshifts. A label subshift is the set of labels of biinfinite paths in a
labeled graph.

Proposition 3.4 The 1D sofic subshifts are exactly the label subshifts.

Said differently, 1D sofic subshifts are those whose language is regular, that is, recog-
nizable by a finite automaton: the labeled graph corresponds to an automaton where
no initial nor terminal state is distinguished, and the underlying graph corresponds
to that of a SFT that factors onto the given sofic subshift.

The results of the previous paragraph remain true for label subshifts (in particular,
it has the same entropy as a SFT that factors onto it), if we see it on a graph which
corresponds to the minimal automaton in some sense.

Example 3.8 The set of configurations over alphabet A := {0, 1} that have exactly
one 1 is shift-invariant but not closed.

The at-most-one subshift X, consisting of those configurations over alphabet
A := {0, 1} that have at most one 1, is sofic: it is the image of the border-one SFT
by the factor map Φ : BZ → AZ such that Φ(x)i = xi mod 2 for every x ∈ BZ and
i ∈ Z. Its entropy is 0, since it cannot be more than the SFT of which it is a factor.

0
1

0

Example 3.9 The even subshift is defined over alphabet A := {0, 1} as consisting
of those configurations which have an even number of 1s between two consecutive 0s. It
is sofic, as a factor of the golden mean edge subshift by the factor map Ψ : BZ → AZ

defined by Ψ(x)i = max(1, xi) for every x ∈ AZ and i ∈ Z. Observe moreover
that Ψ is one-to-one except in configuration . . . 11111 . . ., which has two preimages.
Consequently, the entropy is the same as that of the golden mean subshift : log 1+

√
5

2
.

0

1

1

3.4 2D subshifts

Example 3.10 The 2D at-most-one subshift X, consisting of those configura-
tions over alphabet A := {0, 1} that have at most one 1, is sofic. Its entropy is still
0: there are n+ 1 patterns of size n× n.
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Example 3.11 The 2D even subshift X, consisting of those configurations over
alphabet A := {0, 1} in which all connected components of 1s have even cardinality,
is sofic. The entropy is computable.

While, in dimension 1, dynamical notions could be studied thanks to graph the-
ory and linear algebra, in dimension 2, the relevant tool to shed light, instead, is
computability theory.

Theorem 3.1 ([8, 39])

1. There is a nonempty 2D SFT with no periodic configuration.

2. There is no algorithm deciding whether a 2D SFT is empty.

3. There is no algorithm deciding whether a 2D SFT admits a periodic configura-
tion.

Right-computable numbers. A real number x is right-computable if there is
an algorithm which, for any input n ∈ N, inputs a rational number xn, such that the
sequence (xn)n∈N decreases and converges to x. Note that one in general does not
know how far the approximation is from x (if one does, then the real number is called
computable).

Theorem 3.2 ([44]) A real number is the entropy of a 2D SFT if and only if it is
right-computable.

Projective subdynamics. The projective subdynamics of some 2D subshift X
is the 1D subshift of all colunns appearing in its configurations: τ(X) := {(x0,i)i∈Z|x ∈ X}.

Example 3.12 The signal mirror subshift consists of configurations where north-
est-going ”signals” are turned, by a horizontal ”mirror” state, into north-west ones.
It is a SFT (with order 2) but its projective subdynamics is not sofic: the intersection
of its language with the regular language 0∗ 0∗ is { 0n 0n |n ∈ N}, which is
known to be nonregular.
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Effective subshifts. A subshift X is effective if it can be written as the set{
x ∈ AZd

∣∣∣ ∀p @ x, p /∈ U
}

of configurations avoiding a computable forbidden family

U of patterns (i.e., described by some program). This class (strictly) includes SFT,
and actually sofic subshifts. Note that one in general cannot compute whether a
given pattern is in the language of X (all possible extensions of it might be forbidden
very late by the program).

Theorem 3.3 ([43, 30, 3]) A subshift is the factor of the projective subdynamics of
some 2D SFT if and only if it is effective.

Sofic subshifts are effective and have a strong constraint on how the number of
finite patterns grows. It is not known whether there exist non-sofic subshifts with
these two conditions.

Example 3.13 Consider the subshift X defined over alphabet B := {0, 1, 2} as the
set of configurations in which, in each column, there is at most one letter 2, and when
there is one, what appears below is a mirror of what appears above. This 2D subshift
is not sofic.

More links between multidimensional symbolic dynamics and computability can
be found in [77, 92, 48], as well as a nice survey in [47].



Chapter 4

Substitutions

4.1 Substitutions in dimension one

4.1.1 Definitions

We refer to [84] for this part. Consider a finite set A, then denote A∗ the set of finite
words defined over A. A substitution is a morphism σ of this monoid onto itself.

Fix a basis (e1 . . . ed) of Rd. There exists a map π from A∗ into Zd where d is the
cardinality of A given by:

π(w0 . . . wn) =
n∑
k=0

ewk
.

This allows to define a linear morphism of Zd which commutes with π, σ: The
morphism of Zd can be defined by a matrix Mσ, called the incidence matrix of the
substitution.

The substitution is said to be:

• primitive if there exists an integer k such that Mk
σ > 0.

• irreducible if the characteristic polynomial of Mσ is irreducible over Z.

• unimodular if det(Mσ) = ±1.

• Pisot if the dominant eigenvalue is a Pisot number.

The substitution acts on A∗ and it can be extended to an action on AN.
A fixed point of σ is an element of AN such that σ(u) = u. A periodic point

is an element such that σk(u) = u for some k > 0.
The language of a substitution is the set of finite words which appear as a

subword of some σn(a) where a ∈ A. The subshift associated to a substitution
is the set of sequences such that every subword appear in the language of σ. It
is denoted Xσ. We define S as the shift map which acts by left translation on
the sequences. Let σ be a substitution and u be a periodic point. Then we define
Xu = {Snu, n ∈ N}.

29
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Automaton

We refer to [84] or [1]. An automaton is a 5-uplet (Q,Σ, δ, q0, F ) where

• Q is a finite set of states.

• Σ is a finite set of symbols, called the alphabet.

• δ is a function Q× Σ→ Q, called the transition function.

• q0 ∈ Q is the start state.

• F is the set of states, called the accept states.

An automaton reads a finite word w = a1 . . . an with ai ∈ Σ and a run of the
automaton is a sequence of states q0 . . . qn such that qi = δ(qi−1, ai) for 0 < i ≤ n.
The word w is accepted if qn belongs to F .

Let k be an integer greatest or equal than one. One special class is given by the
k-automaton. It is a directed graph defined by

• A finite set of vertices called S, and one initial vertex called i.

• k oriented edges from S to S denoted 0 . . . k − 1.

• A set Y and a map φ from S to Y called the output function.

A sequence (un)n∈N is called k-automatic if we write n =
∑j

i=0 nik
i and starting

from the initial state we follow a path in the oriented graph defined by n0, . . . nj. At
this point we are at vertex a(n) and we have un = φ(a(n)).

Complexity

The complexity of an infinite word is the function p defined over N such that p(n)
is the number of different words of length n which appear the infinite word. Consider
a language and the set Ln of words of length n of this language. A word of Ln is said
to be right special if it admits several right expansions in a word of Ln+1. By the
same way we define a left special word. A word is bispecial if it is right and left
special. We denote s(n) = p(n+ 1)− p(n) for every integer n.

An infinite word is a sturmian word if the complexity of this word equals n+ 1
for every integer n. A substitution is a sturmian substitution if the image of every
sturmian word is a sturmian word.

Recognizability

Theorem 4.1 (Mosse) A substitution σ is aperiodic if and only if for every u ∈ Xσ,
there exists a unique integer k and an unique v ∈ Xσ such that Skσ(v) = u.



4.1. SUBSTITUTIONS IN DIMENSION ONE 31

Automaton of prefixes-suffixes, see [29] and [18].

Consider an aperiodic substitution. Let w ∈ Xσ, then there exists an unique
v ∈ Xσ and an unique k < |σ(v0)| such that w = Skσ(v). We define a map

θ :
Xσ → Xσ

w 7→ v

Then consider

P = {(p, a, s) ∈ A∗ ×A×A|∃b, σ(b) = p.a.s}

Now define the application γ : Xσ → P which sends w to (p, w0, s) such that
σ(θ(w)0) = p.w0s. The sequence γ(θi(w))i∈N is called the development in prefix-
suffixes. Then we define an automaton such that

• The set of states is A.

• The set of edges is P .

• There is an edge from a to b if σ(b) = p.a.s. The edge is labelled by (p, a, s).

4.1.2 Tilings

This part is related to Section 2, and these tilings can be seen as substitutive tilings
although the tiles are not polygons.

Projection and Rauzy fractal

We refer to [75] for the Tribonacci case and [86] for the seminal paper.

We restrict to a unitary Pisot substitution. Let us denote by He the expanding
line, by Hc the contracting hyperplane and by p the projection on Hc along He.

Rd = He ⊕Hc

Let u be a periodic point of σ. Then we define the Rauzy fractal:

R = {p ◦ π(u0 . . . un), n ∈ N}

Then for each i = 1 . . . d− 1 we define the tiles of the Rauzy fractal by:

Ri = {p ◦ π(u0 . . . un), un = i, n ∈ N}.

We refer to Figure 4.1 (left).
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Figure 4.1: Rauzy fractal (left) and stepped surface (right)

Dual substitution

We only consider the case of Tribonacci. We denote by (e1, e2, e3) the canonical basis
of R3, which we will represent as follows in the rest of these notes.

e1 e2

e3

Let x ∈ Z3 and let i ∈ {1, 2, 3}. The face [x, i]∗ of vector x and type i is a subset
of R3 defined by

[x, 1]∗ = {x + λe2 + µe3 : λ, µ ∈ [0, 1]} =

[x, 2]∗ = {x + λe1 + µe3 : λ, µ ∈ [0, 1]} =

[x, 3]∗ = {x + λe1 + µe2 : λ, µ ∈ [0, 1]} = .

First we define

E :


[x, 1]∗ 7→M−1

σ x + [0, 1]∗ ∪ [0, 2]∗ ∪ [0, 3]∗

[x, 2]∗ 7→M−1
σ x + [e3, 1]∗

[x, 3]∗ 7→M−1
σ x + [e3, 2]∗.

Now consider the set F of all the faces. Then we extend E to F by declaring
that the image of a union of faces is the union of the images of these faces (the
multiplicities of faces add up). Now consider U = [0, 1]∗ ∪ [0, 2]∗ ∪ [0, 3]∗. We define
the stepped surface as

Hc = lim
n∈N

En(U).

We define a tiling of Hc, see Figure 4.1 (right), by

{p([0, i]∗) + p(x) : x ∈ Z3, 0 ≤ 〈x,vβ〉 < 〈ei,vβ〉, i ∈ {1, 2, 3}}.
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4.1.3 Dynamical properties

Definitions

We refer to [85]. We define the dynamical system associated to a substitution as
the action of S on Xσ, equipped with the product topology. Recall that a dynamical
system is minimal if every orbit is dense. An invariant measure µ is a measure on
X such that µ(A) = µ(S−1A) for every set A. It is uniquely ergodic if there exists
only one invariant measure for the action of S. Consider the Koopman operator

U : L2(Xu, µ) 7→ L2(Xu, µ)

f :→ f ◦ S

A function f ∈ L2(X,µ) is an eigenfunction if there exists a complex number λ such
that Uf = λf . The set of eigenvalues form a countable subgroup of S1. Now consider
V = < eigenfunctions >, this is the spectrum.

