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1 Introduction

Sturmian words are known to be codings of digitizations of an irrational
straight line [KR04,Loth02]. One could expect from a higher-dimensional gen-
eralization of Sturmian words that they correspond to a digitization of a hy-
perplane with irrational normal vector. It is thus natural to consider the dig-
itization scheme corresponding to the notion of arithmetic planes introduced
in [Rev91]: this notion consists in approximating a plane in R

3 by selecting
points with integral coordinates above and within a bounded distance of the
plane; more precisely, given v ∈ R

3, and (µ, ω) ∈ R
2, the lower (resp. up-

per) arithmetic hyperplane P(v, µ, ω) is the set of points x ∈ Z
3 satisfying

0 ≤ 〈x,v〉+µ < ω (resp. 0 < 〈x,v〉+µ ≤ ω). Moreover, if ω =
∑

|vi| = ‖v‖1,
then P(v, µ, ω) is said to be standard.

In this latter case, one approximates a plane with normal vector v ∈ R
3 by

square faces oriented along the three coordinates planes. The union of all these
faces is called a stepped plane; the standard discrete plane P(v, µ, ‖v‖1) is
then equal to the set of points with integer coordinates that belong to the
stepped plane; after orthogonal projection onto the plane x1 + x2 + x3 = 0,
one obtains a tiling of the plane with three kinds of lozenges, namely the
projections of the three possible faces. One can code this projection over Z
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by associating with each lozenge the name of the projected face it correponds
to. These words are in fact three-letter two-dimensional Sturmian words (see,
e.g., [BV00]).

A generalization of the notion of stepped plane, the so-called discrete surfaces,
is introduced in [Jam04,JP05]. A discrete surface is defined as a union of
pointed faces such that the orthogonal projection onto the diagonal plane
x1 + x2 + x3 = 0 induces an homeomorphism from the discrete surface onto
the diagonal plane. As it is done for stepped planes, one provides any discrete
surface with a coding as a two-dimensional word over a three-letter alphabet.
In the present paper, we call the discrete surfaces functional stepped surfaces,
since such objects are not discrete, in the sense that they are not subsets of
Z

3. Furthermore, one could define more general stepped surfaces, for instance
approximations of spheres; the surfaces we consider here are functional, that is,
they project homeomorphically onto the diagonal plane and can be described
as graphs of piecewise affine maps defined on the diagonal plane.

Let us recall that a substitution is a non-erasing morphism of the free monoid.
It acts naturally on all finite and infinite words. In particular, it maps a two-
sided word to a two-sided word. We are interested here in higher dimensional
analogues of substitutions. It is easy to define a two-dimensional substitution
which replaces each letter by a rectangle of fixed size. This is the analogue
of substitutions of constant length, and such a substitution acts on the set of
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all two-dimensional words. For such examples, see for instance [AS03]. In the
present paper, we deal with substitutions of non-constant length; one easily
sees that such a substitution cannot be meaningfully defined on all the two-
dimensional words: if two letters are replaced by patterns of different shapes,
and if we consider two two-dimensional words that differ in exactly one place
by the corresponding letters, it is not possible that both two-dimensional words
are sent by the substitution to complete two-dimensional words. In fact, it is
not even clear that the substitution can act on some two-dimensional words.

A notion of multidimensional substitution of non-constant length acting on
multidimensional words is studied in [AI01,AIS01,ABI02,ABS04,Fer05b], in-
spired by the geometrical formalism of [IO93,IO94]. These multidimensional
substitutions are proved in [AI01] to be well-defined on multidimensional Stur-
mian words. Such a multidimensional substitution can be associated with any
usual unimodular substitution (a substitution is said unimodular if the de-
terminant of its incidence matrix equals ±1). The aim of the present paper
is to explore the domain of definition of such multidimensional substitutions.
The main result of the present paper is thus the following: the image of a
functional stepped surface under the action of a 2-dimensional substitution is
still a functional stepped surface.

Our proofs are based on a geometrical approach, using the generation of func-
tional stepped surfaces by flips. A flip is a classical notion in the study of
dimer tilings and lozenge tilings associated with the triangular lattice; see, e.g.,
[Thu89]. It consists in a local reorganization of tiles that transforms a tiling
into another one. Such a reorganization can also be seen in the 3-dimensional
space on the functional stepped surface itself. Suppose indeed that a func-
tional stepped surface contains 3 faces that form the lower faces of a unit cube
with integer vertices. By replacing these three faces by the upper faces of this
cube, one obtains another functional stepped surface (see Figure 7). We prove
that any functional stepped surface can be obtained from a stepped plane by
a sequence of flips, possibly infinite but locally finite, in the sense that, for
any bounded neighborhood of the origin in the diagonal plane, there is only
a finite number of flips whose domain has a projection which intersects this
neighborhood.

This paper is organized as follows. In Section 2 and 3, we give precise defi-
nitions for stepped planes, functional stepped surfaces, their codings and re-
view their basic properties. Section 4 is devoted to the generation of a func-
tional stepped surface by a locally finite sequence of flips performed on a given
stepped plane. Generalized substitutions associated with a unimodular sub-
stitution are introduced in Section 5.1; we prove the image of a stepped plane
by such a susbtitution is again a stepped plane, whose parameters can be ex-
plicitly computed. Finally, in Section 5.2, we prove generalized substitutions
act on the set of functional stepped surfaces, furthermore the main result of
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the present papaer, that is, the image of a functional stepped surface is again
a functional stepped surface.

