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A dynamical system is a space X and a map T which acts on it. Given a
point x ∈ X, we are interested in its trajectory or orbit

Ω(x) := {Tn(x) | n ∈ Z}.

Some examples of questions arising:

• does x have a periodic orbit, i.e., T k(x) = x for some k ∈ N?

• does x visit the whole space, i.e., does its trajectory go arbitrarily close
to any point y ∈ X?

• does x spend in any subset A ⊂ X a time proportional to its size, i.e.,

lim
n∞

#{0 ≤ k < n | T k(x) ∈ A}
n

?
=

vol(A)

vol(X)
.

A way to study these questions is to splitX in finitely many subsets {Xa, a ∈ A},
where A is a finite set called alphabet, and to encode the trajectory of a point x
by a sequence (xn)n∈Z ∈ AZ, where xn gives subset the trajectory of x falls in
at time n:

xn = a ⇔ Tn(x) ∈ Xa.

This is called the symbolic method. This is what we focus on here.

A general introduction can be found in [2]. We shall here only briefly recall
the main definitions (Section 1) and focus on the emptyness problem (Section 2).
We then turn to 2-dimensional symbolic dynamics, which is strongly related
with tiling theory (Section 3) and consider again the emptyness problem, which
becomes much harder (Section 4).

1 Shifts

For x and y in AZ, define

d(x, y) := 2− inf{|k| | xk 6=yk}.

In other words, the farthest from zero x and y agree, the smallest is d.
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Proposition 1 The map d is a distance over X.

Definition 1 A shift is a subset X ⊂ AZ closed and invariant by translation.

Example 1 The set AZ of all the trajectories is a shift, called the full shift.

Example 2 The set with only the trajectory x such that x2k = a and x2k+1 = b
is not a shift. It is indeed not invariant by translation: translating x by one
position yields the trajectory y such that y2k = b and y2k+1 = a, which is
different from x. We get a shift by adding this trajectory:

X1 := {x, y}.

Example 3 The set of the trajectories over {a, b} which contains exactly one
b is not a shift. It is indeed not closed: by translating arbitrarily far a given
trajectory, we get at the limit the trajectory aZ (the b “disappears” at infinity)
which is not in this set. We get a shift by adding this trajectory:

X2 := {x ∈ {a, b}Z | x contains at most one b}.

We call word over A a finite sequence of letters of A. For example, w = abba
is a word of length 4. Words allow an equivalent definition of shifts:

Proposition 2 A set X ⊂ AZ is a shift if and only if there exists a set F of
words, called forbidden words, such that

X = {x ∈ AZ | no word in F appears in x}.

The shift X is said to be defined by the forbidden words F .

Example 4 The fullshift is defined by F = ∅.

Example 5 The shift X1 is defined by F = {aa, bb}.

Example 6 The shift X2 is defined by F = {bb, bab, baab, . . .} = {bakb, k ≥ 0}.

Definition 2 A shift of finite type (in short, SFT) is a shift defined by a finite
set of forbidden factors.

Example 7 The fullshift is an SFT.

Example 8 The shift X1 is an SFT.

Example 9 The shift X2 is not an SFT. The fact that we previously defined it
by infinitely many forbidden factors is not sufficient: we shall show that there is
no way to define it by finitely many forbidden factors. We proceed by contradic-
tion. Assume that there exists a finite set F of forbidden words which define X2,
with k being the length of the largest one. Consider a trajectory x with exactly
two b’s (hence not in X2) at distance k from each other:

x := · · · aaabakbaaa · · · /∈ X2.
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A word of length k which appears in x has at most one b because the two b’s are
too far apart. Such a word cannot be forbidden since it appears in the trajectory

y = · · · aaabaaa · · · ∈ X2.

Hence x has no forbidden word and should be in X2. This is a contradiction.

One can show that any SFT can be defined as the set of infinite paths in a
finite state automaton. But there are finite state automata whose set of infinite
paths are not an SFT. This yields the notion of sofic shifts, which can be proven
to be exactly the set of infinite paths in a finite state automaton.

