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Sphere packings
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.
Question: densest packings?
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Theorem (Thue, 1910)

The densest packing in R? is the hexagonal compact packing.
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Sphere packings
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.
Question: densest packings?

Theorem (Vyazovska et al., 2017)
The densest packings are known in R® and R?*.
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Unequal sphere packings

The density becomes parametrized by the ratios of sphere sizes.
Natural problem in materials science!
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Unequal sphere packings

The density becomes parametrized by the ratios of sphere sizes.
Natural problem in materials science!

Theorem (Heppes-Kennedy, 2004-2006)
The densest packings with two discs are known for seven ratios.
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Two discs
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The maximal density is a function §(r) of the ratio r € [0, 1].
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The hexagonal compact packing yields a uniform lower bound.
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Any given packing yields a lower bound for a specific r.
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It actually yields a lower bound in a neighborhood of r.
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Two discs
(r)
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lim 3(r) = (1) + (1 — 5(1))5(1) =~ 0.99133.
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Two discs
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The density in the rlr triangle is an upper bound (Florian, 1960).
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Two discs
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For r > 0.74, two discs do not pack better than one (Blind, 1969).
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The seven "magic” ratios
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0.41, root of X2 — 2.
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The seven "magic” ratios
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magic” ratios
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The seven "magic” ratios
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0.64, root of X* —10X2 —8X + 0.
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The seven "magic” ratios
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The seven "magic” ratios

0.96

0.92

09

L L L L L L
[ 0.2 0.4 0.6 0.8 1 r

0.55, root of X8-8X7-44X%-232X5-482X*-24X3+388X2-120X+9.
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Compact packings

The contact graphs of the 7 previous packings are triangulated.
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Compact packings

The contact graphs of the 7 previous packings are triangulated.
The one of the hexagonal compact packing of unit spheres also.

Definition
A packing of spheres is compact if its contact graph is simplicial.

The densest packings of unit spheres in R and R?* are compact!
Not in R3...where no compact packing of unit spheres does exist!

Compact packings are candidates to provably maximize the density.
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Compact packings with two discs
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Theorem (Kennedy, 2006)

There are nine ratios allowing a compact packing with two discs.
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Compact packings with two discs

Theorem (Kennedy, 2006)

There are nine ratios allowing a compact packing with two discs.

Remark: two have (still?) not been proven to maximize the density.
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Compact packings with three discs

Theorem (F.-Hashemi-Sizova)

There are 164 ratios allowing a compact packing with three discs.

7/9



Compact packings with three discs

Theorem (F.-Hashemi-Sizova)
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There are 164 ratios allowing a compact packing with three discs.
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There are 164 ratios allowing a compact packing with three discs.
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There are 164 ratios allowing a compact packing with three discs.
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Theorem (F.-Hashemi-Sizova)
There are 164 ratios allowing a compact packing with three discs.



Proof sketch
Let s < r < 1 be the three sizes of discs.

Definition
An x-corona is a sequence of sizes of discs around a disc of size x.
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Proof sketch
Let s < r < 1 be the three sizes of discs.

Definition
An x-corona is a sequence of sizes of discs around a disc of size x.

Claim
There are finitely many different s-coronas.

Lemma
There are finitely many different r-coronas in a compact packing.

Proposition
Each pair of s- and r-coronas yields a polynomial system in r and s.

Strategy

For each pair of s- and r-coronas, solve the polynomial system,
then find all the possible coronas and finally find the packings.
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Poster teaser

During the poster sessions, you can get more details about. . .

the proof:

» how to associate a polynomial system with s- and r-coronas?

v

why (and how) we used resultants and interval arithmetic?

v

which alternative strategies do exist?

v

is it that easy, given the coronas, to find a packing?
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Poster teaser

During the poster sessions, you can get more details about. . .

the proof:
» how to associate a polynomial system with s- and r-coronas?
» why (and how) we used resultants and interval arithmetic?
» which alternative strategies do exist?

> is it that easy, given the coronas, to find a packing?

the packings:
» admire a compact packing for each pair (r, s).
» what diversity of packings allows each pair (r,s)?

» try yourself to pack it compact (javascript)!
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