Thomas Fernique (Paris) Amir Hashemi (Isfahan) Olga Sizova (Moscow)

Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

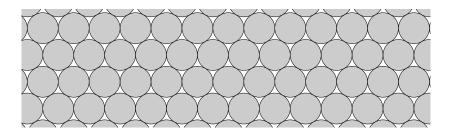
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

Theorem (Thue, 1910)

The densest packing in \mathbb{R}^2 is the hexagonal compact packing.

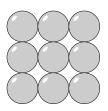


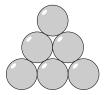
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

Theorem (Hales, 1998)



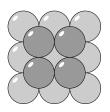


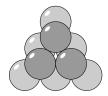
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

Theorem (Hales, 1998)



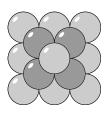


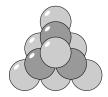
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

Theorem (Hales, 1998)



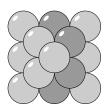


Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

Theorem (Hales, 1998)





Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

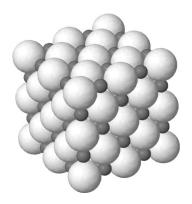
Question: densest packings?

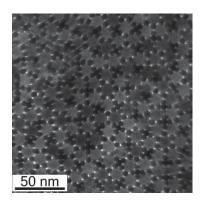
Theorem (Vyazovska et al., 2017)

The densest packings are known in \mathbb{R}^8 and \mathbb{R}^{24} .

Unequal sphere packings

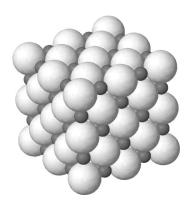
The density becomes parametrized by the ratios of sphere sizes. Natural problem in materials science!

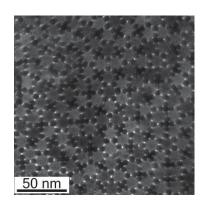




Unequal sphere packings

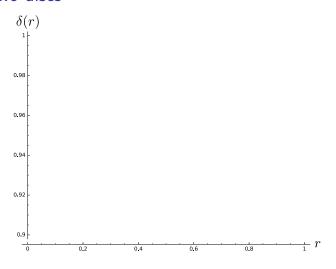
The density becomes parametrized by the ratios of sphere sizes. Natural problem in materials science!



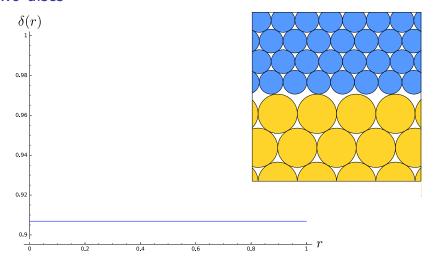


Theorem (Heppes-Kennedy, 2004–2006)

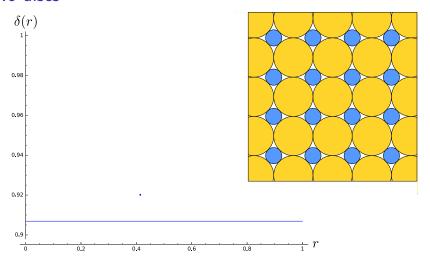
The densest packings with <u>two discs</u> are known for <u>seven</u> ratios.



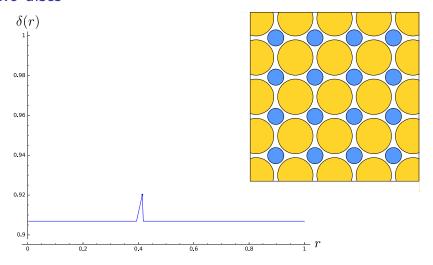
The maximal density is a function $\delta(r)$ of the ratio $r \in [0,1]$.



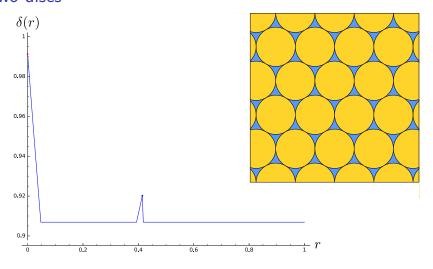
The hexagonal compact packing yields a uniform lower bound.



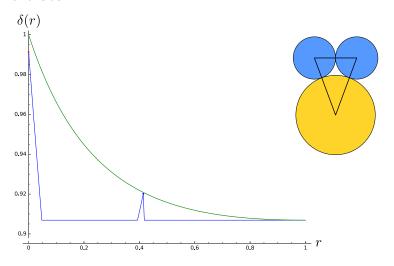
Any given packing yields a lower bound for a specific r.



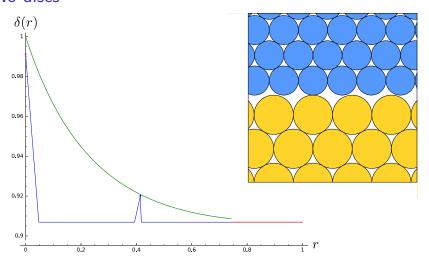
It actually yields a lower bound in a neighborhood of r.



