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The Problem
°

Canonical n — d tilings

o

n pairwise non-colinear vectors of R? ~» (1) tiles ~ tiling of R?.
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Canonical n — d tilings

o

Lift: homeomorphism which maps tiles on d-faces of unit n-cubes.
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Planarity
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Planar: lift in E 4 [0, t]”, where E is the slope and t the thickness.
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Perfect: planar with the minimal thickness t = 1.
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Local rules

Definition
A slope E admits local rules if there is a finite set of patterns s.t.
any canonical tiling without these patterns is planar with slope E.

Local rules are said to be
o strong if the tilings satisfying them are perfect;
@ natural if the perfect tilings satisfy them;

@ weak otherwise (the thickness is thus just bounded).

Local rules can also be decorated, with a tile playing different roles.
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The Computability barrier

Computable number: within precision € by a Turing machine.

Proposition

If a slope admits local rules (of any type), then it is computable.

Proof sketch:

let t be the thickness (assumed to be known if rules are weak);

let € be the wanted precision;
form a pattern covering a ball of radius r > t/e;

take d free vectors of length r in this pattern;

they span a space at distance less than t/r from the slope.
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°

Subshifts

Definition
A nD subshift over an alphabet A is a translation invariant closed
subset of AZ", where d(u, v) = 27 SUPk20UI—k K" =VI[—kK"

A subshift is said to be
o effective if its forbidden patterns are recursively enumerables;

o of finite type if defined by finitely many forbidden patterns;
o sofic if it is a letter-to-letter image of a subshift of finite type.



The Tool
.

Projective subaction

Theorem (Aubrun-Sablik’10, Durand-Romashchenko-Shen'10)
If X C AZ is effective, then {y € AZ*, Vj, y; = yo€ X} is sofic.

Proof sketch:
@ Take the Robinson tiles;
o Add a layer which allows to vertically repeat any line in A%;
@ Enumerate the forbidden patterns in the Robinson boards;

@ Check that no forbidden pattern appears on the repeated line.
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°

Quasi-Sturmian words

Sturmian word s, , € {0,1}Z of slope a € [0, 1] and intercept p:
Spa(n) =0 < (p+na) modle[0,1—a).
Distance over words in {0, 1}%:

d(u,v) = Z‘iﬁ,”“(p) - u(q)lo = [v(p) -~ v(q)lol-

Proposition (Morse-Hedlund, 1940)

Two Sturmian words with the same slope are at distance at most 1.
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°

Quasi-Sturmian words

Sturmian word s, , € {0,1}Z of slope a € [0, 1] and intercept p:
Spa(n) =0 < (p+na) modle[0,1—a).
Distance over words in {0, 1}%:

d(u,v) = Z‘iﬁ,”“(p) - u(q)lo = [v(p) -~ v(q)lol-

Proposition (Morse-Hedlund, 1940)

Two Sturmian words with the same slope are at distance at most 1.

Definition

Quasi-Sturmian word: at distance at most 1 from a Sturmian word.




Stripes of perfect 3 — 2 tilings
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Perfect 3 — 2 tiling: intertwined stripes encoding Sturmian words.



Stripes of perfect 3 — 2 tilings
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Parallel stripes encode quasi-Sturmian words with the same slope.
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A sofic subshift

Proposition
The Sturmian words of comput. slope o form an effective subshift.

Proof sketch: compute patterns up to have n+ 1 factors of size n.

The following 2D subshift is thus sofic:
2 .
ZOé = {.y € {0) 1}Z ) \V/j, Yi=Y= 501,0}7
and the quasi-Sturmian subshift also (use a “carry” layer):

7! ={y € {0,137, V), d(y},5a0) < 1}.
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Sturmian subshifts

moﬁ”oﬂoﬂioﬂoﬂi LB
A AT I AP IO IO
O IS O K

A7)
T
=
(o
(@)
)
(2]
oY)

=

B

(@\]

(9p]
4+
O

v
-
()
o
£
()
hud

LL



The Proof

Sturmian subshifts
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From perfect 3 — 2 tilings to quasi-Sturmian subshifts
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From perfect 3 — 2 tilings to quasi-Sturmian subshifts
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From quasi-Sturmian subshifts to planar 3 — 2 tilings
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From quasi-Sturmian subshifts to planar 3 — 2 tilings
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3 — 2 tilings

to planar
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3 — 2 tilings

to planar
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3 — 2 tilings

to planar
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intertwined quasi-Sturmian subshifts.

D

Perfect n — d tilings:
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intertwined quasi-Sturmian subshifts.

Perfect n — d tilings:
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intertwined quasi-Sturmian subshifts.

Perfect n — d tilings:
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Higher (co)dimensions

Perfect n — d tilings: ((g')) intertwined quasi-Sturmian subshifts.
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Higher (co)dimensions

Perfect n — d tilings: ((g)) intertwined quasi-Sturmian subshifts.
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Higher (co)dimensions

Perfect n — d tilings: ((g)) intertwined quasi-Sturmian subshifts.
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Higher (co)dimensions

Perfect n — d tilings: ((g)) intertwined quasi-Sturmian subshifts.



Conclusion /Perspectives

Decorated local rules

The computable slopes have natural decorated rules (thickness 2).
Do they have strong decorated local rules (i.e., thickness 1)?




Conclusion /Perspectives

Decorated local rules
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Do they have strong decorated local rules (i.e., thickness 1)?

Undecorated local rules

Decorations can be encoded by “fluctuations” at the cost of an
increase of 1 in the thickness, but the rules are no more natural.




Conclusion /Perspectives

Decorated local rules

The computable slopes have natural decorated rules (thickness 2).
Do they have strong decorated local rules (i.e., thickness 1)?

Undecorated local rules

Decorations can be encoded by “fluctuations” at the cost of an
increase of 1 in the thickness, but the rules are no more natural.

Natural undecorated local rules

Only algebraic slopes can have natural undecorated rules (Le '95).
Even fewer slopes can have strong undecorated rules (Levitov '88).
There is yet no complete characterization of these slopes.
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