Definition 3 A shift X over A is sofic if it is the image of an SFT Y over B
by a factor map φ : B → A.

In particular, any SFT is a sofic shift (take B = A and φ the identity). The
converse is false as we shall see on examples.

Example 10 The shift X2 is sofic (but it is not an SFT as already seen). To
prove this, let Y2 be the SFT over {a1, a2, b} defined by the forbidden words

F := {ba1, a2a1, a2b, a1a2}.

These forbidden word ensure that, the trajectory of Y2 are exactly those where
there is either no b, or exactly one b with only a1 before and only a2 after.
Indeed, the first forbidden word ensures that after a b we have a2 and the two
second ones that after this a2 there are only a2’s. Similarly, the third forbidden
word ensures that before a b we have a1 and the first and last ones that before this
a1 there are only a1. Now, let φ be the factor map defined by φ(a1) = φ(a2) = a
and φ(b) = b. We have φ(Y2) = X2.

Example 11 In a trajectory, we call run a maximal sequence of consecutive
identical letters. Then the following set is a sofic shift but not an SFT:

X3 := {x ∈ {a, b}Z | any run of a has even length}.

It is a shift since it can be defined by the forbidden words

F = {ba2k+1b | k ≥ 0}.

The proof that it is not an SFT looks like the proof that X2 is not an SFT.
Assume indeed that there exists a finite set F of forbidden words which define
X3, with k being the length of the largest one. Any trajectory whose runs of
a have length at least k cannot have forbidden words and must thus be in X3.
This yields a contradiction since such trajectories can have runs of odd length.
Now, to prove that it is sofic, let Y3 be the SFT over {a1, a2, b} defined by

F3 := {ba2, a1b, a1a1, a2a2}.
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These forbidden word ensure that the trajectory of Y3 are exactly those where the
letters between two b’s form a word a1a2 · · · a1a2, which has even length. Indeed,
the first forbidden word ensures that this word begins with a1, the second one
that it ends with a2, and the two last ones that it alternates a1 and a2. We have
φ(Y3) = X3, where φ is the same factor map as in the previous example.

Example 12 The following set is a sofic shift but not an SFT:

X4 := {x ∈ {a, b}Z | any run of a has odd length}.

The proof goes the same way as in the previous example, with instead of Y3 an
SFT Y4 defined by the forbidden words

F4 := {ba1, a1b, a1a1, a2a2},

where the letters between two b’s of a trajectory form a word a2a1a2 · · · a1a2,
which has odd length.

Example 13 The following set is a shift but it is not sofic:

X5 := {x ∈ {a, b}Z | the runs of a have all the same length}.

It is indeed a shift since it can be defined by the following forbidden words, which
enforce two consecutive runs of a to have the same length

F5 = {bapbqarb | p, q, r ≥ 1, p 6= r}.

We prove that it is not sofic by contradiction. Assume indeed that there is an
SFT over an alphabet B, say Y5, and a factor map φ such that X5 = φ(Y5).
Consider a finite set of forbidden words which define Y5, with k being the length
of the largest one. Fix q ≥ 1 and define

x := · · · bbbaqbaqbbb · · ·

where the b between the two runs of a is in position 0. It is a trajectory of X5

since its two runs of a have the same length. It must thus be the image by φ
of some trajectory y ∈ Y5. Since there is only finitely many different words of
length k over the (finite) alphabet A, if we choose q large enough1, the word
y1 · · · yq contains two times the same word of length k, say in positions i < j.
Define a new trajectory y′ by inserting in y at position j the word yi · · · yj−1:

y′ = · · · y0y1 · · · yi · · · yj−1|yi · · · yj−1|yj · · · yqyq+1 · · ·

The way y′ is constructed ensures that any word of length k which appears in
y′ between position 1 (the letter y1) and q + j − i (the letter yq) appears in y
between position 1 and q (the case k < j − i is maybe easier to see than the
case k ≥ j − i). Such a word of length k is thus not a forbidden words, whence
y′ ∈ Y5. Moreover,

φ(y′) = · · · bbbaqbaq+j−ibbb · · ·
which is not in X5. This is a contradiction with X5 = φ(Y5).