We remark that we deal here with three types of objects: functional stepped
surfaces, lozenge tilings of the plane and two-dimensional words. There is a
straightforward relation between these objects: there is a one-to-one corre-
spondence between lozenge tilings and functional stepped surfaces containing
the origin, or functional stepped surfaces up to a translation by a multiple of
the diagonal vector (1, 1, 1) (of course, the translate of a stepped surface by
this vector gives the same lozenge tiling by projection): any tiling can be lifted
in a unique way, up to translation, to a functional stepped surface, as it is intu-
itively clear by looking at the picture of a tiling (see for instance Figure 3). The
map which associates with a lozenge tiling the corresponding symbolic coding
is obviously one-to-one, but not onto; the set of words obtained in this way can
be completely described by a local condition (see [Jam04,JP05]). Hence the
multidimensional substitutions we deal with here can be equivalently defined
as acting either on functional stepped surfaces, or on their codings as a two-
dimensional word over a three-letter alphabet, or lastly, on the corresponding
tiling of the plane by lozenges. For the sake of clarity, we choose here to focus
on the first point of view, that is, on multidimensional substitutions acting on
faces of functional stepped surfaces.

2 Stepped planes

There are several ways to approximate planes by integer points, see for instance
the survey [BCK04]. All these methods boil down to selecting integer points
within a bounded distance from the considered plane and such objects are
called discrete planes. In the present paper, we deal with an approach inspired
by the formalism of [AI01], see also [IO93,IO94,BV00,ABI02].

Let {e1, e2, e3} denote the canonical basis of R
3. Let x ∈ Z

3 and i ∈ {1, 2, 3}.
The face (x, i⋆) is the subset of R

3 defined as follows:

(x, i∗) =






x +

∑

j 6=i

λjej, λj ∈ [0, 1]






.

The integer i ∈ {1, 2, 3} is called the type of the face (x, i∗). We denote by F

the set of faces F = {(x, i∗), x ∈ Z
3, i ∈ {1, 2, 3}}, and by G, the set of (finite

or infinite) unions of faces of F . Endowed with the union operation, G is a
monoid. In the sequel of the present paper, we need more structure on the set
G. We provide G with a distance as follows:

Definition 1 (Distance between sets of faces) Given E and E ′ in G , we
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e1 e2

e3

0 0 0

Figure 1. Examples of faces in R
3.

set:

d(E , E ′) = 2− sup{r∈R+∪{∞}, ∀(v,i∗)∈F, ‖v‖∞≤r, then (v,i∗)⊆E⇐⇒(v,i∗)⊂E ′}.

One easily checks that d : G × G −→ [0, 1] defines a distance on the set G.
Roughly speacking, the lerger the balls B(0, r) = {x ∈ R

3, ‖x‖∞ < r} the sets
E and E ′ coincide on, the closer the sets E and E ′ are. In all that follows, G
stands for the union G provided with the topology induced by the distance d.

From now on, we denote by R
3
+ the set of vectors in R

3 with positive coordi-
nates. We then define stepped planes as a particular set of faces as follows:

Definition 2 (Stepped plane) Let v ∈ R
3
+ and µ ∈ R. The stepped plane

with normal vector v and translation parameter µ is the subset P(v, µ) of G
defined as follows:

P(v, µ) =
3⋃

i=1

⋃

x∈Z3

0≤〈x,v〉+µ<vi

(x, i∗).

Figure 2. A piece of a stepped plane in R
3.

In other words, one has:

Proposition 1 ([IO93,IO94]) Let v ∈ R
3
+ and µ ∈ R. The stepped plane

P(v, µ) is the boundary of the union of the unit cubes intersecting the open
half-space {x ∈ R

3, 〈v,x〉 + µ < 0}. The set P(v, µ) ∩ Z
3 is called the set of

vertices of P(v, µ).

Let ∆ be the diagonal plane of equation x1 + x2 + x3 = 0 and let π be the
orthogonal projection onto ∆. By abuse of notation, we also denote by π the
map π : Z

3 −→ Z
2 defined by π(x) = (x1 − x3, x2 − x3). By construction,

a stepped plane is a union of (closed) faces of type 1, 2 or 3. By a relevant
choice of one distinguished vertex for each face, depending on the type of the
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latter, we obtain a canonical bijection between the vertices of P(v, µ) and the
two-dimensional lattice Z

2. One thus introduces the map v : F −→ Z
3 defined

by v(x, i∗) = x + e1 + · · · + ei−1, for i ∈ {1, 2, 3}.

Proposition 2 ([BV00,ABI02]) Let v ∈ R
3
+, µ ∈ R. One has

P(v, µ) ∩ Z
3 = v({(x, i∗), (x, i∗) ⊂ P(v, µ)}),

and thus

∀(m1, m2) ∈ Z
2, ∃!(x, i∗) ∈ P(v, µ), π ◦ v(x, i∗) = (m1, m2).

Furthermore, the restriction of the projection map π to P(v, µ) is one-to-one
and onto ∆; the projections of the faces of the stepped plane P(v, µ) tile the
diagonal plane ∆ with three kinds of lozenges (see Figure 3).

Figure 3. From a stepped plane to a tiling of the plane ∆ by three kind of lozenges.

Let us recall that according to J.-P. Reveillès’ terminology [Rev91], given v ∈
R

3 and (µ, ω) ∈ R
2, the lower (resp. upper) arithmetic hyperplane P(v, µ, ω)

is defined as the set of points x ∈ Z
3 satisfying 0 ≤ 〈x,v〉 + µ < ω (resp.

0 < 〈x,v〉 + µ ≤ ω). Moreover, if ω =
∑

|vi| = ‖v‖1, then P(v, µ, ω) is said
to be standard whereas it is said to be naive if ω = max |vi| = ‖v‖∞. One
thus checks that the set {x ∈ Z

3, ∃i ∈ {1, 2, 3}, (x, i∗) ∈ P(v, µ)} is the naive
arithmetic discrete plane P(v, µ, ‖v‖∞), whereas P(v, µ)∩Z

3 is the standard
arithmetic discrete plane P(v, µ, ‖v‖1), according to Proposition 2.