• If V = L2, then we speak of discrete spectrum.

• If V = {Const} we speak of continuous spectrum.

• If not, then we speak of mixed spectrum.

A map is mixing if it has non constant eigenfunctions. A map if weak mixing
if every eigenfunction is constant almost everywhere.

A measure is ergodic if S−1A = A implies µ(A) = 0 or µ(cA) = 0. If there is
only one invariant measure, the system is said to be uniquely ergodic.

The spectral measure of a function f ∈ L2 is the measure µf ⊂ S1 such that
< f ◦ Sn, f >=

∫
zndµf .

Perron Frobenius theory

Let F be an element of MN(N). We associate a graph with N vertices, and edge
from i to j if Fi,j > 0. A matrix F is called irreducible if one of the following
properties holds:

• F does not have non-trivial invariant coordinate subspace.

• For every pair of indices i, j, there exists m such that (Fm)i,j 6= 0.

• The graph associated to F is strongly connected.

Consider a matrix F with non negative coefficients. We define an equivalence
relation by i ∼ j if i = j or if there are two paths in the graph: one from i to j and
one from j to i. The equivalence classes of the graph are denoted E1, . . . , Em.

Let us denote these irreducible component Fα. The class β has access to the
class α if β = α or there is a path from a vertex in the class Eβ to the class Eα. We
write β > α if β has access to α but α 6= β. Let us denote λα the spectral radius of
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Fα. Let us define hαthe number of eigenvalues of Fα of modulus λα. It is the index
of imprimitivity. Remark that the matrix is primitive iff hi = 1. An irreducible
component is distinguished if λα > λβ for every class β > α. A real numberλ is a
distinguished eigenvalue if there exists a non negative eigenvector with Fx = λx.

We define C(F, q), for an integer q, as the cone generated by the distinguished
eigenvectors of F q and

Core(F ) =
⋂
k≥1

F k(RN
+ ).

In the exercises, the link with ergodic properties will be done.

4.1.4 List of classical examples{
0→ 01

1→ 0

{
0→ 01

1→ 10


0→ 01

1→ 02

2→ 0

{
0→ 0010

1→ 1

Fibonacci Thue−Morse Tribonacci Chacon

4.2 Substitutive tilings

For this part, the most important reference is [87].

4.2.1 Tiling

We recall some definitions on tilings. This part is close to some other chapters.
Consider a finite number of polytopes P1, . . . , Pk in Rd. A tiling of Rd is the given

of ⋃
i

Ti = Rd

such that each Ti is a polytope translated from some Pj. The intersections of two
polytopes Pi either empty or a face of the polytope. There Pi are called tiles of the
tiling, and Pi is a prototile. The tiling is said to be based on the set of prototiles.

There are three classes of tilings which have been studied:

• Tilings by cut and projection: see Chapter 6.

• Tilings by local rules.

• Tilings by substitution.

Here we study the last one and some link with the second one.
A tiling T is said to be non periodic if we cannot find u ∈ Rd such that u+T = T .

A tiling is said to be strongly aperiodic if it is aperiodic and we can not find a
periodic tiling based on the same prototiles.
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Example 4.1 Consider one square and two right triangles which cut the square.
Now consider a periodic tiling of the plane by the square. With probability 1

2
, cut a

square in two triangles. We obtained a tiling. Almost every tiling obtained by this
way is non periodic. Nevertheless it is not a strongly aperiodic tiling.

An open question is: Can we find one tile in R2 such that every tiling based on
this tile is aperiodic. This problem is called the Einstein problem.

Let r > 0, and T a tiling of Rd. A patch of size r is the union of tiles included
in a ball of radius r. Two patches are equivalent if there exists a translation which
maps each tile of one to a tile of the other patch. It allows to define the notion of
protopatch.

Remark 4.1 In some example we add some labels on the tiles. This label allow to
distinguish two polygons of the same shape and to simplify the examples. For example
we can consider the tilings made by one white square and one black square.

Let P1 . . . Pk be some polytopes in Rd. We will define a subset of all the tilings
based on these prototiles. Consider a finite set F of patches made upon these pro-
totiles. A subshift of finite type is the set of tilings T based on these prototiles
such that no patch of T belongs to F .

4.2.2 Substitutive tiling

Definitions

Let P1, . . . , Pk be some polytopes and ϕ : Rd → Rd be a linear map with all eigenvalues
bigger than one. A tile substitution is the given of a map Ω defined as follow:

• For a prototile Pi, Ω(Pi) is a patch which can be tiled by the prototiles. In
other words for every integer 1 ≤ i ≤ k there exists a finite set Ji and vectors
ti,j ∈ Rd such that

Ω(Ti) =
⋃
j∈Ji

(Tj + ti,j).

• For a tile translated by x we set Ω(Pi + x) = ϕ(x) + Ω(Pi).

• Finally for a patch P we define Ω(P ) =
⋃
T∈P Ω(T ).

A fixed point of Ω is called a substitutive tiling. If ϕ is given for d = 2 by a
similarity we speak of self-similar tiling.

Denote by M ∈ Md(N) be the incidence matrix defined by Mi,j = card{j ∈
Ji, ti,j 6= 0}.

The tiling is said to be primitive if M is a primitive matrix. We denote by θ the
Perron eigenvalue of M . The number det(ϕ) is called the expansion of the tiling.

Proposition 4.1 For every primitive tile substation, there exists n such that Ωn

admits a fixed point.
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A tiling space associated to a substitutive tiling T is the set of tilings Q such that
every patch of Q is a patch of T . We denote it XT .

Example 4.2 Consider two rectangles and the substitution defined by

The incidence matrix is

(
4 4
2 2

)
and the map ϕ has matrix

(
3 0
0 2

)
.

Rectangles and link with substitutions

One easy way to define a substitution is to use squares. The first reference is Mozes.
Here is an example:

a
b

b
b

b b
bba

a

Consider now two substitutions σ, η of constant length on a two letters alphabet.
It is easy to define a substitutive tiling. Define the image of the square a by a rectangle
of size the lengths of the substitutions. The first line is made by the images of a by
σ, and the column are the image by η of the letters of σ(a). These substitutions are
called direct product substitutions.

4.2.3 Expansion

Theorem 4.2 (Solomyak) If M is a primitive matrix, then θ is equal to |det(φ)|.
Moreover the left eigenvector of A asociated to θ gives the volume of the prototiles.

Theorem 4.3 (Lind) [70] The set of expansive factors of all substitutive tilings of
R is in bijection with the set of Perron numbers.

In R2 we have the following result:

Theorem 4.4 (Thurston,Kenyon-Solomyak) [99] Given the complex number λ,

• If there exists a substitutive tiling of the plane with expansion λ then λ is a
complex Perron number.

• If λ is a complex Perron number, then there exists a self similar tiling with
expansion λk for some integer k.

A complex Perron number is a algebraic number such that all algebraic conjugates,
other than its complex conjugates, have a strictly less modulus. In this theorem the
tiles can be fractal sets, but they always are equal to the closure of its interior. Some
generalization in Rd have been made by Kenyon and Solomyak [59].
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4.2.4 Dynamics

First of all we make one remark: If the tiles are hypercubes, then we can consider
Zd action. In this case we refer to Chapter 3. We can also consider Rd action by
translation. To study this dynamics we need to introduce a metric on the space of
tilings.

Metric on the space

Consider a tiling T0 and the set of tilings based upon the same prototiles XT .

Definition 4.1 We define a metric on this space by the following formula where x, y
are two tilings, and x[[K]] is the collection of patches x′ of x such that K ⊂ supp(x′).

d(x, y) = inf{
√

2/2} ∪ {0 < r <
√

2/2,∃x′ ∈ x[[B 1
r
]], y′ ∈ y[[B 1

r
]], g ∈ Br, gx

′ = y′}.

Two tilings are closed if, up to a small translation, they coincide on a big patch.

Proposition 4.2 (Rudolph, Radin-Wolff) We have:

• The map d is a metric.

• The space (XT , d) is a complete space.

• The map T 7→ u.T is continuous for every u ∈ Rd.

• If T is a FLC tiling, then the space is compact.

Dynamical results

We refer to the notes of Solomyak [94].

Theorem 4.5 (Pragastis, Solomyak) Let T be a substitutive tiling, then the map
Ω : XT → XT is surjective. It is injective if and only if T is aperiodic.

Theorem 4.6 (Pragastis, Solomyak) If the substitution is primitive, then XT is
non empty and (XT ,Rd) is minimal and uniquely ergodic.

As in the first part we could also look at the eigenvalues. A vector is an eigenvalue
α ∈ Rd if there exists f ∈ L2(XT , µ) such that for every t ∈ Rd we have for almost
every Q

f(t.Q) = e2iπ<α.t>f(Q)

If we exchange the condition f ∈ L2 with f is continuous we speak of continuous
eigenvalues. They have been characterized by Solomyak [95].
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4.2.5 Link between different types of tilings

Cut and project tiling and substitutive tilings

There exists a link between cut and project tiling and the substitutive tilings.
A quadratic expansion matrix is a matrix M of Mn(N) such that

• Rn = E ⊕ F ⊕R

• Each space is stable by M .

• dimE = dimF

• The restriction of M to E is similar to λId.

• The restriction of M to F is similar to ±λ−1Id.

• The space R is rational: R ∩ Zn is a lattice with a rank equal to dimR.

• E ∩ Zn = F ∩ Zn = {0}.

Remark that the conditions force λ to be a quadratic unit.

Theorem 4.7 (Harris) A canonical projection tiling is a substitutive tiling if and
only if E,F are the eigenspaces of a quadratic expansion matrix with the vertex hier-
archy property.

The vertex hierarchy property is a technical assumption, always checked if R = 0.

Example 4.3 Exemple of the Penrose substitution: The two tiles (up to rotation)
and the substitution are given on the following figure, where the triangles are marked.

SFT tilings and substitutive tilings

Consider two tilings spaces X, Y . A factor map is a continuous map Q : Y → X
which is surjective and such that Q(t+y) = t+Q(y) for all t ∈ Rd, y ∈ Y . A factor is
said to be almost one to one if there exists x ∈ X such that Q−1(x) is of cardinal
one.

Theorem 4.8 (Goodman-Strauss) [38] Consider a substitutive tiling space X based
on prototiles T . Then there exists a marking Q → T and a subshift of finite type Y
based on Q which is a factor of X for the forgetful mapping.



Chapter 5

Cellular Automata

5.1 Turing machines and computability

A Turing machine is a dynamical system that acts on 1-dimensional configurations
through a “head” that spots some position on the configuration and which can:

• read the content of the configuration at the current position;

• change the content of the configuration at the current position;

• move to an adjacent position.

Moreover, all these actions are prescribed by a finite automaton, i.e. a finite-
memory program. Finally, when using Turing machines to define computability, we
are only interested into B-finite configuration, i.e. configurations which are every-
where equal to some special symbol B, except on a finite part where they are filled
with letters from some alphabet A.

Definition 5.1 A Turing machine is a 5-uple
(
A, B,Q, qi, qf , δ

)
where:

• B 6∈ A is the blank symbol;

• Q is the finite set of states;

• qi ∈ Q is the initial state;

• qf ∈ Q is the final state;

• δ : A×Q→ A×Q× {−1, 0, 1} is the transition map.

A global state of the machine is a triple (c, i, q) where c is a B-finite configuration,
i ∈ Z is the position of the head, and q ∈ Q is the current state.