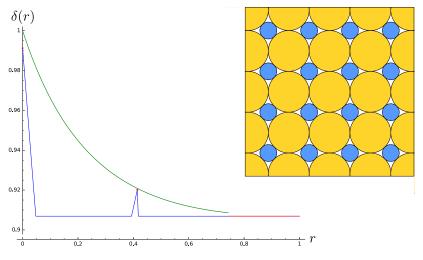
$$\lim_{r \to 0} \delta(r) = \delta(1) + (1 - \delta(1))\delta(1) \simeq 0.99133.$$



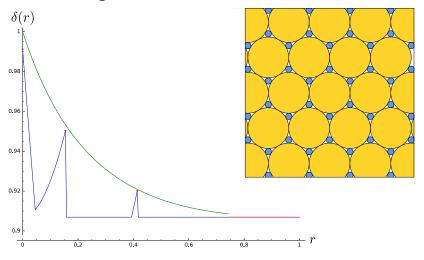
The density in the r1r triangle is an upper bound (Florian, 1960).



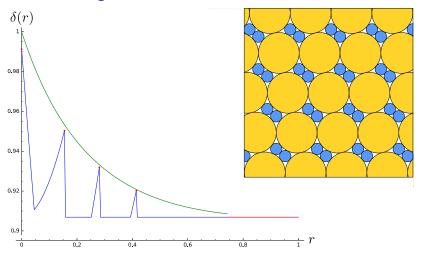
For $r \ge 0.74$, two discs do not pack better than one (Blind, 1969).



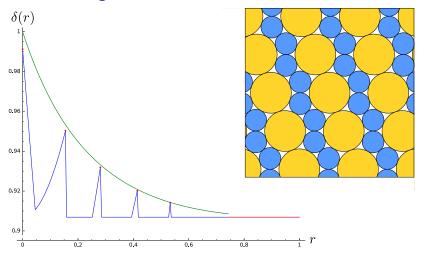
0.41, root of $X^2 - 2$.



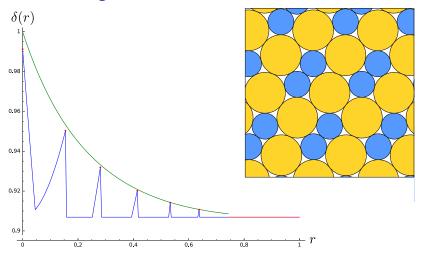
0.15, root of $3X^2 + 6X - 1$.



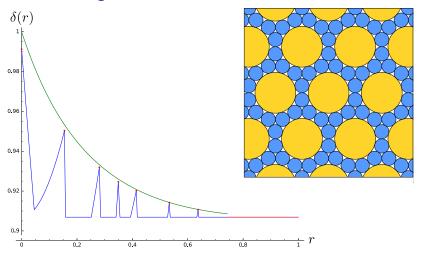
0.28, root of $2X^2 + 3X - 1$.



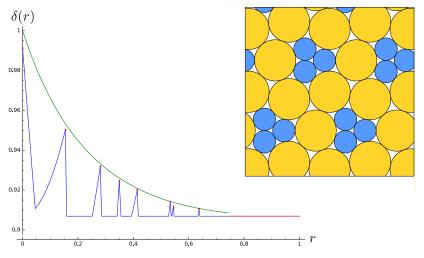
0.53, root of $8X^3 + 3X^2 - 2X - 1$.



0.64, root of $X^4 - 10X^2 - 8X + 9$.



0.35, root of $X^4 - 28X^3 - 10X^2 + 4X + 1$.



0.55, root of $X^8-8X^7-44X^6-232X^5-482X^4-24X^3+388X^2-120X+9$.

The contact graphs of the 7 previous packings are triangulated.

The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

Definition

A packing of discs is *compact* if its contact graph is triangulated.

The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

Definition

A packing of spheres is *compact* if its contact graph is simplicial.

The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

Definition

A packing of spheres is *compact* if its contact graph is simplicial.

The densest packings of unit spheres in \mathbb{R}^8 and \mathbb{R}^{24} are compact!

The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

Definition

A packing of spheres is *compact* if its contact graph is simplicial.

The densest packings of unit spheres in \mathbb{R}^8 and \mathbb{R}^{24} are compact! Not in \mathbb{R}^3 ... where no compact packing of unit spheres does exist!

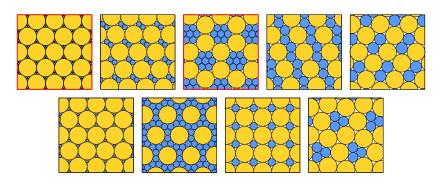
The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

Definition

A packing of spheres is *compact* if its contact graph is simplicial.