The proof can also be carried on an automaton that describes X5: it is then
just an application of the pumping lemma.

1Choosing q = Card(A)k + k is sufficient.
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2 Empty or not empty?

We shall here focus on a basic question on SFT’s: given X an SFT defined by
a finite set of forbidden words, can we decide whether X is empty or not?

Example 14 Let X ⊂ {a, b}Z be the SFT defined by

F = {bb, aaa, babab, baabaab}.

It is not empty since it contains the periodic trajectory (aabab)Z.

In the above example, we showed that an SFT is not empty by explicitly
giving a trajectory, namely a periodic one. This is general:

Proposition 3 Any non-empty SFT contains a periodic trajectory.

Proof. Let X be an SFT defined by a finite set of forbidden factors, with k
being the length of the largest one. If X is not empty, let x ∈ X. Since there
are finitely many different words of length k in x, one of them must repeat at
least twice, say in position i < j. Then, any factor of length k of the following
trajectory appears in x:

x′ := (xixi+1 · · ·xj−1)Z.

This yields a periodic trajectory in X. ut

Conversely, the following proposition shows that if the SFT is empty, we do
not have to search a periodic trajectory for ever:

Proposition 4 If an SFT is empty, then there exists k ≥ 0 such that that any
word of length k contains a forbidden word.

Proof. Assume, conversely, that for each k, there exists a word uk of length k
which does not contain any forbidden word. Let us show that X is not empty.
Up to deleting its last letter, one can assume that each uk has odd length. We
build with these words an infinite stack, with uk being on top of uk+1 and the
central letter of uk being in position 0. Since the alphabet the uk’s are defined
on is finite, at least one of the infinitely many letters in the column at position 0
of this stack, say x0, appears infinitely many times. We remove from the stack
all the words uk that do not have x0 in position 0. We get a new stack which
is still infinite. By iterating the process on the columns {1,−1, 2,−2, . . .}, we
get after 2n+ 1 steps a sequence xi such that all the words of our infinite stack
have the letter xi is position i, for −n ≤ i ≤ n. Let x be the trajectory defined
by the xi’s. Since any finite word which appears in x appears in a large enough
uk, x cannot have any forbidden word. Thus x ∈ X: the SFT is not empty. ut

The two previous propositions yield an algorithm to decide in finite time
whether an SFT defined by forbidden words is empty or not (Algorithm 1).

5



Algorithm 1: isEmptySFT

Data: A finite set F of forbidden words which define an SFT X
Result: X is empty or not
k ←length of the largest word in F ;
hope← false;
while hope do

hope← false;
for u in words of length k do

if uu has no word in F then
return ”X is not empty”;

if u has no word in F then
hope← true;

return ”X is empty”;

3 2-dimensional shifts

A configuration is an element of AZ2

. The distance between two configurations
is defined by

d(x, y) := 2− inf{max(|i|,|j|) | xij 6=yij}.

A pattern is a finite set of letters indexed by Z2 (their positions). A shift is a

subset of AZ2

which avoid a set of forbidden patterns. An SFT is a shift defined
by finitely many forbidden patterns. A shift over A is sofic if it is the image of
an SFT over B by a map from B → A.

Example 15 The SFT over {a, b} where a and b alternate as black and white
cells on a checkerboard is an SFT which can be defined by two forbidden pattern:

F =

{
aa,

b

b

}
Example 16 We generalize Example 11. Consider the set X6 of configurations
over {a, b} such that any finite connected component of a’s has even size, where
two letters are connected if they are horizontal or vertical neighboor. This is a
shift: it can be defined by all the forbidden patterns made of an odd size con-
nected component of a’s surrounded by a layer of b’s (that is, there is a letter b
in each cell connected to an a of the connected component). Let us show that it
is sofic.