The bijection between the faces of P(v, µ) and the lattice Z
2 ensures us, that,

given a point (m1, m2) ∈ Z
2, there exists one and only one face (x, i∗) of

P(v, µ) such that π ◦ v(x, i∗) = (m1, m2) (see Proposition 2). We thus provide
each stepped plane with a two-dimensional coding as follows:

Definition 3 (Two-dimensional coding of a stepped plane) Let
P(v, µ) be a stepped plane with v ∈ R

3
+ and µ ∈ R. The two-dimensional cod-

ing of the stepped plane P(v, µ) is the two-dimensional word u ∈ {1, 2, 3}Z
2

defined by: for all (m1, m2) ∈ Z
2 and all i ∈ {1, 2, 3},

um1,m2 = i ⇐⇒ ∃(x, i∗) ⊂ P(v, µ) such that (m1, m2) = π ◦ v(x, i∗).
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Figure 4. From a lozenge tiling of ∆ to a 2D-word.

From Definition 3 and Proposition 2, an easy computation gives:

Proposition 3 Let v ∈ R
3
+, µ ∈ R and u ∈ {1, 2, 3}Z2

be the two-dimensional
coding of the stepped plane P(v, µ). Let (m1, m2) ∈ Z

2 and i ∈ {1, 2, 3}. Then
um1,m2 = i if and only if:

m1v1 + m2v2 + µ mod v1 + v2 + v3 ∈ [v1 + · · ·+ vi−1, v1 + · · · + vi[.

Of course not all the two-dimensional words over the three-letter alphabet
{1, 2, 3} code a stepped plane. For instance, a word containing two consecutive
1’s and two consecutive 2’s in the same row cannot be the two-dimensional
coding of a stepped plane. More generally, not all the two-dimensional words
over the three-letter alphabet {1, 2, 3} code a lozenge tiling of the plane ∆.
In order to generalize the notion of stepped plane to the one of functional
stepped surface (see Section 3), we use a slightly more precise property of the
restriction of the projection map π to P(v, µ).

Proposition 4 The restriction of the map π to P(v, µ) is a homeomorphism
onto the plane ∆.

Proof. We aleady know from Proposition 2 that the restriction of π is a
bijection. We first note that P(v, µ) is a closed subset of R

3. This is a direct
consequence of the fact that the faces (x, i∗) are closed subsets of R

3 and
that each ball B(y, R) = {y ∈ R

3, ‖y − x‖∞ < R}, with R > 0, intersects
a finite number of faces of P(v, µ). Second, since the map π : R

3 −→ {x ∈
R

3, x1+x2+x3 = 0} is closed, then the image of a closed subset of R
3 is a closed

subset of ∆. This holds in particular for the closed subsets of P(v, µ) and
π−1 : ∆ −→ P(v, µ) is continuous. It follows that the map π : P(v, µ) −→ ∆
is a homeomorphism.
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3 Functional stepped surface

It is natural to try to extend the previous definitions and results to more
general objects:

Definition 4 ([Jam04]) A union S of faces (x, i∗), where x ∈ Z
3 and

i ∈ {1, 2, 3}, is called a functional stepped surface if the restriction of the
projection map π to S is a homeomorphism.

In particular, a stepped plane is a functional stepped surface, according to
Proposition 4.

Proposition 5 ([Jam04,JP05]) Let S be a functional stepped surface. One
has S ∩ Z

3 = π ◦ v({(x, i∗), (x, i∗) ⊂ S}. Furthermore, given (m1, m2) ∈ Z
2,

there exists a unique face (x, i∗) ⊂ S such that (m1, m2) = π ◦ v(x, i∗).

Proof. The proof is deduced from a simple case study.

The following coding is thus well-defined:

Definition 5 A two-dimensional word u ∈ {1, 2, 3}Z2
is said to be the coding

of the functional stepped surface S if for all (m1, m2) ∈ Z
2 and for every

i ∈ {1, 2, 3}: um1,m2 = i ⇐⇒ ∃(x, i∗) ∈ S such that (m1, m2) = π ◦ v(x, i∗).

Proposition 6 A union of faces S ⊂ G is a functional stepped surface if and
only if the restriction of π to S is a bijection onto ∆.

Proof. Let S be a union of faces such that the restriction of π to S is a
bijection onto ∆. Then, S is a closed set. We just conclude similalry as in the
proof of Proposition 4.

Figure 5. A stepped surface.
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Proposition 7 Let S and S′ be two stepped surfaces. Then one has:

S = S′ ⇔ S ∩ Z
3 = S′ ∩ Z

3.

Proof. Let S be a functional stepped surface. It is sufficient to prove that
given the four vertices of a face, say (x, i∗) ∈ S, then the whole face is included
in S. On the contrary, since the restriction on ∆ of π−1 is continuous, then
there exists λ 6= 0 ∈ R such that (x + λ(e1 + e2 + e3), i

∗) ⊂ S. But then, the
vertices of (x, i∗) and of (x + λ(e1 + e2 + e3), i

∗) have the same projection by
π, hence a contradiction.

Definition 6 (i) Let x = (x1, x2, x3) ∈ Z
3 and x′ = (x′

1, x
′
2, x

′
3) ∈ Z

3 such
that π(x) = π(x′). We say that x is above x′ if x1 + x2 + x3 ≥ x′

1 + x′
2 + x′

3,
otherwise we say that x is below x′.
(ii) We then say that a functional stepped surface S is above (resp. below)
a stepped surface S′ if, for any x ∈ S ∩ Z

3 and x′ ∈ S′ ∩ Z
3 such that

π(v) = π(v′), x is above (resp. below) x′.

Definition 7 For s ∈ Z
3, we define two specific functional stepped surfaces

Ĉs and Čs by their intersections with Z
3, acording to Proposition 7 (see Figure

6):

Ĉs ∩ Z
3 = {s′ ∈ Z

3, (s1 − s′1)(s2 − s′2)(s3 − s′3) 6= 0 and s′i ≤ si, i ∈ {1, 2, 3}},

Čs ∩ Z
3 = {s′ ∈ Z

3, (s1 − s′1)(s2 − s′2)(s3 − s′3) 6= 0 and s′i ≥ si, i ∈ {1, 2, 3}}.

Figure 6. The stepped surfaces Ĉs (left) and Čs (right).