The image of a global state (c, i, q) by the machine is the global state (c′, i +m, q′)
where

c′(i′) =

{
a if i′ = i

c(i′) else.

39
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and (q′, a,m) = δ(q, c(i)).
A run of the machine on a global state (c, i, q) is the sequence of global states(

(cn, in, qn)
)
n∈N such that (c0, i0, q0) = (c, i, q) and (cn+1, in+1, qn+1) is the image by

the machine of (cn, in, qn), for all n ≥ 0.

The above definition describes Turing machine as dynamical systems that act on
global states. We are now interested in defining a partial map from finite words to
finite words associated to a Turing machine. The idea is to start a run of the machine
from a B-finite configuration containing the word and consider the two cases:

• either the state qf is reached at some point in the run and we consider that the
computation halts, and has produced as result the finite word contained in the
B-finite configuration at that time and pointed by the head;

• or the state qf is never reached and we consider that the computation doesn’t
halt and has produced no result.

Example. Let A = { , } with B = and Q = {0, 1, 2, 3, 4, 5, 6} with qi = 0 and
qf = 6.

time 0

time 1

time 2

time 3

time 4

time 5

time 6

time 7

time 8

time 9

time 10

time 11

time 12

time 13

time 14

time 15

time 16

time 17

time 18

time 19

3

0

2

2

4

1

3

1

3

3

2

2

2

4

1

3

3

2

4

3

A Q A Q move
0 1 →
0 4 ←
1 2 →
1 5 →
2 3 ←
2 1 →
3 4 →
3 2 ←
4 0 ←
4 3 →
5 6 →
5 2 →
6 6 ←
6 6 ←

Definition 5.2 Given a Turing machine M =
(
A, B,Q, qi, qf , δ

)
, we define a partial

map on finite words φM : DM ⊆ A∗ → A∗ in the following way. For u ∈ A∗, let cu
be the B-finite configuration

cu(i) =

{
ui if 0 ≤ i < |u|
B else.

Consider the run
(
cn, in, qn

)
n∈N of M starting from the global state (c0, i0, q0) = (cu, 0, qi).

There are two cases:



5.1. TURING MACHINES AND COMPUTABILITY 41

• either qn 6= qf for all n and then φM is undefined on u, i.e. u 6∈ DM ;

• or, for some n, qn = qf and qm 6= qf if m < n; then we define φM(u) as the
empty word if c(in) = B, and else,

φM(u) = cn(in) · · · cn(in + k − 1)

where k ≥ 0 is the minimal integer such that cn(in + k) = B.

So to any Turing machine M we associate a (partial) map φM on finite words on
the alphabet A of the machine. Now given some partial map φ : D ⊆ A∗ → A∗, we
say that it is computable if there is some machine M with D = DM and φM = φ.

More generally, any partial map φ from A∗1 to A∗2 is computable if there is some
Turing machine M over some alphabet A′ containing both A1 and A2 such that the
restriction of φM to A∗1 is exactly φ.

Definition 5.3 Given some alphabet A and some set of finite words L ⊆ A∗, often
called a language, we say that L is decidable if its characteristic function φ : A∗ → {0, 1}
( i.e. φ(u) = 1 for u ∈ L and φ(u) = 0 for u 6∈ L) is computable.

Like for any family of finitely describable objects, we can fix a simple encoding of
Turing machines into finite words over alphabet {0, 1} in a straightforward way: if we
adopt the convention that any alphabet is a subset of integers, then each component
of the 5-uple defining a Turing machine is either an integer, or a list of integer (the
alphabet), or a list of 5-uples of integers (the transition rule). The details of the
particular encoding we choose don’t matter. We is important however, is that basic
operations on Turing machines correspond to computable maps over their encoding.
There is a rigorous way of presenting this through the notion of admissible numbering
systems [88] that we skip here.

From now, we identify a Turing machine M with its encoding over {0, 1} so that
M ∈ {0, 1}∗.

Theorem 5.1 (Undecidability of halting problem) Let L be the set of Turing
machines M such that φM is well-defined on the empty word. Then L is undecidable.

Going back to the example of Turing machine given earlier, here are some config-
urations reached after many steps starting from the empty word:
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time 700

time 785 3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3

2

2

1

3

2

2

1

3

5

4

2

2

3

0

3

1

2

2

4

4

5

3

1

3

3

0

2

2

2

2

4

4

1

3

1

3

3

0

2

2

2

4

4

1

3

3

0

2

4

4

3

0
4
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(Long) Exercise. Show that this machine halts on the empty word, but only after
more than 1036534 steps (note: machine found by Pavel Kropitz in 2010 ).

Theorem 5.2 (Rice theorem) Let P be a property of partial maps from finite
words to finite words. Suppose that P is non-trivial for computable maps, i.e there is
a computable map having property P, and also a computable map not having property
P. Let L be the set of Turing machines M such that φM has property P. Then L is
undecidable.

5.2 Definition of cellular automata

Definition 5.4 A cellular automaton of dimension d and alphabet A is a map
F : AZd → AZd

defined by a finite set called neighborhood U ⊆ Zd and a local tran-
sition map f : AU → A in the following way:

F (x)(i) = f(x|i+U)

Example. In dimension d = 1, with A = {0, 1}, let U = {−1, 0} and f such that
f(a, b) = a+ b mod 2. Then an example of evolution of the cellular automaton F
given by these specifications is:

x
F (x)
F 2(x)
F 3(x)
F 4(x)
F 5(x)
F 6(x)
F 7(x)
F 8(x)

0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1

0
1
0
1
0
1
0
1
0

0
0
1
1
0
0
1
1
0

0
0
0
1
0
0
0
1
0

0
0
0
0
1
1
1
1
0

0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0

From the definition above, it appears that a d-dimensional cellular automaton is
two things at the same time:

• a dynamical system, i.e. a global map F acting on infinite configurations;

• a finite description of it given by (A,U, f) i.e. dimension, alphabet, neighbor-
hood, transition map.

Of course different descriptions can correspond to the same dynamical system. In
general, we are interested in properties of the dynamical systems and only mention
the map F . The Curtis-Lyndon-Hedlund theorem [42] can serve as an alternative
definition of cellular automata that doesn’t mention the finite description.

For each i ∈ Zd we define the map Si : AZd → AZd
by

Si(x)(j) = x(i− j)
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Theorem 5.3 (Curtis-Lyondon-Hedlun, [42]) A map F : AZd → AZd
is a cellu-

lar automaton if and only if it satisfies the two following conditions:

1. it is continuous (Cantor topology);

2. Si ◦ F = F ◦Si for any i ∈ Zd

Corollary 5.1 If a cellular automaton F is a bijection, then its inverse F−1 is also
a cellular automaton. We call such a F a reversible cellular automaton.

5.3 Garden of Eden theorem

wo configuration x and y are said asymptotically equal, denoted x
∞
= y, if they differ

only on a finite set, i.e. if the set {i : x(i) 6= y(i)} is finite.

Definition 5.5 A cellular automaton F is pre-injective if, for any pair of configu-
ration x

∞
= y, we have

x 6= y ⇒ F (x) 6= F (y)

Theorem 5.4 (Moore-Myhill,[76, 78]) A cellular automaton F is surjective if
and only if it is pre-injective

Corollary 5.2 All injective cellular automata are surjective.

5.4 First order theory

Surjectivity or injectivity are properties than can be expressed as a first-order formula
using the global map F and quantifying over configurations:

• surjectivity: ∀y,∃x : F (x) = y

• injectivity: ∀x,∀y : F (x) = F (y)⇒ x = y

We can consider all possible first-order formulas, but let’s add two more examples:

• constant: ∀x,∀y : F (x) = F (y)

• fixed-point: ∃x : F (x) = x

When we are interested in decision problems, we are usually given as input the
finite description (A,U, f) and must determine from that if the cellular automaton
has some property or not.

Formally, if prop is some property (about cellular automata), then we define the
decision problem PB-prop by:

• input: a finite description of cellular automaton (A,U, f)
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• question: does the global map F associated to this finite description have the
property prop?

In any dimension d, the problem PB-constant is easy.
Fixed-points of cellular automata are exactly the same sets as subshifts of finite

type.

Proposition 5.1 Let d be a fixed dimension. It holds:

1. if X is a d-dimensional subshift of finite type, then there is a cellular automaton
F with:

X = {x : F (x) = x}.

2. if F is a d-dimensional cellular automaton, then the set {x : F (x) = x} is a
d-dimensional subshift of finite type.

Corollary 5.3 The problem PB-fixed-point is undecidable in dimension d ≥ 2
and decidable in dimension 1.

When we consider first-order properties, we can expect to have undecidability in
dimension d ≥ 2 for a lot of properties due to the possibility of encoding tile sets
in the cellular automaton. Not all properties are undecidable in dimension d ≥ 2
though (e.g. PB-constant).

On the contrary, for dimension 1, there is a tool that allows to decide any first-
order property: Büchi automata. Their are finite automata recognizing semi-infinite
words (i.e. elements of AN).

Definition 5.6 A Büchi automaton is a 5-uple (A, Q, q0, F, δ) where

• A is the alphabet;

• Q is the set of states;

• qi ∈ Q is the initial state;

• F ⊆ Q is the set of accepting states;

• δ : A×Q→ 2Q is the (non-deterministic) transition map.

Given a semi-infinite word ω ∈ AN, a run of the automaton over ω is a sequence
of states (qn)n∈N such that q0 = qi and, for any n ∈ N, qn+1 ∈ δ(wn, qn).

We say that the word ω is accepted by the automaton if there exists a valid run
(qn)n∈N and an accepting state qf ∈ F that occurs infinitely many times in the run,
i.e.

{n : qn = qf} is infinite.

The language accepted by the automaton is the set of all accepted (semi-infinite)
words.
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For a modern exposition of the theory of automata on infinite words in general,
and the following theorem in particular, see [82].

Theorem 5.5 (J. R. Büchi, [17])

1. it is decidable to know whether a given Büchi automaton accepts a non empty
language.

2. for any Büchi automaton accepting some language, there exists a Büchi au-
tomaton accepting exactly the complement.

The following theorem was first proved by K. Sutner [97], then extended by O.
Finkel [34].

Theorem 5.6 For any first-order property prop, the problem PB-prop is decidable
in dimension d = 1.

Going back to dimension at least 2, two other important first-order properties are
known to be undecidable and thus show a complexity gap between dimensions 1 and
2.

Theorem 5.7 (J. Kari, [54]) The problems PB-surjectivity and PB-injectivity
are both undecidable in dimension d ≥ 2.

5.5 Topological dynamics

For a survey of topological dynamics of cellular automata, see [65]. Here we will just
consider some long-term dynamical properties, as opposed to the “one-step” kind of
properties of the previous section.

Definition 5.7 The limit set of a cellular automaton F is the set:

ΩF =
⋂
t

F t
(
AZd)

Proposition 5.2 ΩF is the set of configuration with an “ infinite history”, i.e. x ∈ ΩF

if and only if there is a an infinite sequence (xn)n∈N such that x0 = x and F (xn+1) = xn.

To any d-dimensional cellular automaton F given by the local description (A,U, f)
we can associate the (d+ 1)-dimensional subshift of finite type XF defined by:

x ∈ XF ⇔ ∀i ∈ Zd, x
(
i + (0, . . . , 0, 1)

)
= f(x|i+U0)

where U0 = {(u1, . . . , ud, 0) : (u1, . . . , ud) ∈ U}.
In Zd+1, for any t ∈ Z the t-slice, denoted St, is the set of positions i ∈ Zd+1

whose ultimate coordinate is t.
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Proposition 5.3 x ∈ XF if and only if for any t ∈ Z:

• x|St ∈ ΩF ;

• x|St+1 = F
(
x|St

)
.