Consider an even size connected component (Fig. 1, first picture, with the
a’s being depicted as white tiles and the b’s as dark tiles). Take a spanning
tree of the graph whose vertices are the a’s and the edges connect neighboor a’s.
Consider an edge of this spanning tree (Fig. 1, second picture, encircled edge).
Removing this edge would split the tree into two subtrees which must have either
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both odd size or both even size (to sum up to an even size). We indeed remove
this edge only if both subtrees have even size (Fig. 1, third picture). We proceed
the same way for each edge (Fig. 1, last picture).

Figure 1: How to transform an odd size connected component into a tiling.

This process transforms the connected component of a’s into a tiling by two
types of tiles (up to rotation): a white square with one half-edge and one with
three half-edges. Indeed, removing a vertex v of the spanning tree would split
it into at most 4 subtrees, with the number of subtrees of odd size being odd in
order to sum up, together with v, to an even number (the even size subtrees
do not change the parity). There is thus 1 or 3 such subtrees, and they are
exactly those which remain connected to v once the process completed. Note
that the tile with three half-edges can be necessary, for example for a connected
component made of three a’s in line and a fourth one adjacent to the middle one.

Conversely, consider a finite connected component of a’s surrounded by a
layer of b’s and assume that the connected component can be tiled by the two
previous white tiles. If there are p tiles with a half-edge and q ones with three
half-edges, then the total number of edges is (p+q)/2, which must be an integer.
Hence the size p+ q of the connected component must be even.

In conclusion, if φ maps the two white tiles to a and the dark one to b, then
X6 is exactly the image under φ of the set of tilings of the plane by these tiles.
This set of tilings can be easily seen as an SFT by using one letter for each tile
(in each orientation) and by forbidding two letters to be neighboor if the half-
edges on the corresponding tiles do not match. This proves that X6 is sofic.

The shift defined in the same way except that connected components of a’s
must have odd size is also sofic, but the proof turns out to be much more difficult.

Let us focus again on the basic question: given a finite set of forbidden
patterns, can we decide whether the 2-dim. SFT they define is empty or not?
The proof of Proposition 4 extends to this 2-dim. case without difficulty, but the

7



proof of Proposition 3 is very specific to the 1-dim. case. Actually, Proposition 3
does not extend at all to the 2-dim. case:

Theorem 1 There exists a non-empty SFT without any periodic configurations.

The first such SFT has been defined by Berger in 1964. A somehow simpli-
fied version appears in [3] (see also [1] for a short proof of only this result). The
tiles and a (partial view of a) tiling are depicted on Fig. 2.

Figure 2: The Robinson tiles (left) and a partial view of a tiling by them.

This means that Algorithm 1 cannot be easily extended to an algorithm
which decides whether a 2-dim. SFT is empty or not. As we shall see, such
an algorithm cannot exist. The reader who wants to convince himself that the
question is hard can try to decide whether the sets of Wang tiles2 on Fig. 3, 4
and 5 can tile the plane or not (the answer is given without a proof).

Figure 3: Wang tiles which tile periodically the plane.

2Wang tiles are unit square with colored sides which can be translated but not rotated.
Each tile can be used as many time as needed to form a tiling of the plane where two adjacent
tiles always have the same color on their common side (if such a tiling does exist).
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Figure 4: Wang tiles which do not tile the whole plane.

Figure 5: Wang tiles which tile the plane but never periodically.

4 Indecidability

Running a big computation on a computer, it is worth knowing if it will even-
tually halt or if a bug in the program will make it last forever. . . This is the
so-called halting problem, proven to be undecidable by Turing in 1937:

Theorem 2 There is no algorithm deciding whether a program eventually halts.

Indeed, if such a program halt would exist, then it would give a wrong
answer on the following program:

prog P():

if halt(P())

loop forever

else

return "goodbye"

Programs are here assumed to have no entry parameter (this is what we need
further), but the result still holds with entry parameters.

We will need to formalize the notion of program. We rely on Turing machine.
A Turing machine is a device which can read or write the cells of an infinite
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tape. It has a finite number of states, a head positioned on the cell of the tape
it can read in or write on, and it is defined by transition rules of the type

(x, qj)→ (y,±1, qk),

which means that if the machine reads x in cell i being in state qj , then it writes
y on cell i, moves its head to cell i ± 1 and enters state qk. It has also a state
denoted by � such that the computation halts if the machine enters this state.