Proposition 8 Let S be a stepped surface and let s ∈ S∩Z
3. Then Ĉs (resp.

Čs) is below (resp. above) S.

Proof. Let S be a stepped surface, s ∈ S∩ Z
3 and s′ ∈ Čs. Let us assume

that s′3 = s3. The other cases can be handled similarly. We introduce a finite
sequence of points (wk)0≤k≤s1−s′1+s2−s′2

with values in Čs defined as follows:
w0 = s; for 1 ≤ k ≤ s1 − s′2, wk = s + ke1; and for s1 − s′1 + 1 ≤ k ≤
s1 − s′1 + s2 − s′2, wk = s + (s′1 + s1)e1 + ke2. One has ws1−s′1+s2−s′2

= s. We

9



now denote by (w′
k)0≤k≤s1−s′1+s2−s′2

the sequence of points with values in S

such that π(w′
k) = π(wk). In particular, π(w′

s1−s′1+s2−s′2
) = π(s′). One has,

for 0 ≤ k ≤ s1 − s′1, wk+1 − wk = e1. The functional stepped surface S is a
connected subset of R

3; indeed, it is the image of a connected set, namely ∆,
by a continuous map. Hence, wk+1 − w′

k+1 ∈ {e1 + e2 + e3, 0}. Similarly, for
s1 − s′1 + 1 ≤ k ≤ s1 − s′1 + s2 − s′2, one has wk+1 − wk = e2, which yields
wk+1 −w′

k+1 ∈ {e1 + e2 + e3, 0}. One thus gets that s′ is above w′
s1−s′1+s2−s′2

.

We similarly prove that Ĉs is below S.

Definition 8 A lozenge tiling of ∆ is defined as a union of lozenges π(x, i∗),
for (x, i∗) ∈ F such that this union covers ∆, and furthermore, the interiors
of two lozenges do not intersect.

Theorem 9 Let D =
⋃

(x,i∗)∈T π(x, i∗), where T ⊂ F , be a lozenge tiling of
∆. Then there exists a unique functional stepped surface S, up to translation
by the vector e1 +e2 +e3, of the form

⋃

(x,i∗)∈T π(y(x), i∗) with (y(x), i∗) ∈ F ,

and π(x, i∗) = π(y(x), i∗), for all (x, i∗) ∈ T . Such a functional stepped surface
is said to project onto D.

Proof. Let D =
⋃

(x,i∗)∈T π(x, i∗), where T ⊂ F , be a lozenge tiling of ∆.
Let us note that there is no reason for the union of faces

⋃

(x,i∗)∈T (x, i∗) to be
a functional stepped surface.

Let Γ be the lattice of ∆ generated by the vectors π(e1), π(e2), and π(e3).
Similarly as in the proof of Proposition 5 (see e.g. [Jam04,JP05]), one proves
by a finite case study that the points of D ∩ Γ = Γ are exactly the vertices of
the lozenges π(x, i∗), for (x, i∗) ∈ T , and are also exactly the points π◦v(x, i∗),
for (x, i∗) ∈ T . In other words, we have chosen a distinguished vertex for each
lozenge π(x, i∗): for any γ ∈ Γ, there exists a unique iγ ∈ {1, 2, 3} such that
i∗γ is the type of the lozenge whose distinguished vertex is γ. One thus gets
D =

⋃

γ∈Γ π(γ, i∗γ). Furthermore, there is a one-to-one correspondence between
the faces (x, i∗) of T , and the faces (γ, i∗γ), for γ ∈ Γ. Hence a functional
stepped surface projects onto D if and only if it is of the form

⋃

γ∈Γ(xγ, i
∗
γ)

such that for every γ ∈ Γ, then π(xγ) = γ.

Let us first exhibit a functional stepped surface of the form
⋃

γ∈Γ(xγ , i
∗
γ) such

that for every γ ∈ Γ, π(xγ) = γ. For that purpose, we introduce the oriented
graph G = (V, E) whose set of vertices is V = Γ, and whose set of edges E

is equal to the set of edges of the lozenges π(x, i∗), for (x, i∗) ∈ T , endowed
with both orientations. We first define a weight function on the edges of G

as follows: for any γ, γ′ ∈ Γ such that the oriented edge e(γ, γ′) from γ to γ′

belongs to E, then one sets w(γ, γ′) = 1, if γ′ = γ + π(e3), w(γ, γ′) = −1, if
γ′ = γ − π(e3), and 0, otherwise. One checks by induction on the lengths of
the cycles of G that the sum of the weights of a cycle is equal to zero. We thus
can define a height function on the vertices of G as follows: one sets h0 = 0,
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and for any γ, γ′ ∈ Γ such that the edge with vertices γ and γ′ belongs to
E, then hγ′ = hγ + 1, if γ′ = γ + π(e3), hγ′ = hγ − 1, if γ′ = γ − π(e3),
and hγ′ = hγ, otherwise. One checks that this function is well-defined for any
vertex of G since the graph G is connected, and according to the properties of
the weight function. We then define for γ ∈ Γ, xγ as the point of R

3 equal to
γ+hγ(e1+e2+e3), and i∗γ as the type of the unique lozenge whose distinguished
vertex has coordinates γ. We now consider S =

⋃

γ∈Γ(xγ , i
∗
γ). It remains to

prove that S is a functional stepped surface. According to Proposition 6, this
is a direct consequence of the fact that the restriction of π to S is a bijection,
which can be deduced from its construction.

Let us consider now a functional stepped surface that contains the origin 0
of R

3 and that projects onto D; it is of the form
⋃

γ∈Γ(yγ, i
∗
γ). with yγ − γ ∈

Z(e1 +e2 +e3), for all γ ∈ Γ. A functional stepped surface is connected, hence
one checks that necessarily, yγ = γ + hγ.

4 Flips acting on stepped surfaces

Let us define, for s ∈ Z
3, two specific unions of faces (see Figure 7):

čs =
3⋃

i=1

(s, i∗) and ĉs =
3⋃

i=1

(s + ei, i
∗).