The special case ΩF = AZd
is equivalent to surjectivity of F . In that case, XF

contains all the possible orbits of the dynamical system F . In the general case (non-
surjectivity), this is not true.

Note that ΩF is never empty, so, at the extreme opposite of surjectivity (ΩF is
the full space), we have nilpotency : ΩF is a singleton.

Proposition 5.4 F is nilpotent if and only if there is some t such that F t is a
constant map.

A property of limit sets is a property such that if two cellular automata with
the same limit set, then either both or none have the property. Nilpotency is a
property of the limit set. Note that surjectivity is not: AZd

can be the limit set
of a surjective cellular automaton of alphabet A or the limit set of a non-surjective
cellular automaton with an alphabet strictly bigger than A.

Theorem 5.8 (J. Kari, [52]) For any dimension d the problem PB-nilpotency
is undecidable.

A property of limit sets is non trivial if there is a cellular automaton that verifies
the property and another that do not verify the property.

Theorem 5.9 (J. Kari, [53]) For any dimension d, any non-trivial property of
limit sets is undecidable.

5.6 Ergodic dynamics

In this section we consider only dimension 1.
We denote byM(AZd

) the set of Borel probability measures onAZd
. By Carathéodory

extension theorem, Borel probability measures are characterized by their value on
cylinders whose domain is an interval. Therefore a measure is given by a function µ
from cylinders to the real interval [0, 1] such that

1. µ(AZd
) = 1 and

2. for all pattern p : U→ A with U an interval, we have:∑
a∈A

µ([p · a]) =
∑
a∈A

µ([a · p]) = µ([p])

where p · a and a · p are the patterns extending p one cell to the right or to the
left (respectively) and taking value a on that new cell.
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A measure µ is said to have full support if for every pattern p we have µ([p]) > 0.
A measure µ is said to be translation invariant if for any measurable set E and

any i we have µ(E) = µ(Si(E)).
The uniform measure µ0 is defined on any cylinder [p] of domain U by:

µ0([p]) = |A|−|U|.

More generally a Bernoulli measure is a product measure, i.e. a measure defined
by a probability vector (πa)a∈A over the alphabet and extended to any cylinder p of
domain U by product:

µ([p]) =
∏
i∈U

(
πp(i)

)
.

Given a measure µ and a cellular automaton F , we define the measure Fµ by:

Fµ([p]) = µ
(
F−1([p])

)
.

Theorem 5.10 A cellular automaton F is surjective if and only if it preserves the
uniform measure: Fµ0 = µ0.

One thing we are interested in is the sequence of measures
(
F tµ

)
t∈N starting from

a given initial measure µ. In particular, what is the evolution of the probability of a
given pattern.

Theorem 5.11 (D. Lind, [71]) There exists a cellular automaton F , such that, for
any Bernoulli measure µ of full support, we have:

1

T

∑
1≤t≤T

F tµ→T µ0.

At the opposite, we can have for some cellular automata that the sequence(
F tµ

)
t∈N does not converge to the uniform measure µ0, even when started from

µ = µ0. We say that a pattern p disappears for µ if

F tµ([p])→t 0.

If a pattern does not disappear, we say it is µ-persistent.

Definition 5.8 Given a cellular automaton F and a measure µ, the µ-limit set of
F is the subshift ΩF,µ made of configurations containing only µ-persistent patterns.

We say that a CA is µ-nilpotent if ΩF,µ is a singleton.

Theorem 5.12 (Boyer-Poupet-Theyssier, [11]) The problem PB-µ-nilpotency
is undecidable.

Theorem 5.13 (M. Delacourt, [26]) Let prop be any non-trivial property of µ0-
limit sets (where µ0 is the uniform measure), i.e. there is a cellular automaton F1

such that ΩF1,µ0 has the property and another cellular automaton F2 such that ΩF2,µ0

doesn’t have the property. Then PB-prop is undecidable.



Chapter 6

Cut and Projection

6.1 Planar tilings

Cut and projection is one of the main ways to obtain non-periodic tilings. We here
focus on canonical cut and projection. Here is the simplest case:

1. in the Euclidean plane, consider a line D such that D ∩ Z2 = ∅;

2. translate the unit square along D to obtain the “slice” D + [0, 1]2;

3. select (cut) all the unit segments of Z2 that lies within this slice;

4. project these unit segments orthogonally onto D.

This yields a tiling of D by projections of horizontal and vertical unit segments of
Z2 (see Fig. 6.1). The tiling is aperiodic if and only if D is irrational, and seen as a
two-letter sequence it is then a Sturmian word.

Figure 6.1: The canonical cut and project method in the 2→ 1 case.

49
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In other terms, we cut a two-dimensional space (the Euclidean plane) by a one-
dimensional affine space (the line D). The obtained tiling is therefore called a planar
2→ 1 tiling. This extends to higher dimensions:

Definition 6.1 (Planar tiling) Let E be a d-dimensional affine space in Rn such
that E ∩ Zn = ∅. Select the d-dimensional faces of the unit hypercubes of Zn lying in
E + [0, 1]n and project them orthogonally onto E. This yields a tiling of E and, by
identifying E with Rd, a so-called planar n→ d tiling.1

The space E is called the slope or strain of the tiling. The cases of planar 3→ 1
tilings (billard words) and planar 3→ 2 tilings (discrete planes) are rather intuitive,
but this holds in any dimensions (see, e.g., Fig. 6.2, right).

6.2 Dualization of multigrids

Definition 6.2 (Multigrid) The multigrid with shifts s1, . . . , sn in R and grid vec-
tors ~v1, . . . , ~vn in Rd is the set of n families of equally spaced parallel hyperplanes

Hi := {~x ∈ Rd | 〈~x|~vi〉+ si ∈ Z},

where at most d hyperplanes are assumed to intersect in a point (this is generic).

Such a multigrid divides Rd into cells. Its dualization is obtained by associating
with each cell a vertex in Rd and connecting vertices associated with adjacent cells,
with the vertices corresponding to two cells adjacent along a hyperplane inHi differing
by ~vi. This yields a tiling of Rd (see Fig. 6.2). Introduced in [24], this method has
been proven to be equivalent to the canonical cut and projection method:

Theorem 6.1 ([40]) Multigrid dualizations are planar tilings, and conversely.

One can moreover explicitly swap between the two methods. The planar tiling
obtained by cut and projection from a d-dimensional affine plane E is indeed obtained
(up to the identification of E with Rd) by the dualization of the multigrid whose
hyperplanes are the intersection of E with

Gi := {~x ∈ Rn | 〈~x|~ei〉 ∈ Z}.

Thus, if E is generated by d orthonormal vectors of Rn, with uij being the j-th entry
of the i-th vector, then the i-th entry of the j-th grid vector is uij divided by

∑
i u

2
ij

(which is not necessarily equal to one: mind the summation indice).

1In order to get a tiling of Rd, the identification of E with Rd must map the orthogonal projections
onto E of the standard basis of Rn onto vectors such that the skew product of any d vectors has the
same sign as the skew product of their images.
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Figure 6.2: A multigrid with four line families (left) and the dual planar 4→ 2 tiling
(right). The intersections on the black (resp. dark grey) thick line (left) correspond to
the black (resp. dark grey) tiles (right). The shaded octagonal cell (left) corresponds
to the shaded vertex of degree 8 (right).

6.3 Grassmann coordinates

It is sometimes convenient to express the slope of a planar tiling in terms of Grass-
mann coordinates (see, e.g., [45], chap. 7, for a detailed account).

Definition 6.3 (Grassmann coordinates) Let E be a d-dimensional vector space
of Rn generated by ~u1, . . . , ~ud. Its Grassmann coordinates are the d×d minors of the
n× d matrix whose i-th column is ~ui.

In codimension 1, (d = n−1), Grassmann coordinates just form the normal vector
of E. They are unique up to a common multiplicative factor. A non-zero

(
n
d

)
-tuple

(Gi1,...,id) of real numbers are the Grassmann coordinates of some vector space if and
only if they satisfy, for any 1 ≤ k ≤ n and any two d-tuples of indices, the so-called
Plücker relation:

Gi1,...,idGj1,...,jd =
d∑
l=1

Gi1,...,idGj1,...,jd︸ ︷︷ ︸
swap ik and jl

.

Actually, up to a renormalization, |Gi1,...,id | gives the proportion of tiles generated by
~vi1 , . . . ~vid in the planar tilings of slope E, where ~vi is the orthogonal projection on E
of the i-th vector of the standard basis of Rn.
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6.4 Patterns

A pattern of a tiling is a finite subset of the tiles of this tiling. A pattern formed by
the tiles which intersect a closed ball of radius r is called a r-map. The set of r-maps
of a tiling is called its r-atlas. The notion of window is useful to study patterns:

Definition 6.4 (Window) The window of a planar n → d tiling with slope E is
the compact set obtained by orthogonally projecting E + [0, 1]n on E⊥.

For example, any planar tiling can be recovered from the projection ~x of a point
of Zn in its window. Let indeed ~ei denotes the i-th vector of the standard basis
of Rn and πE (resp. πE⊥) the orthogonal projection onto E (resp. E⊥). We then
simply proceed edge by edge starting from ~x: any jump by πE⊥(~ei) in the window
corresponds to a jump by ~ei in the slice E + [0, 1]n, that is, by definition, to an edge
of the tiling directed by πE(~ei).

Further, one can associate with any pattern P of a planar tiling of slope E a region
of its window, such that whenever the orthogonal projection onto E⊥ of a vertex of
Zn falls into this region, its orthogonal projection onto E falls into a pattern equal
to P up to a translation. This is indeed the (polygonal) region starting from which
any sequence of jumps corresponding to an edge path of P leads to a point in the
window. This is used to compute the (asymptotic) complexity of planar tilings:

Theorem 6.2 ([50]) Generic planar n→ d tilings have an r-atlas of size Θ(rd(n−d)).

Planar tilings are moreover repetitive, that is, whenever a pattern occurs some-
where, it reoccurs at uniformly bounded distance from any point. Even better, pat-
terns have frequencies. Formally, denote by W the closure of πE(Zn) in the window
and by µ the Lebesgue measure on W . Then, for any measurable subset S of W and
any ~y ∈ Rn:

lim
r→∞

Card{~x ∈ Zn ∩B(~y, r) | πE⊥(~x) ∈ S}
Card{~x ∈ Zn ∩B(~y, r) | πE⊥(~x) ∈ W}

= µ(S),

where B(~y, r) is the ball of center ~y and radius r. In particular, if S is the region
associated with a pattern, then µ(S) is the frequency of this pattern. By looking how
the set W changes by modifying the slope, we can also prove

Proposition 6.1 ([67, 69]) If two planar tilings have parallel slopes which belong
to the same rational subspace, then they have the same finite patterns.

6.5 Local rules

Planar n → d tilings (Def. 6.1) are specific tilings of Rd by
(
n
d

)
tiles. But there are

many other tilings of Rd by the same tiles: those are called n→ d tilings. The lift of
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D
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B

C

D

Figure 6.3: The projections of the standard basis of Rn on E (top-right) and E⊥ (top-
left) are used to associate with any pattern of a planar tiling of slope E (bottom-right)
a polygonal regions in the window (bottom-left, shaded).

such a tiling is the d-dimensional surface of Rn obtained by mapping the n vectors
which define the edges of the tiles onto the standard basis of Rn (the lift is unique up to
a translation). The planar tilings are exactly those whose lift lies in a slice E+[0, 1]n.