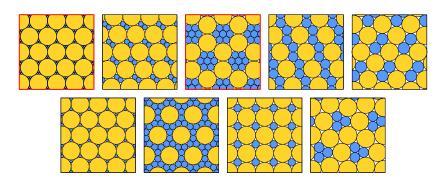
The densest packings of unit spheres in \mathbb{R}^8 and \mathbb{R}^{24} are compact! Not in \mathbb{R}^3 ...where no compact packing of unit spheres does exist!

Compact packings are candidates to $\underline{\text{provably}}$ maximize the density.



Theorem (Kennedy, 2006)

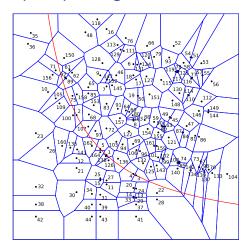
There are <u>nine</u> ratios allowing a compact packing with two discs.



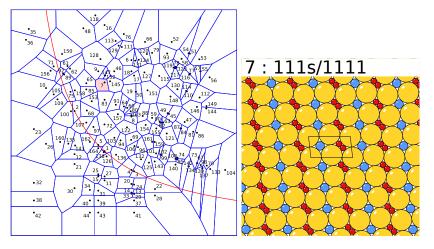
Theorem (Kennedy, 2006)

There are <u>nine</u> ratios allowing a compact packing with two discs.

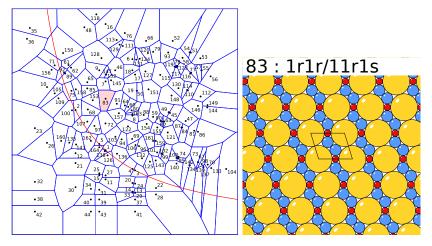
Remark: two have (still?) not been proven to maximize the density.



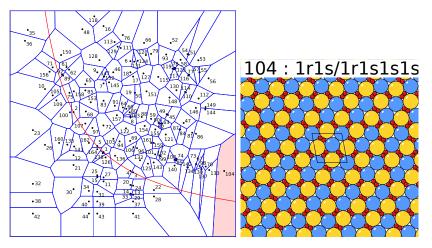
Theorem (F.-Hashemi-Sizova)



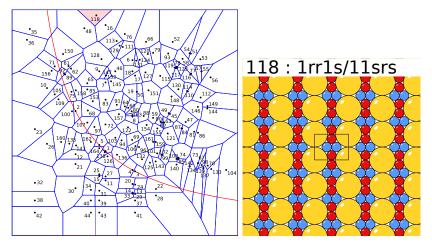
Theorem (F.-Hashemi-Sizova)



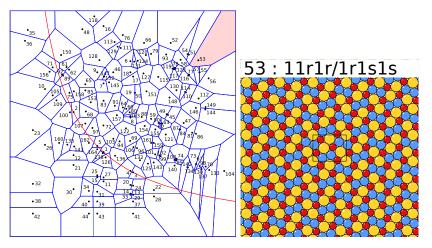
Theorem (F.-Hashemi-Sizova)



Theorem (F.-Hashemi-Sizova)



Theorem (F.-Hashemi-Sizova)



Theorem (F.-Hashemi-Sizova)

Let s < r < 1 be the three sizes of discs.

Definition

An x-corona is a sequence of sizes of discs around a disc of size x.

Let s < r < 1 be the three sizes of discs.

Definition

An x-corona is a sequence of sizes of discs around a disc of size x.

Claim

There are finitely many different s-coronas.

Let s < r < 1 be the three sizes of discs.

Definition

An x-corona is a sequence of sizes of discs around a disc of size x.

Claim

There are finitely many different *s*-coronas.

Lemma

There are finitely many different r-coronas in a compact packing.

Let s < r < 1 be the three sizes of discs.

Definition

An x-corona is a sequence of sizes of discs around a disc of size x.

Claim

There are finitely many different *s*-coronas.

Lemma

There are finitely many different r-coronas in a compact packing.

Proposition

Each pair of s- and r-coronas yields a polynomial system in r and s.

Let s < r < 1 be the three sizes of discs.

Definition

An x-corona is a sequence of sizes of discs around a disc of size x.

Claim

There are finitely many different s-coronas.

Lemma

There are finitely many different r-coronas in a compact packing.

Proposition

Each pair of s- and r-coronas yields a polynomial system in r and s.

Strategy

For each pair of s- and r-coronas, solve the polynomial system, then find all the possible coronas and finally find the packings.

Poster teaser

During the poster sessions, you can get more details about...

the proof:

- ▶ how to associate a polynomial system with *s* and *r*-coronas?
- why (and how) we used resultants and interval arithmetic?
- which alternative strategies do exist?
- is it that easy, given the coronas, to find a packing?

Poster teaser

During the poster sessions, you can get more details about...

the proof:

- ▶ how to associate a polynomial system with *s* and *r*-coronas?
- why (and how) we used resultants and interval arithmetic?
- which alternative strategies do exist?
- is it that easy, given the coronas, to find a packing?

the packings:

- \triangleright admire a compact packing for each pair (r, s).
- what diversity of packings allows each pair (r, s)?
- try yourself to pack it compact (javascript)!