Let us note that a functional stepped surface cannot contain simultaneously
ĉs and čs; furthermore, if a functional stepped surface contains one of them,
then by exchanging both unions, we still have a functional stepped surface.
This leads us to define a simple operation on functional stepped surfaces, the
so-called flip, such as depicted in Figure 7:

Definition 9 (Flip) Let s ∈ Z
3. The flip map ϕs : G → G is defined as

follows: if a union of faces E ∈ G contains ĉs (resp. ĉs), then ϕs(E) is obtained
by replacing ĉs by čs (resp. ĉs by čs); otherwise, ϕs(E) = E .

s

Figure 7. The action of flip ϕs, for x ∈ Z
3: čs (left) is exchanged with ĉs (right).

According to Theorem 9, we can perform a flip on a functional stepped surface
if and only if one can perform a classic flip in the sense, e.g., of [Thu89] on the
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lozenge tiling of the plane which corresponds to this functional stepped surface.

We are now interested in performing on a functional stepped surface, not only
one flip, but a sequence of flips. We first need to introduce the following notion:

Definition 10 (Locally finiteness) A sequence of flips (ϕsn
)n∈N is said to

be locally finite if, for any n0 ∈ N, the set {sn ∈ Z
3 , π(sn) = π(sn0)} is

bounded.

Then one has:

Proposition 10 Let S be a functional stepped surface and (ϕsn
)n∈N⋆ be a

locally finite sequence of flips such that the following limit exists:

S′ = lim
n→∞

ϕsn
◦ . . . ◦ ϕs1(S).

Then, S′ is a stepped surface.

Proof. By performing a single flip on a stepped surface, one easily checks
that one obtains a union of faces still homeomorphic by π to ∆, i.e., a func-
tional stepped surface. The case of the action of a finite number of flips is
straightforward. Suppose now we perform a locally finite sequence of flips
(ϕsn

)n∈N on the functional stepped surface S such that (ϕsn
◦ . . .◦ϕs1(S))n∈N

is convergent in G. According to Proposition 6, it is sufficient to prove that the
restriction of π to S′ is a bijection onto ∆. Let x and y be two points of S′

such that π(x) = π(y). There exists n ∈ N such that x,y ∈ ϕsn
◦ . . . ◦ϕs1(S).

Since ϕsn
◦ . . . ◦ ϕs1(S) is a functional stepped surface, it follows that x = y.

We thus have proved that the restriction of π is one-to-one.
Let z ∈ ∆. Let A be a bounded subset of ∆ containing x. By local finite-
ness of the sequence (ϕsn

)n∈N⋆ , there exists n0 ∈ N such that, if n ≥ n0,
then π(sn) 6∈ A. Take n1 ≥ n0; we also assume n1 large enough such that
S′ and ϕsn1

◦ . . . ◦ ϕs1(S) coincide on their intersection with π−1(A). Let
y ∈ ϕsn1

◦ . . .◦ϕs1(S) such that π(y) = z. Then one has y ∈ ϕsn
◦ . . .◦ϕs1(S)

for all n ≥ n1, and thus y ∈ S′. We have proved that the restriction of π is
onto, which concludes the proof.

Thus, flips allow to transform functional stepped surfaces into functional
stepped surfaces. However, one cannot necessarily transform a given func-
tional stepped surface into another given one by a locally finite sequence of
flips. See Figure 8 for some examples of (un)accessibility by flips.

In order to characterize the (un)accessibility by flips between stepped surfaces,
we introduce the notion of shadows, illustrated in Figure 9:

Definition 11 (Shadows) Let S be a functional stepped surface. We define
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Figure 8. One can transform the first stepped surface into the second one, and
conversely, by performing a finite number of flips. A locally finite sequence of flips
allows one to transform the second stepped surface into the third one (we perform an
infinite and locally finite sequence of flips which rejects to the infinity the only face
of type 1∗), but the converse transformation is impossible (no flip can be performed).
Lastly, we can neither transform by flips the fourth stepped surface into the third
one, nor conversely.

three projection maps from R
3 to R

2 by:

π1 : (x1, x2, x3) 7→ (x2, x3) π2 : (x1, x2, x3) 7→ (x1, x3)

and
π3 : (x1, x2, x3) 7→ (x1, x2).

The shadows of S are respectively defined as the three images of the stepped
surface S by these maps.

Figure 9. The shadows of the stepped surfaces of Figure 8. The central stepped
surface has all its shadows included in the corresponding ones of the leftmost stepped
surface. The shadows of the rightmost stepped surface are neither included in the
shadow of the other stepped surfaces, nor contain them.

Considering the functional stepped surfaces of Figure 8, it is worth remarking
that one can transform one functional stepped surface into another one if and
only if the shadows of the first one contain the respective shadows of the
second one (see Figure 9). This turns out to be a general fact:

Proposition 11 Let S and S′ be two functional stepped surfaces. The fol-
lowing assertions are equivalent:
(i) There exists a locally finite sequence (ϕsn

)n∈N of flips such that

S′ = lim
n→∞

ϕsn
◦ . . . ◦ ϕs1(S);

(ii) the three shadows of S′ are included in the corresponding shadows of S.

Proof. Since ĉs and čs have the same shadows, performing a flip does not
modify the shadows of a functional stepped surface. By performing a sequence
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of flips, the shadows cannot be extended. However, note that they can be
reduced (recall the example of Figure 9). Thus, a stepped surface S′ can be
obtained by performing a locally finite sequence of flips on a stepped surface
S only if the three shadows of S′ are included in the corresponding shadows
of S.
Conversely, let S′ and S be two functional stepped surfaces such that the
three shadows of S′ are included in the corresponding shadows of S. Let us
consider a vertex x ∈ S′ ∩ Z

3 of the functional stepped surface S′. With
no loss of generality, we can suppose that x is above the stepped surface S,
according to Definition 6. We associate with this vertex x ∈ S′ the following
union of faces of S (see Figure 10):

Tx =
⋃

(x′,i∗)⊂S

x′
i
<xi

(x′, i∗).