A question raised by the study of quasicrystals is to characterize, among the
planar tilings, those characterized only by local constraints. Planar tilings are indeed
commonly used to model the long-range order of quasicrystals, and the above question
is related to how finite range interactions can stabilize quasicrystals. Formally, we
follow [69]:

Definition 6.5 (Local rules) A planar n→ d tiling of slope E is said to have local
rules of thickness t and diameter r if any n→ d tiling whose r-atlas is less or equal
(for inclusion) has a lift which lies in the slice E + [0, t]n.

In dynamical terms, local rules define a tiling space of finite type, whose tilings
are “almost” planar with the same slope E. Local rules are said do be strong if they
have thickness t = 1, weak otherwise. Strong local rules are said to be perfect if they
define tilings which have all the same finite patterns, that is, a minimal tiling space.

6.6 Sufficient conditions

We are here interested in sufficient condition on the slope of a planar tiling for having
local rules. The easiest case is the one of rational slopes:
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Proposition 6.2 Any rational planar tiling has perfect local rules.

Indeed, such a tiling is made of a fundamental pattern repeated along a lattice,
and local rules whose diameter is some times larger than this fundamental pattern
shall enforce it to repeat as in along this lattice. Irrational cases are more challenging.
A celebrated example are Penrose tilings (Fig. 6.4 and 6.5):

Definition 6.6 (Penrose tiling) A Penrose tiling is a planar 5 → 2 tiling whose
slope is parallel to the plane generated by (cos(2kπ

5
))0≤k<5 and (sin(2kπ

5
))0≤k<5 and

contains a point with entries that are all equal and whose sum is an integer.

Figure 6.4: A Penrose tiling.

Theorem 6.3 [24] The Penrose tilings have perfect local rules of diameter 0.

Figure 6.5: The 0-atlas (or vertex-atlas) of Penrose tilings. Any tiling whose tiles
arrange in one of these seven way around every vertex is necessarily a Penrose tiling.

If the slope of a Penrose tiling does not contains a point with equal entries whose
sum is in Z, this yields a so-called generalized Penrose tiling. They have weak local
rules (of positive diameter) and no perfect local rules. They are conjectured to have
strong local rules. Penrose and generalized Penrose tilings actually belong to the
family of n-fold tilings (for n = 10):

Definition 6.7 (n-fold tiling) A n-fold tiling is a tiling of the plane which has the
same finite patterns as its image under a rotation by 2π/n.
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The planar n-fold tilings are those whose slope is generated by (cos(2kπ/n))k
and (sin(2kπ/n))k, 0 ≤ k < n/2 (n is necessarily even). Among them, not only the
Penrose tilings have local rules:

Theorem 6.4 ([93]) The n-fold tiling has weak local rules for n mod 4 6= 0.

A key ingredient of the proof is that the slope is enforced by a simple alternation
condition: in any “stripe”, each tile appears in two orientations which must perfectly
alternate. This condition translates into an equation of the type Gij = Gik on the
Grassmann coordinates of the slope. This is actually a particular case of subperiod:

Definition 6.8 (Subperiod) Let I be a subset of d + 1 elements of {1, . . . , n}. A
d-plane of Rn has a I-subperiod if there is a rational dependence between its d + 1
Grassmann coordinates whose indices are all in I. By extension, we call subperiod of
a planar tiling any subperiod of its slope.

Figure 6.6: The respective projections on three basis vectors of the tilings of Fig. 6.7.
Although different, they all have the same periodic direction (along the white stripes).

Equivalently, a planar n→ d tiling has a I-subperiod if, by orthogonally projecting
it onto the d-dimensional space generated by the vectors of the standard basis of
Rn whose indices are in I, one gets a periodic tiling (Fig. 6.6). One shows that
subperiods can be enforced by local rules. In particular, if a slope is characterized by
its subperiods, then there are local rules to enforce the corresponding planar tiling
among planar tilings. But it is generally unclear whether these local rules could allow
non-planar tilings. Some cases are known (see [16]), in particular for 4→ 2 tilings:

Theorem 6.5 ([15]) A planar 4→ 2 tiling has weak local rules iff its slope is char-
acterized by its subperiods.
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6.7 Necessary conditions

Proposition 6.3 Irrational planar n→ n− 1 tilings do not have local rules.

This can be proven by looking what happens in the window when the slope slightly
varies. The first local rules appear for 4→ 2 tilings (this easily follows from Th. 6.5).
However, the most celebrated 4 → 2 tilings, namely the 8-fold tilings (also referred
to as Ammann-Beenker tilings) do not have local rules [13]. This is more general:

Theorem 6.6 ([14]) The 4p-fold tilings do not have local rules.

The proof relies on the fact that the subperiods of such slopes do not characterize
them. Instead, they characterize a one-parameter family of slopes, where two slopes
have the same finite patterns of a given diameter if they are sufficiently close. Fig. 6.7
show some tilings in this family for n = 8.

Figure 6.7: Planar tilings with the same subperiods as an 8-fold tiling.

Levitov has given a necessary condition for the existence of strong local rules. A
plane is said to have full subperiods if it has an I-subperiod for any subset I of d+ 1
elements of {1, . . . , n}.

Theorem 6.7 ([69]) A planar tiling with strong local rules must have full subperiods.

Otherwise, it is possible to slightly shift the slope in a suitable direction, so that
the subperiods “miss” the resulting flips. As a corollary, Levitov obtained that n-fold
tilings can have strong local rules only for n ∈ {4, 6, 8, 10, 12}. Since n ∈ {4, 6} are
periodic cases and n ∈ {8, 12} are forbidden by Th. 6.6, the remaining question is:
do the 10-fold tilings (i.e., the generalized Penrose tilings) admit strong local rules?
One also knows a general “algebraic obstruction” to the existence of local rules:
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Theorem 6.8 ([67]) The slope of a planar tiling with local rules must be algebraic.

In order to have local rules, a planar tiling must indeed be such that any modifi-
cation of its slope creates a new pattern (which does not appeared in the tiling). Seen
in the windows of a planar n→ d tiling, this means that the slope is characterized by
so-called coincidences, where a coincidence is a point at the intersection of at least
n−d+1 projections of (n−d)-dimensional facets of Zn so that any modification of the
slope “explodes” this point into a non-empty region corresponding to a new pattern
in the tiling. The theorem follows by proving that such coincidences can characterize
only algebraic slope. For planar 4 → 2 tilings, one moreover knows that the slope
is at most quadratic (this follows from Th. 6.5). The maximal algebraic degree for a
planar n→ d tiling is unknown beyond this particular case (one conjectures bn/dc).

6.8 Colored local rules

We mentioned that, in dynamical terms, local rules define a tiling space of finite
type. This can actually extend to sofic tiling spaces, that is, to allow tiles to be
“decorated”. Let us consider, for example, the one-parameter family of tilings with
the same subperiods as the 8-fold tilings (see Theorem 6.6). Theses are actually
exactly the tilings by a square and a rhombi with 45◦ acute angles such that in
any “stripe” the rhombi appear in two orientations which perfectly alternate. This
can easily be enforced by notching the tiles as depicted on Fig. 6.8 but not by the
previously defined local rules (Definition 6.5), because the information about the
orientation of a rhombus need to be carried arbitrarily far. Among several ways to
formally “decorate” tiles, we use the following one.

Figure 6.8: These notched square and rombus make consecutive rhombi in a stripe
to alternate their orientation. Up to the notching, the possible tilings are exactly
those with the same subperiods as the 8-fold tilings (recall Fig. 6.7).

Definition 6.9 (Colored local rules) A planar n → d tiling of slope E is said
to have colored local rules of thickness t if there is a finite set tiles with colored
boundaries such that any tiling by these tiles where two adjacent tiles match along
boundaries with the same colors is a n→ d tiling with a lift in the slice E + [0, t]n.

When colored local rules are allowed, the algebraic obtruction of Theorem 6.8
transforms into a computability obstruction - and actually a complete characteriza-
tion of the slopes that can be enforced by such local rules (at the price of a huge
number of different tiles).
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Definition 6.10 (Computable slope) A d-dimensional linear space in Rn is com-
putable if it is generated by vectors whose entries can be approximated by a rational
within any desired precision by a finite, terminating algorithm.

Theorem 6.9 ([33]) A planar tiling has colored local rules iff its slope is computable.

Figure 6.9: From a 3→ 2 tiling to a two-dimesional subshift.

The idea of the proof is to make a connection with the effective subshifts intro-
duced in Chapter 3. Indeed, n→ d tilings can be seen as intertwined d-dimensional
subshifts, as suggested by Fig. 6.9. Then Theorem 3.3 (page 28) is used to check that
the stripes of the n→ d-tilings correspond to the wanted slope.



Chapter 7

Self-Assembly

7.1 Abstract self-assembly

7.1.1 Introduction

The self-assembly model has been introduced by Adelman, Seeman et al. in [105], and
later studied more formally, notably by Erik Winfree. It is a formalization of a model
of DNA-based computation, using the attractive strength between complementary
strands of DNA. This model, which has actually been implemented for instance in
[90, 81], is quite close to Wang Tilings, a staple of theoretical computer science.

Resources are available online at http://self-assembly.net.

Preliminaries

We note the base vectors of Z2 as N = (0, 1), S = (0,−1), E = (1, 0), W = (−1, 0).
For a set Σ, 4-tuples x = (x0, x1, x2, x3) are identified as unit squares, and we note
N(x) = x0, E(x) = x1, S(x) = x2, W (x) = x3 (i.e, going around x clockwise). We
also have −N = S and −E = W .

An edge of Z2 is a couple (z, z+ d) for z ∈ Z2 and d ∈ {N,S,E,W}, i.e., the link
between two adjacent positions. A set E of edges is a cut if there are z, z′ ∈ Z2 such
that any path between z and z′ contains at least an edge of E. For U ⊂ Z2, a cut of
U is a set of edges with both extremities in U such that there are z, z′ ∈ U such that
any path between z and z′ within U contains at least an edge of E.

For any t and x, y ∈ Z2, the singleton pattern {t@(x, y)} is the pattern p with
domain {(x, y)} defined by p(x, y) = t.

7.1.2 The model

Definitions

Self-assembly can be abstractly defined through the following characteristics:

1. a high number

59
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2. of simple components,

3. aggregating together

4. through local interaction

5. to form complex geometrical designs.

Systems with these characteristics are frequent in nature, from the growth of
crystals (and quasi-crystals), notably snowflakes, to coral reefs, viruses or galaxies.
The aim here is to mimic these processes in an algorithmic, formal way.

These abstract characteristic can be turned into a formal model, ready for math-
ematical study. This model was first defined in [103]. First, the high number of
particles can be represented, for simplicity’s sake by an infinity of them. From now
on, we will call these particles tiles. In contrast, since they need to be simple, they
will be taken from a finite set of meta-tiles. As for geometry, the most general setting
would be a Cayley Graph of some sort; in this introduction, the tiles will simply be
squares; live in Z2.

The last abstract characteristic is local aggregative interactions. This is rendered
as the ability for tiles to stick to each other or not when they are abutting; the tiles
stick to each other with selective glues. The rest of this subsection is devoted to
defining in detail this abtsract model of assembly, the abstract Tile Assembly Model
(aTAM).