Example 17 The following Turing machine adds 1 to the number written in
binary on the tape (least significant bit in the cell it is positioned on), then halts:

(1, q) → (0,+1, q),

(0, q) → (1,+1,�).

Example 18 What does the following Turing machine on a tape filled with 0?

(0, q0) → (1,+1, q1),

(0, q1) → (1,−1, q1),

(0, q2) → (1,−1, q2),

(1, q0) → (1,+1,�),

(1, q1) → (0,+1, q2),

(1, q2) → (1,−1, q0).

Now, we want to simulate the computation of a Turing machine by a tiling.
The idea is that tiles will be squares corresponding to the cells of the tape, with
the k-th row of the tiling corresponding to the state of the tape after k steps of
computation. We assume that tiles cannot be rotated, and that two neighboor
tiles have the same “color” on the side they are adjacent. We also need some
tiles to start the computation. Fig. 6–8 illustrates this.

Figure 6: Tiles to simulate the Turing machine of Example 17. The three first
tiles simulate the first transition, the next one the second transition, and the
two last ones just keep from time k to k + 1.

Now, given a Turing machine, consider the corresponding tiles and place
somewhere on the plane a tile which starts the computation. If the computa-
tion simulated by these tiles eventually halts, then the tiling can not be further
extended since no tile match with the state �. On the contrary, if the compu-
tation lasts forever, then one gets a tiling of the upper half plane, and there is
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Figure 7: Tiles to initialize the computation of the Turing machine of Exam-
ple 17. The two first tiles start the computation in state q with 0 or 1 in the
current celle. The four next ones allow to fill freely the initial tape with 0 and
1, but with no other head (that is, no parallel computation). The last tile is for
the half plane below the initial tape.

Figure 8: Example of a computation by the above tile (partial view of the tiling).
A tile initializes the computation in state q on the second row (from bottom).
The computations runs for 3 steps (upwards) and then enters the halting state
� (top row): the tiling can not be further extended.
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thus a tiling of the whole plane via the argument used in the proof of Propo-
sition 4 (if one can tile arbitrarily large squares, then one can tile the whole
plane). Hence, any algorithm to decide whether a tile set tiles the plane with
a tile starting the computation would yield an algorithm to decide whether a
Turing machine halts or not.

However, with the above tiles, one can easily tile the plane without using
the tile which starts a computation: we could indeed use only tiles that transfer
a letter. We thus need a new idea to enforce the tile which starts a computation
to appear somewhere. Actually, the computation cannot start in only one place,
because it would yields arbitrarily large squares in the tilings without any com-
putation, and again the same argument as in the proof of Proposition 4 would
yield a tiling of the whole plane without any computation. The same computa-
tion must thus start everywhere! A first idea is to use a periodic tiling to start
periodically the computation, but this mean that the whole computation must
fit into a period of the tiling, that is, it has both bounded space and bounded
time to work. In particular, if the simulated Turing machine needs more time
or space to halt, it will not be detected. We thus need a tile set which tile the
plane but not periodically.

A solution is to combine the tiles which compute with the Robinson tiles,
following [3] (recall Fig. 2). This is done so that any square of the Robinson
tiling3 starts on its lower edge a computation that cannot go outside the square
itself. Since the size of these squares is unbounded, the Turing machine even-
tually halts if and only if a tile with the halting state shall necessarily occur
in a large enough square. Since no other tile match this tile, this means that
the tiling cannot be completed on the whole plane. Hence, any algorithm to
decide whether a tile set tiles the plane or not would yield an algorithm to
decide whether a Turing machine halts or not. We skiped here many details
(for example, the computation in a large square shall not be mixed with the
computations of the smaller squares contained in this large square), but these
are the main ideas which allow to prove

Theorem 3 There is no algorithm deciding whether a 2-dim. SFT is empty.
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