Let us prove that Tx is a finite union of faces. By assumption, the shadow

s

sy sx

sz

Figure 10. Given a stepped surface S, a vertex x ∈ S′ ∩ Z
3 defines a subset Tx

of S. Left: the vertex x and x3, and the boundaries of Tx. Right: the faces of Tx

(in white). To Tx corresponds a lozenge tiling of a bounded and simply connected
domain of R

2.

π1(S
′) is included in the shadow π1(S). In particular, π1(x) ∈ π1(S): there

exists x′
1 ∈ Z such that (x′

1, x2, x3) ∈ S. Then, according to Proposition 8,
Tx ⊂ S is above Ĉ(x′

1,x2,x3). Since x′′ ∈ Tx satisfies x′′
2 < x2 and x′′

3 < x3, this
yields that x′′

1 ≥ x′
1. Similarly, there exist x′

2 ∈ Z and x′
3 ∈ Z such that if

x′′ ∈ Tx, then x2 > x′′
2 and x3 > x′′

3. Finally, x′′ ∈ Tx yields x′
1 ≤ x′′

1 ≤ x1,
x′

2 ≤ x′′
2 ≤ x2 and x′

3 ≤ x′′
3 ≤ x3. Thus, Tx is bounded, i.e., it is a finite union

of faces.
Let us now consider the union of faces T̂x which is included in Ĉx and satisfies
π(T̂x) = π(Tx) (see Figure 11, left). Similarly as Tx, T̂x is a finite union of
faces. A classic result of the theory of lozenge tilings (see, e.g., [Thu89]) yields
that the tiling corresponding to Tx can be transformed by performing a finite
number of flips into the tiling corresponding to T̂x. In terms of stepped surfaces,
this means that a finite number of flips transforms S (which contains Tx) into
a stepped surface which contains T̂x, hence the vertex x of S ′ (since x ∈ T̂x)
too.
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Now, we would like to perform such a finite number of flips for each x ∈ S′∩

s

Figure 11. By performing a finite number of flips, one transforms Tx (Figure 10,
right) into the union of faces T̂x (left, with white faces). We obtain a stepped surface
which contains the vertex x of S′, similarly as T̂x does (right). By performing such
a finite number of flips for each vertex of S ′, this transforms the stepped surface S

into the stepped surface S′.

Z
3, in order to transform by an infinite sequence of flips the functional stepped

surface S into a functional stepped surface which would contain all the vertices
S′ ∩ Z

3, i.e., into S′, by Proposition 7. The only one problem could be the
following one: by performing the flips to obtain a stepped surface containing
a given x in S′ ∩ Z

3, we could lose a vertex x′ of S′ ∩Z
3 previously obtained

by performing flips. However, the flips performed to obtain x ∈ S′ ∩ Z
3 are

performed below T̂x, in particular below S′ since T̂x ⊂ Ĉx and Ĉx is below S′

by Proposition 8. Hence, we do not lose the previously obtained vertices of
S′ ∩ Z

3, and the whole (infinite) sequence of flips thus transforms S into S′.

To conclude, we note that the finite number of flips performed to obtain a
stepped surface containing a vertex x of S′ ∩ Z

3 are performed at a bounded
distance from x. This yields that the previous sequence of flips (that is, the
one used to obtain the stepped surface containing all the vertices of S′ ∩ Z

3)
contains, for each π(x) ∈ π(S′ ∩ Z

3) = π(Z3), a finite number of flips ϕx′

such that π(x′) = π(x). Thus, this is a locally finite sequence of flips. This
completes the proof.

Hence, flips transform functional stepped surfaces into functional stepped sur-
faces, and we have obtained a necessary and sufficient condition - in terms of
shadows - under which a given functional stepped surface can be transformed
by flips into another one. In particular, we can use these results to give an
equivalent definition of functional stepped surfaces:

Theorem 12 A union of faces U ∈ G is a functional stepped surface if and
only if there exist a stepped plane P and a locally finite sequence of flips
(ϕsn

)n∈N such that

U = lim
n→∞

ϕsn
◦ . . . ◦ ϕs1(P).
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Proof. Since a stepped plane is a functional stepped surface, Proposition 10
yields that the limit of a sequence of functional stepped surfaces obtained by
performing a locally finite sequence of flips over a stepped plane is a functional
stepped surface. Conversely, it is easy to check that the three shadows of a
stepped plane with normal vector v ∈ R

3
+ such that v1v2v3 6= 0 are equal to

the whole plane R
2. Therefore, according to Proposition 11, one can transform

by flips any stepped plane P into a given stepped surface S.

5 Generalized substitutions

We first review in Section 5.1 the notion of generalized substitutions [AI01];
we then discuss in Section 5.2 the way they act on stepped planes and more
generally functional stepped surfaces.

5.1 First definitions

Let A be a finite alphabet and let A⋆ be the set of finite words over A. The
empty word is denoted by ε. A substitution is an endomorphism of the free-
monoid A⋆ such that the image of every letter of A is non-empty. Such a
definition naturally extends to infinite or biinfinite words in AN and AZ.

Assume A = {1, 2, 3} and let σ be a substitution over A. The incidence matrix
Mσ of σ is the 3 × 3 matrix defined by:

Mσ = (|σ(j)|i)(i,j)∈{1,2,3}2 ,

where |σ(j)|i is the number of occurrences of the letter i in σ(j).

A substitution σ is then said to be unimodular if detMσ = ±1. In particular,
M−1

σ has integer coefficients. Let f : {1, 2, 3}⋆ −→ N
3 be the map defined by

f(w) = t(|w|1, |w|2, |w|3). The map f is usually called the Parikh mapping and
is the homomorphism obtained by abelianization of the free monoid A⋆. One
has for every w ∈ {1, 2, 3}⋆, f(σ(w)) = Mσ · f(w).