Definition 7.1 (Self-assembling tileset) A self-assembling tileset T is composed
of:

• a finite set of glues GT ;

• a strength function, sT : GT → N

• a finite subset TT of meta-tiles, TT ⊂ G4
T ;

Figure 7.1 shows how tilesets are usually represented. The set G of glues is taken
to be a set of words; each meta-tile is a square with a glue on each of its sides. Instead
of representing s seperately, each glue is represented with a number of ticks equal to
its strength. This means that for some glue a, if s(a) = 2, a will be represented with
2 ticks everywhere it appears. By abuse of notation, we will sometimes use the same
symbol T to refer to TT , and say for instance “for any meta-tile in the tileset T ”.

An instance of a meta-tile somewhere in the plane Z2 is called a tile, and a
collection of tiles is a pattern. Most of this chapter on self-assembly is devoted to the
study of self-assembly of finite patterns, but self-assembly of configurations on the
whole plane Z2 has been studied too [80, 79], though less often.

A tileset only assembles into interesting production when put in some specific en-
vironment, forming a self-assembling system. If a tileset represents a set of molecules
ready to self-assemble into some artefact, it is of no use leaving the molecules inert
and separate: they need to be put into a test tube at the right temperature, with
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T1d
d

a
c

T2d
a

b
c

T3d
d

a
d

Figure 7.1: An example tileset, with glues a, b, c, d, three meta-tiles T1, T2 and T3. s
is defined as s(a) = s(b) = 2, s(c) = 3, and s(d) = 1.

a nucleation seed before anything happens. A self-assembling system represents the
conditions in which the tileset will evolve.

Definition 7.2 (Self-assembling system) A self-assembling system S is composed
of:

• a self-assembling tileset T (S);

• an integer τ(S), the temperature;

• a pattern σ(S) of tiles of T (S), the seed

To avoid double indirection, the following notations are useful: G(S) is the set
of glues GT (S) of the corresponding tileset, T (S) = TT (S) is the set of its tiles, and
g(S) = gT (S) its temperature.

The dynamics

Stability The first thing to consider with a self-assembling system is the stability
of patterns. Consider a pattern of tiles that has somehow grown up to some point
in a test tube. The pattern is held together by attractive forces between the tiles.
Stability is the answer to the following question: “will this pattern hold together
for long?”. In the aTAM, the attractive forces are defined as the link between two
adjacent tiles. The link between two adjacent tiles is 0 if the glue on their matching
sides is different, and s(a), where s is the strength function, if they are the same glue
a.

Definition 7.3 (link) Let S be a self-assembling system, and let p be a pattern of
tiles of T (S) with domain U ⊂ Z2. Let (z, z + d) be an edge of Z2 such that both z
and z + d are in U ; the link between z and z + d is defined as:

• 0 if d(p(z)) 6= −d(p(z + d))

• sS(a) if d(p(z) = −d(p(z + d)) = a.

This link represent the strength of the bound between two tiles along an edge.
For a set C of U , the link along C is the sum of the links along all the edges of C.



62 CHAPTER 7. SELF-ASSEMBLY

A
A

b

b

A
c

A

b

A
c

A

b

c
A

b

A
c
A

b

A

c
c

c

c
c
c

c

c

c
c

c

c
c
c

c

c
b

b

b

b

b
b

b

b

b
b

b

b

b
b

b

b
b

b

b

b
b
b

b

b
b
b

b

b

A

A
c

A

b

c
A

b

A

c
c

c

c

c
c

c

c
c
c

c

c
b

b

b

b

b
b

b

b

b
b

b

b

b
b

b

b
b

b

b

b
b
b

b

b
b
b

b

b

A

Figure 7.2: Left, an example of link along a cut; the total link along the cut here
is 8. Right, a pattern stable at temperature 2 which cannot be grown from smaller
stable patterns.

An example of a pattern, a cut and the corresponding link is represented on Figure
7.2 left.

Consider again the pattern in the test tube. This patterns holds as a whole, but
thermal agitation threatens to take it apart. If it has a weakness in its fabric, it will
be torn along that weakness. Thus, the definition of stability is a negative one: a
pattern is stable at temperature t if there it has no cut with a link lower than the t.

Growth Taking a self-assembling system and looking at the set of its stable patterns
is not very different from classical Wang Tilings. In particular, while stability is a
local feature (it happens on an edge-by-edge basis), there is no sense of growth of
patterns. In some cases, such as on Figure 7.2 right, some stable patterns cannot be
obtained by progressive growth, as they have no stable subpatterns.

This progressive growth of patterns is represented by transitions.

Definition 7.4 (Transition) Let S be a self-assembling system, and let p, p′ be two
patterns of S. There is a transition p→S p′ if:

• p is a subpattern of p′

• p′ has exactly one more tile than p

• both p and p′ are stable.

Given a self-assembling system S, a pattern q can be obtained from p if there
exists a sequence of transitions p = p0 →S p1 . . . →S pn = q. The set of productions
of S, noted P (S) is the set of all patterns that can be obtained from the seed σ(S).
This focus on a seed is a little arbitrary, but [91] shows how to make sure that no
pattern starting from anything else than the seed can grow much, in exchange of a
slight increase of the size of the tileset.

It is useful to give a different view on how productions are obtained in the aTAM.
Since a transition happens between two patterns which differ by exactly one tile, it
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represents the addition of a tile to a stable pattern, with the condition that the link
between the pattern and the new tile is at least equal to the temperature.

To be really qualified as self-assembly, the assembly process needs also to stop
autonomously. A recipe such as “put the following molecules into a test tube, and
extract any polymer that is exactly 19830309 atoms big” can hardly be called self-
assembly, as weighting and extracting the polymer precisely at the right time is going
to take a very precise control that self-assembly is supposed to make unnecessary.
This control is not needed if the desired productions do not grow any bigger once
they are formed. A final production of a self-assembling system S is production of S
from which no transition is possible. S� is the set of final productions of S.

The study of self-assembly is generally devoted to trying to understand how to
get a self-assembling system which gives some target set of final productions.

From now on, we assume without loss of generality that there is only one glue of
strength 0.

7.2 Assembly of shapes: squares and rectangles

The most elementary kind of control over self-assembly is getting the particles to form
simple shapes such as squares, rectangles through the constructions of [5]. The study
of how to assemble these simple shapes yields insights into general properties of self-
assembly. It shows how synchronization and temperature 2 plays a primordial place
in designing self-assembling system, and how to use randomness. It also introduces
tile complexity, which is one of the most important performance measures for self-
assembly.

7.2.1 Assembling rectangles

One rectangle versus all rectangles What does it mean to assemble rectangles?
Let w, h be integers. The self-assembling system defined on figure 7.3 has one final
production whose domain is a w × h rectangle.

0
0

1
0

0

0 1

0
1

1 2 2

Figure 7.3: A self-assembling system for assemling a 4 × 3 rectangle; empty edges
correspond to the (unique) strength-0 glue.

The assembly of this self-assembling system proceeds by concurrently assembling
h rows of length w. This is the most basic technique of self-assembly: cutting the
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target shape into parts and have independent sub-assemblies for each part. It can
be readily seen that this technique alone is not going to fare well with more complex
shapes: in order to count up to w, it needs w tile types. Generating this many tile
types is not really more economical than hand-crafting a w×h rectangle, and in fact
a self-assembling system starting from a w×h rectangle as its seed and doing nothing
does just as well as this last system.

Let us now define Rh,w as the set of all rectangle with lower-left corner at (0, 0),
height at least h and width at least w. A self-assembling system S assembles R if
the set of domains of its final productions is R. In informal terms, such a tile system
may have an arbitrary glues and tiles as long as the shapes of its productions are
all (large enough) rectangles. Since it is mandated that S assembles rectangle of all
sizes larger than w× h with a constant number of tiles, it must do so efficiently, and
no fixed inert seed will do.

A question of temperature The temperature parameter, which determines when
patterns are stable and when tile additions are allowed is crucial in getting control
of how the assembly proceeds. Let us first review what happens at temperature 1.
Whenever a meta-tile has one side with a glue of positive strength that matches a
border of a production, a transition is possible by adding that tile. This makes it
very hard to assemble at once only rectangles, but also arbitrarily large rectangles.
In fact, donig so is an open problem.

On the other hand, let S be a self-assembling system with temperature 2, let
r ∈ Z2 be such that all tiles in the seed of S are at positions (x, y) with x < r; in any
sequence of productions, the first production with a tile t@(r, y) in row r must be
such that W (t) is a glue with strength 2. Likewise for other directions. This property
is key to how the self-assembling system SRect of figure 7.4 works.
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Figure 7.4: A temperature 2 self-assembling system that assembles arbitrary-size
rectangles (left) and an example of its growth (right)
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Figure 7.5: A temperature 2 self-assembling system that assembles arbitrary-size
squares.

Showing that the final productions of SRect are rectangle shaped is done by in-
ductively proving that in each of its production, the rightmost tile is on the y = 0
row, and the uppermost tile is on the x = 0 row.

7.3 Assembling squares

Let now Sk be the set of all squares with lower-left corner at (0, 0) and edge length at
least k. Compared with Rh,w, assembling Sk poses the problem of synchronizing the
width and height to keep them equal. The system SSquare on figure 7.5 does that by
deciding the length of the diagonal, and sending that information back to the corners.

Tile complexity SSquare has 5 different tiles. This figure is its tile complexity. It
is the most common measure of complexity for tile-assembly systems. There is also
glue complexity, which is the number of distinct glues. Tile complexity and glue
complexity are important because they tell how involved the process of engineering
the tiles before putting them into the test tube is going to be.

7.4 Controlling the expected size

The previous systems yield rectangles or squares, but with no way to control the size
of their final productions. One way to control the size of these assembly is to control
how likely it is for the stopping tiles to be added at each production where they are
attachable.

Definition 7.5 (Concentration function, rate) Let S be a self-assembling sys-
tem. A concentration function is a function c : T (S)→ R+.

Given S with a concentration function, and t = p→ p′ a transition of S, the rate
of t is the concentration of the meta-tile that is added by t.

Given a self-assembling system S and a concentration function s, we can define a
Markov Process as follows: the states of this Markov Process are the productions of S,
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Figure 7.6: Two systems for assembling a 3 × 3 square at temperature 1. The
rightmost one is faster as it allows more parallelism.

its transitions are the transitions of S. Given a production p, let succ(p) be the set of

all transitions starting at p. For t ∈ succ(p), the probability of t is P (t|p)=rate(t)
Σt′∈succ(p)rate(t

′)
. In

such a Markov Process, the concentrations can be tuned in the previous constructions
to make the expected dimensions of the final productions be any arbitrary value. In
[51], Kao and Schweller give more advanced techniques to get close to the desired size
with high probability.

7.5 Timing self-assembly

7.5.1 The kinetic model

Another measurement of performance of a self-assembly system is the time it takes
to assemble one of its final productions. Of course, taking each transition to be a
unit of time, this measure already has a name. . . the surface of the final production.
This is of no interest.

Meanwhile, in the test tube, a pattern has grown to be about a few hundreds
particles in diameter. Particles in the solution can stick to the pattern, but this has
to be local interactions. Thus, attachments at opposite ends of the pattern do not
interfere: rather, they occur in parallel. In other words, the time it takes for a particle
to attach does not depend on what attachments are possible in other parts of the
pattern.

A Continuous Time Markov Process allows to model precisely this evolution.
Again, the states are the productions of S, the Markov transitions are the transitions
of S. A notion of continous time is added: every time a transition t is made, the
time τ it takes is drawn randomly according to the law P (τ < x) = e−x/r, where r is
the rate of t.

This kind of process can also incorporate a slight rate of erroneous attachments,
and detachments of tiles that have been attached. In [104] and [96], this is used to
make self-assembling system robust to errors.

With this Continuous Time Markov Process, the expected time taken to reach
a given final production yields a non-trivial measurement. Note tM(S, c, p) for this
expected time. In particular, computing tM(S, c, p) for the two systems of figure 7.6
both of which assemble a 3 × 3 square shows that the zig-zagging process is slower
when the sum of the concentrations is fixed.
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7.5.2 Combinatorial Time

Computing the expected time taken to reach a final production is arduous in most
non-trivial cases. In some cases, there is a simpler combinatorial measure of time
which gives the same results.

Let S be self-assembling system, p a production with support U . Let T be a
sequence of transitions leading to p. A position z ∈ U depends on one of its neighbors
z′ ∈ U according to T if a tile is attached at z after one has been attached at z′. The
dependency order associated <T with T is the transitive closure of the “depends”
relation.

A production p of a self-assembling system S is ordered if every sequence of
transitions leading to p has the same dependency order. In this case, <p will be the
order associated with any sequence of transitions leading to p. S itself is ordered if
each of its productions is ordered.

Theorem 7.1 Let S be a self-assembling system, and p an ordered production of S.
Let c be the concentration function defined by ∀t ∈ T (S), c(t) = 1, and let d(S, p) be
the length of a maximal decreasing sequence in <p. Then tM(S, c, p) = Ω(d(S, p)).

7.6 Computing with self-assembly

In order to get more complex shapes than just squares and rectangles, the ability
to do computation is necessary. This section reviews how to do computation in
self-assembling systems by implementing a counter.

In [89], Winfree et al. give a method to assemble a square or rectangle of precise
dimensions through the use of a counter. In contrast with the previous examples, this
is an example of a deterministic system, that is one with a unique final production.

7.6.1 Simple Computation

The self-assembling system of figure 7.7 assembles an n×2n rectangle, and its ith row
codes the integer i in binary. The seed configuration is a length n bar, represented
at the bottom. On the right, one can see the computation in progress, and its
asynchronous nature: some rows have started to be computed before the previous
one has finished.

Each row initiates the construction of the next one through its lowest-weight 0.
From this position, the row grows towards least-significant bits by flipping all bits
to 0, and towards most-significant bits by flipping all bits to 1 until the first 0. The
position of the next least-significant 0 is alternatively the least-significant bit or the
first 0 to the left of the first tile in the row.

7.6.2 Universal Computation

This counter construction can be generalized to simulate an arbitrary Turing machine
(in other words, to run an arbitrary program written in a common programming
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Figure 7.7: A counter at temperature 2. The colour of each meta-tile indicates the
bit value it represents, and the evolution of its assembly
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Figure 7.8: The self-assembling system (with temperature 2) for simulating a Turing
Machine, and an assembly in progress.

language). This gives the following result [32]:

Theorem 7.2 There is no algorithm for deciding if a given self-assembling system
has a finite final production.

The claim holds as long as it is possible to simulate a Turing machine in self-
assembly. The construction is presented on figures 7.8. Symbols q, q′, r, s are states,
and x and y alphabet symbols. A version of tile L is present for each Turing Machine
rule with the head going left, R when the heads goes right, and C when it stays put.
The seed is in the lower part of the figure, with qi the initial state. Figure 7.8 shows
that the computation is asynchronous: in the depicted configuration, the head must
wait for the next symbol (d for the right end of the tape) before adavancing.



Chapter 8

Flip dynamics

8.1 Tiling space induced by a domain

We work in the square lattice, or in the triangular lattice of Z2. We fix a domain D
of the lattice, i.e. a finite union of closed cells which, moreover, is simply connected
(i.e. connected with no hole).

Figure 8.1: Flips in domino tilings (left) and in lozenge tilings (right).

We are interested in tilings of the domain D whose tiles are formed with two
neighbors cells (i.e. dominoes in the square lattice, lozenges in the triangular lattice).

Figure 8.2: An example of tiling space (at left, in a compressed way with no details
about tilings).

A flip in a tiling (see Figure 8.1) is a local rearrangement of tiles which allows to
construct another tiling. Domino flips involve two tiles, and lozenge tilings involve
three tiles. In the following, we will be focused in domino tilings, the study of lozenge
tiling being very similar. The tiling space induced by a domain D (see Figure 8.2)
is the undirected graph whose vertex set is the set of tilings of the domain, and two

69
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tilings are neighbors if they only differ by a single flip. The main goal of this lecture
is to investigate the structure of tilings spaces.

8.2 Height functions

8.2.1 Construction

Let VD be the set of lattice vertices which are in the domain D. A tiling of D can be
encoded by a function hT : VD → Z as follows (see Figure 8.3):

1. Fix an origin vertex v0 on the boundary D, for which hT (v0) = 0,

2. Direct all edges of the lattice, in such a way that black cells are surrounded
clockwise, and white cells are surrounded counterclockwise,

3. For each pair v, v′ of vertices of VD such that

• there exists and edge of the lattice, directed from v to v′ according to the
direction given above.

• the segment [v, v′] is not the central axis of a tile of T ,

we have : hT (v′) = hT (v) + 1.
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Figure 8.3: Encoding of a tiling with a height function

Since D is simply connected, this construction is consistent.

Proposition 8.1 For any tiling T of D, there exists a unique function hT satisfying
the condition above.
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8.2.2 Basic properties of height functions

For each tiling T and each directed edge, from v to v′, such that [v, v′] is the central
axis of a tile of T , we have : hT (v′) = hT (v)− 3. Therefore, hT is really an encoding,
i.e. the knowledge of hT allows to construct the whole tiling T . Conversely, we have
the following characterization:

Proposition 8.2 Let h be a function vD → Z that:

• h(v0) = 0,

• for each pair v, v′ of vertices of VD such that there exists an edge from v to v′,
either h(v′) = h(v) + 1 or h(v′) = h(v)− 3,

• when, moreover, the segment [v, v′] is contained in the boundary of D, then
h(v′) = h(v) + 1.

Then there exists a tiling T such that h = hT (v).

All tiling functions have similarities which are pointed below. Let T and T ′ be
two tilings of D.

• For each vertex v on the boundary of D, we have hT (v) = hT ′(v),

• For each vertex v, we have hT (v) ≡ hT ′(v) mod [4].

8.3 Order on tilings

We say that T ≤ T ′ if for each vertex v of VD, hT (v) ≤ hT ′(v). Assume that T and
T ′ are neighbors in the tiling space and let v be the center of the flip support linking
T and T ′. We have:

• either hT ′(v) = hT (v)− 4, or hT ′(v) = hT (v) + 4,

• hT (v′) = hT ′(v′) when v′ 6= v.

When hT (v) + 4 = hT ′(v), we say that we have an upward flip from T to T ′. Note
that, in this case, we have: T ≤ T ′.

Theorem 8.1 Let T and T ′ be two tilings of D.

• T ≤ T ′ if and only if one can pass from T to T ′ by a sequence of upward flips

• Let min(hT , hT ′) and max(hT , hT ′) be the functions defined by, for each vertex v
of VD, min(hT , hT ′)(v) = min(hT (v), hT ′(v)) and max(hT , hT ′)(v) = max(hT ′(v), hT ′(v)).
There exists a tiling, denoted by min(T, T ′), such that hmin(T,T ′) = min(hT , hT ′),
and a tiling, denoted by max(T, T ′), such that hmax(T,T ′) = max(hT ′ , hT ′).

Corollary 8.1 The tiling space is connected.

The order relation on tilings defined above confers to the set of tiling of D a
structure of distributive lattice.



72 CHAPTER 8. FLIP DYNAMICS

8.4 Applications

8.4.1 Flip distance

Definition 8.1 Let T and T ′ be a pair of tilings of D. The flip distance ∆(T, T ′) is
defined as the distance between T and T ′ in the tiling space, i.e. the minimal number
of necessary flips to transform T into T ′.

Proposition 8.3 For any pair T and T ′ of tilings of D, we have the equality:

∆(T, T ′) =
1

4

∑
v∈DV

|hT (v)− hT ′(v)|

Proof strategy:

1. Prove the equality in the particular case when T ≤ T ′,

2. In the general case, use min(T, T ′) as intermediate tiling, for being reduced to
the previous item.

8.4.2 Tiling algorithm

Problem: given as input a domain D, how can we construct a tiling of D, (or see
that there is no tiling) ?

A good idea: from Theorem 8.1, there exists a tiling Tmin of D such that, for each
tiling T of D, we have Tmin ≤ T . We will try to construct Tmin.

Lemma 8.1 Let hmin be the height function encoding Tmin. For any vertex v of
VD which is not of the boundary of D, there exists a neighbor v′ of V such that
hmin(v′) = hmin(v) + 1.

Let M = max{hmin(v), v ∈ VD}. From this lemma, it follows that

• if hmin(v) = M , then v is on the boundary of D,

• if hmin(v) = c − 1, with c ≤ M , then there exists a neighbor v′ of v, such that
hmin(v′) = c.

This allows to construct hmin from one vertex to its neighbors, by the algorithm
below. First, in the initialization, we determine

VM = {v ∈ VD, hmin(v) = M}.

Indeed, Following clockwise the boundary, one can determine hmin(v) for each v on
the boundary. Thus VM can be determined, from the Lemma. Afterward, passages
the main loop allow to successively construct sets

Vc = {v ∈ VD, hmin(v) = c}
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with c decreasing at each passage through the loop, starting with vertices v such that
hmin(v) = M , and progressively decreasing the value hmin. Each passage through the
main loop is decomposed into two steps. In the first step, the algorithm checks that
the new values defined for hmin are compatible with the previous (and larger) ones,
using the second item of Proposition 8.2 . In the second step, the algorithm extends
hmin to a larger subset of VD.

Algorithm constructing hmin

Input:

a domain D

Initialization: (construction of hmin on the boundary, and computation of M)

for each vertex v of the boundary of D, do

compute hmin(v)

if a contradiction appears, then

STOP: there is no tiling

else, c := max{hmin(v), v on the boundary of D}
end for

Main loop: (check of the compatibility of values of Vc, and computation of Vc−1)

while there exists v such that hmin(v) is not checked, do

c := c− 1,

for each v for which hmin(v) = c, do

for each v′ such that {v, v′} is an (undirected) edge, do

Checking process:

if hmin(v′) is previously defined, then

if hmin(v′) and hmin(v) are not compatible then

STOP: there is no tiling.

Extension process:

if hmin(v′) is not yet defined and

[v, v′] is directed from v′ to v then

hmin(v′) := c− 1

end for

Consider the vertex v as checked

end for

end while
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8.5 Discrete Markov chains and tiling samplers

Markov chains play a important rule in tiling theory [27, 73, 102, 9]. Indeed they
represent a efficient way to generate at random tilings and by this fact the possibility
to visualize some properties of random tilings. By this approach, Arctic circles phe-
nomena have been for the first time observed [49]. In this section, we introduce the
concept Markov chains [68] and describe its applications to random tiling theory.

A Discrete time Markov chain (DTMC) is a sequence of random variablesX1, X2, ...
with the following memorylessness property: Pr(Xn+1 = x|X1 = x1, X2 = x2, ..., Xn =
xn) = Pr(Xn+1 = x|Xn = xn) The possible values of Xi form a countable set S called
the state space of the chain. We can roughly say that the memorylessness property
indicate that the evolution of the chain only depends on the current state where we
are and not the way we access to it.