Definition 12 (Generalized substitution [AI01]) Let σ be a unimodular
substitution over {1, 2, 3}. The generalized substitution Θ∗

σ : G −→ G is de-
fined by:

∀(v, i∗) ∈ F, Θ∗
σ ((v, i∗)) =

⋃

j,p,s

σ(j)=p·i·s

(

M−1
σ (v + f(s)), j∗

)

.
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and

∀E ∈ G, Θ∗
σ(E) =

⋃

(v,i∗)⊆E

Θ∗
σ ((v, i∗)) .

Remark 1

Example 1 Let σ : {1, 2, 3}⋆ −→ {1, 2, 3}⋆ be the substitution defined by
σ : 1 7→ 13, 2 7→ 1, 3 7→ 2. Then,

Mσ =










1 1 0

0 0 1

1 0 0










and M−1
σ =










0 0 1

1 0 −1

0 1 0










.

This yields (see Figure 12):

Θ∗
σ :

(v, 1∗) 7→ (M−1
σ v + e1 − e2, 1

∗) ∪ (M−1
σ v, 2∗)

(v, 2∗) 7→ (M−1
σ v, 3∗)

(v, 3∗) 7→ (M−1
σ v, 1∗).

Θσ
∗

Θσ
∗

Θσ
∗

Θσ
∗

Figure 12. Action of Θ∗
σ on single faces and on a given union of faces.

There is a natural measure µ defined on the elements of G, obtained by ex-
tension of the two-dimensional Lebesgue measure. Two elements E and E ′

of G are then said to be µ-disjoint if µ(E ∩ E ′) = 0. In other words, this
means that both sets do not intersect, except possibly on edges. A gener-
alized substitution does not necessarily map µ-disjoint faces to µ-disjoint
unions of faces. Consider in Example 1, Θ∗

σ(0, 1∗) ∩ Θ∗
σ(e3, 3

∗). One has
Θ∗

σ(0, 1∗) = (e1 − e2, 1
∗) ∪ (0, 2∗) and Θ∗

σ(e3, 3
∗) = (e1 − e2, 1

∗), whence
µ(Θ∗

σ(0, 1∗) ∩ Θ∗
σ(e3, 3

∗)) 6= 0.

Definition 13 A generalized substitution Θ∗
σ is said to act properly on a

union of faces E ⊂ G if µ-disjoint faces of E are mapped onto µ-disjoint
unions of faces.
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Stepped planes are particularly interesting with respect to this property as
shown by Theorem 13 below. Let us assume that the substitution σ is primi-
tive, i.e., Mσ admits a power with positive entries. Let v ∈ R

3
+ be a Perron-

Frobenius left eigenvector of Mσ having only positive entries. Then, the gen-
eralized substitution Θ∗

σ is proved in [AI01] to act properly on the stepped
plane P(v, 0), and to map it onto itself. More generally, one has the following:

Theorem 13 ([Fer05b]) Let σ be a unimodular substitution over {1, 2, 3},
v ∈ R

3
+ and µ ∈ R. The generalized substitution Θ∗

σ acts properly on the
stepped plane P(v, µ); furthermore Θ∗

σ maps P(v, µ) onto the stepped plane
P(tMσv, µ).

5.2 Generalized substitutions and functional stepped surfaces

The aim of this section is to extend the previous results to functional stepped
surfaces, by proving the main theorem of this paper:

Theorem 14 Let σ be a unimodular substitution over {1, 2, 3}. The general-
ized substitution Θ∗

σ acts properly on every functional stepped surface. Further-
more, the image by Θ∗

σ of a functional stepped surface is a functional stepped
surface.

Let us note that a partial version of Theorem 14 has been stated in [ABJ05].
An illusration of Theorem 14 is depicted in Figure 13.

Figure 13. A generalized substitution maps a stepped surface onto a stepped surface.

Several lemmas are required to prove Theorem 14. Let us first prove the con-
tinuity of any generalized substitution as a map from G to G provided with
the distance d (see Definition 1):

Lemma 15 Let (En)n∈N ∈ GN be a convergent sequence in G. Then the se-
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quence (Θ∗
σ(En))n∈N ∈ GN is a convergent sequence in G. One thus gets:

lim
n→∞

Θ∗
σ(En) = Θ∗

σ( lim
n→∞

En).

Proof. Let E stand for the limit of the sequence (En)n∈N ∈ GN. Let us
prove that the sequence Θ∗

σ(En)n∈N ∈ GN converges towards Θ∗
σ(E). For n ∈ N,

let rn be such that En and E contain the same faces in a ball of radius r ≤
rn centered on 0. Let M = max{‖Mσf(s)‖∞, s suffix of σ(i), i ∈ {1, 2, 3}}.
Let α be the modulus of the smallest eigenvalue of M−1

σ . Let us recall that,
for all x ∈ R

3, ‖M−1
σ x‖∞ ≥ α‖x‖∞. Let n ∈ N such that rn > M (recal

that rn −→
n→∞

∞), and let (y, j∗) ⊆ Θ∗
σ(En) such that ‖y‖∞ ≤ α(rn − M). Let

(x, i∗) ⊆ En such that (y, j∗) ⊆ Θ∗
σ(x, i∗); one has y = M−1

σ x + f(s), with
σ(j) = p · i · s. One deduces ‖x + Mσf(s)‖∞ ≤ rn − M . Hence ‖x‖∞ ≤ rn

and (y, j∗) ⊆ Θ∗
σ(E). We show in a similar way that any face (y, j∗) included

in Θ∗
σ(E) and satisfying ‖y‖∞ ≤ α(rn − M) is included in Θ∗

σ(En). In other
words, d(Θ∗(En), Θ

∗(E)) ≤ 2−α(rn−M) −→
n→∞

0.

The following lemma plays a key role by relating the action of generalized
susbtitutions to the action of flips, such as depicted in Figure 14:

Lemma 16 Let Θ∗
σ be a generalized substitution that acts properly on E ⊂ G.

Then, for any x ∈ Z
3, Θ∗

σ acts properly on ϕs(E), and furthermore, Θ∗
σ maps

ϕs(E) onto ϕM
−1
σ x(Θ

∗
σ(E)).

Proof. Let us first compute Θ∗
σ(čx). One has:

Θ∗
σ(čx)=

⋃

i=1,2,3

Θ∗
σ(x, i∗) =

⋃

j,p,i,s

σ(j)=p·i·s

(M−1
σ (x + f(s)), j∗)

=
⋃

j,p′ 6=ε,s6=ε

σ(j)=p′·s

(M−1
σ (x + f(s)), j∗) ∪

⋃

j=1,2,3

(M−1
σ x, j∗)

︸ ︷︷ ︸

č
M

−1
σ x

.

and
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Θ∗
σ(ĉx)=

⋃

i=1,2,3

Θ∗
σ(x + ei, i

∗) =
⋃

j,p,i,s

σ(j)=p·i·s

(M−1
σ (x + ei + f(s)), j∗)

=
⋃

j,p,i,s

σ(j)=p·i·s

(M−1
σ (x + f(i· s)), j∗) =

⋃

j,p,s′ 6=ε

σ(j)=p·s′

(M−1
σ (x + f(s′)), j∗)

=
⋃

j,p6=ε,s′ 6=ε

σ(j)=p·s′

(M−1
σ (x + f(s′)), j∗) ∪

⋃

j=1,2,3

(M−1
σ (x + f(σ(j))), j∗)

=
⋃

j,p6=ε,s′ 6=ε

σ(j)=p·s′

(M−1
σ (x + f(s′)), j∗) ∪

⋃

j=1,2,3

(M−1
σ (x + Mσej), j

∗)

=
⋃

j,p6=ε,s′ 6=ε

σ(j)=p·s′

(M−1
σ (x + f(s′)), j∗) ∪

⋃

j=1,2,3

(M−1
σ x + ej, j

∗)

︸ ︷︷ ︸

ĉ
M

−1
σ x

,

since ei = f(i) and f(σ(j)) = Mσej. The desired result easily follows.

Θσ
∗

Θσ
∗

φx φ
M xσ

−1

Figure 14. If two unions of faces differ by the flip ϕs, then their images by Θ∗
σ differ

by the flip ϕ
M−1

σ x
(one has here σ : 1 7→ 13, 2 7→ 1, 3 7→ 2).

Lemma 17 Let S be a stepped surface and (ϕxn
)n∈N be a locally finite se-

quence of flips such that the sequence (ϕxn
◦ . . . ◦ ϕx1(S))n∈N is convergent in

G. Then, the sequence of flips (ϕM−1
σ vn

)n∈N is locally finite.

Proof. We set S′ = limn→∞ ϕxn
◦ . . . ◦ ϕx1(S). According to Proposition

10, S′ is a stepped surface. Suppose that (ϕM−1
σ xn

)n∈N is not locally finite.
Let us prove that this implies S is not a stepped surface, which yields a
contradiction. We first assume w.l.o.g. that for all n ∈ N, either čxn

or ĉx is
a subset of ϕxn

◦ . . . ◦ ϕx1(S). Since (ϕM−1
σ xn

)n∈N is not locally finite, there
exists a subsequence (yn)n∈N of (xn)n∈N, with supn ‖yn‖ = ∞, such that:

∀(m, n) ∈ N
2, π(M−1

σ ym) = π(M−1
σ yn).

If we denote by u the vector e1 + e2 + e3, this is equivalent to say that there
exists a sequence (λn) ∈ Z

N, with supn |λn| = ∞, such that:

∀n ∈ N, M−1
σ (yn − y0) = λnu.

The matrix Mσ admits nonnegative entries, and at least one positive entry
in each row, since det(Mσ) 6= 0. Hence the vector Mσu has positive entries.
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Moreover, one can assume supn λn = ∞ (the case infn λn = −∞ can be
similarly handled). In addition with yn = y0 + λnMσu, where (yn,1, yn,2, yn,3)
stands for the entries of yn, this yields:

lim
n→∞

yn,1 = lim
n→∞

yn,2 = lim
n→∞

yn,3 = ∞.

We have assumed that for all n, ϕxn
belongs to the stepped surface ϕxn

◦ . . . ◦
ϕx1(S), which is hence above Ĉxn

, according to Proposition 8. Let us consider
the vertex an of this stepped surface whose image by π is 0. This vertex
has three identical entries, say, an = (an, an, an) and is above Ĉyn

. Hence,
an ≥ min(yn,1, yn,2, yn,3), and therefore, limn an = ∞. Consider now the vertex
a∞ = (a∞, a∞, a∞) of S′ whose image by π is 0. For n large enough, a∞

belongs to ϕxn
◦ . . . ◦ ϕx1(S) and a∞ 6= an, which yields a contradiction.

We are now in a position to prove Theorem 14:

Proof. Let us consider a stepped surface S. According to Theorem 12,
there exist a locally finite sequence of flips (ϕxn

)n∈N and a stepped plane P,
such that S can be obtained by performing on P the sequence of flips (ϕxn

):

S = lim
n→∞

ϕxn
◦ . . . ◦ ϕx1(P).

Then, Lemma 15 yields:

Θ∗
σ(S) = Θ∗

σ

(

lim
n→∞

ϕxn
◦ . . . ◦ ϕx1(P)

)

= lim
n→∞

Θ∗
σ(ϕxn

◦ . . . ◦ ϕx1(P)),

and by Lemma 16 one has:

Θ∗
σ(S) = lim

n→∞
ϕM

−1
σ xn

◦ . . . ◦ ϕM
−1
σ x1

(Θ∗
σ(P)).

By Theorem 13, Θ∗
σ maps properly P onto the stepped plane Θ∗

σ(P). The
sequence of flips (ϕM

−1
σ xn

)n is locally finite by Lemma 17, hence Theorem 12
yields that Θ∗

σ(S) is a stepped surface.
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