The move from a state to another is called a transition.

Moreover, we assume here that the Markov chains are time-homogeneous, i.e.
∀n ≥ 0, ∀(i, j) ∈ S2, P r(Xn+1 = i|Xn = j) = Pr(X1 = i|X0 = j). In other words,
the transitions from i to j does not independent on n. In this case, we can define
the transition graph as the directed graphs on S where the edges (i, j) of the graph
are labeled by the probabilities Pr(X1 = i|X0 = j) and the transition matrix as the
matrix (pi,j) where pi,j is the probability of the transition from the state i to the state
j: pi,j = Pr(X1 = j|X0 = i).

In particular, the transition matrix P = (pi,j) is stochastic, i.e. the sum of the
values on each line of P is 1: ∀i ∈ S,

∑
j∈S pi,j = 1.

For instance, let us consider the set of the 3 tilings by domino of a 2×3 rectangle.
We can define a DTMC as follows: the states are the tilings, and let T1 and T2 be

two tilings just differing by one flip. Pr(Xn+1 = T2|Xn = T1) =
1

x
where x is the

number of tilings from T1 by one flip. During this course, we are going to modify this
DTMC in order to obtain what we expect: A uniform sampler for this set of tilings.

= | ||| | =1

0.5

0.5

1

P =

 0 1 0
0.5 0 0.5
0 1 0


Figure 8.4: The transition graph of 3× 2 domino-tiling and its transition matrix.

Assume that we are initially on the tiling T1, we can represent it by the vector
v = (1, 0, 0). At time 1, we are on the tiling T2 with probability 1, this corresponds
to vP = (0, 1, 0). At the next step, we are in on T1 or T3 with probability 1/2: this
can be obtained by vP 2 = (1/2, 0, 1/2). And so on...

Before continuing with this example, let us give some definitions.
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8.5.1 Reducibility

A state j is accessible from a state i (denoted by i→ j) if starting in state i, we have
a non-zero probability to reach the state j at some time. In other words, state j is
accessible from state i if there exists an integer n ≥ 0 such that Pr(Xn = j|X0 =
i) > 0.

A state i communicate with state j (denoted by i↔ j) iff both i→ j and j → i.
A set of states C is a communicating class if every pair of states in C communicates
with each other, and no state in C is communicating with any state not in C.

A Markov chain is said to be irreducible if its state space is a single communicating
class; in other words, if we can reach any state from any state, i.e. the transition
graph is strongly connected.

So, our running example is an example of irreducible Markov chain.

8.5.2 Periodicity

A state i has period k if any return to state i must occur in multiples of k time steps.
So, we can defined the period of a state as k = gcd{n > 0;Pr(Xn = i|X0 = i) > 0}
(where “gcd” is the greatest common divisor) provided that this set is not empty.
Otherwise the period is not defined.
Note that even though a state has period k, it may not be possible to reach the state
in k steps. For example, suppose it is possible to return to the state in {4,6} time
steps; k would be 2, even though 2 does not belong to this list.
If k = 1, then the state is said to be aperiodic.
A Markov chain is aperiodic if every state is aperiodic.

Our running example is periodic of the period 2. Indeed, the transition graph is
bipartite.

8.5.3 Transience

In this section, we consider that the space of states can be infinite (otherwise, the
notions bring nothing new!). A state i is transient if, starting in state i, there is a
non-zero probability that we will never return to i. In other word, let the random
variable Ti be the first return time to state i: Ti = inf{n > 1;Xn = i|X0 = i}, state
i is transient if Pr(Ti <∞) < 1. State i is recurrent iff it is not transient.

Even if the hitting time is finite with probability 1, its expectation is not nec-
essarily finite. The mean recurrence time at state i is the expected return time:
Mi = E[Ti]. State i is positive recurrent if Mi is finite; otherwise, state i is null
recurrent.

If a Markov chain is irreducible and if its space of states is finite, all states are
positive recurrent.
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8.5.4 Stationary and limiting distributions

A vector π is called a stationary distribution if ∀j ∈ S it satisfies: 0 ≤ πj ≤ 1,∑
j∈S πj = 1 and π = πP.
In general (finite or infinite state space), an irreducible chain has a stationary

distribution if and only if all of its states are positive recurrent. In that case, π

is unique and is related to the expected return time: πj =
C

Mj

where C is the

normalizing constant. Further, if the positive recurrent chain is both irreducible and
aperiodic, it is said to have a limiting distribution.

In finite state space, if the Markov chain is irreducible and aperiodic, then there
is a unique stationary distribution π. Moreover, in this case P k converges to a matrix
in which each row is the stationary distribution π, that is, limk→∞ P

k = 1π
Our example has two problems. Firstly, it is not aperiodic. Secondly, its sta-

tionary distribution is not uniform. Indeed, the matrix transition P verifies P 2n =
1/2 0 1/2

0 1 0

1/2 0 1/2

 and P 2n+1 = P . So, the stationary distribution is π = (2/3, 1/6, 2/3).

Let us modify the process as follow: choose a vertex on the Z2-grid inside the
rectangle 3× 2, if the tiling can be flip around this vertex, we do the flip, otherwise,
we do nothing. We can describe this new process by its transition graph:
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Figure 8.5: The transition graph of 3× 2 domino-tiling and its transition matrix.

This new process is now irreducible and aperiodic. It is easy to show that the
stationary distribution is the vector π = (1/3, 1/3, 1/3). So, we get a way to generate
at random our tilings.

Now, let us discuss this process. First of all, it can be easily generalised to the
tiling by domino of every simply connected bounded region of the plan (and even
more generally on cases of tiling by rhombus). In fact, we just need the condition of
accessibility by flip, which is the case in various tiling problems.

In these cases, the process is defined as follows. Draw a vertex of the grid support
(the Z2 grid, for instance, for the domino tiling), if we can make a flip on the tiling
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around this point, then do it, otherwise, stay on the same tiling. Due to the flip-
accessibility this process is irreducible and it is also aperiodic because of the non-zero
probably loops. So, its stationary distribution exists and is unique. Moreover the
stationary distribution is the uniform distribution.

It remains the question of the speed of convergence. In the case of a irreducible
and aperiodic Markov chain with finite state space, the convergence is exponentially
fast, i.e. there is K > 0 and α ∈]0, 1[ such that ‖µn − π‖ ≤ Kαn.

8.6 Coupling from the past

This useful procedure has been introduced by Proop and Wilson [83]. Consider a
finite state irreducible aperiodic Markov chain M with state space S and (unique)
stationary distribution π. Assume that we have a probability distribution µ on the
set of maps f : S → S with the property that for every fixed s ∈ S, its image f(s)
is distributed according to the transition probability of M from state s. An example
of such a probability distribution is the one where f(s) is independent from f(s′)
whenever s 6= s′, but it is often worthwhile to consider other distributions. Now for
j ∈ Z let fj be independent samples from µ.

Suppose that x is chosen randomly according to π and is independent from the
sequence fj. (We do not worry for now where this x is coming from.) Then f−1(x)
is also distributed according to π, because π is M−stationary and our assumption
on the law of f . Define Fj := f−1 ◦ f−2 ◦ · · · ◦ f−j. Then it follows by induction
that Fj(x) is also distributed according to π for every j ∈ N. Now here is the main
point. It may happen that for some n ∈ N the image of the map Fn is a single
element of S. In other words, Fn(x) = Fn(y) for each y ∈ S. This is what we call a
coalescence. Therefore, we do not need to have access to x in order to compute Fn(x).
The algorithm then involves finding some n ∈ N such that Fn(S) is a singleton, and
outputing the element of that singleton.

Let us now show how to do that in the case of random sampling.

We previously saw that the domino tiling can be partially ordered which has a
unique minimal element s0 and a unique maximal element s1; that is, every s ∈ S
satisfies s0 ≤ s ≤ s1. Also, suppose that µ may be chosen to be supported on the
set of monotone maps f : S → S. Then it is clear that |Fn(S)| = 1 if and only if
Fn(s0) = Fn(s1), since Fn is monotone. Thus, checking this becomes rather easy.

The process is the following, choose a vertex v on the Z2-grid inside the tiling
region and a symbol in {↑, ↓}. For every tiling such that it is possible to do a flip
around v and which respect the symbol (a flip is ↓ is it decrease the height function,
↑ otherwise), do the flip.

The algorithm can proceed by choosing n = n0 for some constant n0, sampling
the maps f−1,. . . ,f−n, and outputing Fn(s0) if Fn(s0) = Fn(s1), that is to say if the
coalescence has occurred. If Fn(s0) 6= Fn(s1) the algorithm proceeds by doubling n and
repeating as necessary until an output is obtained.
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8.7 Random sampling of tilings and certification

chains

In this section, we briefly illustrate on an example the notion of certification chains
[46, 68].

Our problem consists in drawing uniformly at random a tiling of a rectangle n×m
by 1 × 1 and 2 × 2 squares. We can present such a tiling as a n ×m grid of 1 and
0 that respectively denote the occupation of the site or not by a 2× 2 square. More
precisely, we put a 1 in (i, j) if and only if (i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1) are
covered by a unique 2 × 2 tile. By analogy with physics, we call the 2 × 2 squares,
the particles and the 1× 1 the vacancy. A natural Markov chain M for this problem
consists to choose a site (i, j) at random and ”0” or ”1” equiprobably. Then

- if ”1” is chosen, place a particle at the site ( i.e. put ”1” in (i, j)) if there are no
overlapping with already existing particles (i.e. , there is no ”1” in (i+1, j), (i, j+1),
(i+ 1, j + 1))

- if ”0” is chosen, put ”0” on the site (i, j).
Following Hubert [46], we can draw a tiling according to the stationary distribu-

tion of M (which is the uniform distribution) by using the notion of certifications.
We proceed as follows:

One can associate with each set of tilings a threevalued function on the sites of
the grid, where the value ”1” means that all tilings in the set are known to have a
particle placed in this site, the value ”0” means that all tilings in the set are known
to have a vacancy at that site, and the value ”?” means that it is possible that some
of the tilings in the set have a particle there while others have a vacancy.

Initially we place a ”?” at every site since the Markov chain could be in any tiling.
In other words, we suppose that we have a tiling draw according to the stationary
distribution but we know nothing about it!

We continue to work directly on this three-valued state-model in order to simulate
our Markov chain M . The process selects a random site and proposes to place a par-
ticle there with probability 1/2 or proposes to place a vacancy there with probability
1/2. Any proposal to place a vacancy always succeeds for any tiling in the current
set, so in this case a ”0” is placed at the site. A proposal to place a particle at the
site succeeds only if we are sure to have no overlapping with other particles. This
appends if all neighbouring sites (i + 1, j), (i, j + 1), (i + 1, j + 1) have a ”0”, and
otherwise keeps the site unchanged.

After the update, the ”0, 1, ?” configuration describes any possible tiling that the
Markov chain M may be in after one operation. It is immediate that if the ”0, 1,
?” Markov chain ever reaches a tiling in which there are no ”?”’s, then the Markov
chain M , using the same random proposals, maps all initial states into the same final
state. This moment is called a coalescence.

Now, we can propose a process to draw a tiling at random. We cannot stop at
the coalescence point, because we create a bias by this choice of stop. But, we can
use coupling from the past principle [83].
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[65] Petr Kůrka, Topological and symbolic dynamics, Société Mathématique de
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