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Cut the plane and project onto a line
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Cut Rn and project onto Rd (canonical cut and project)

Definition (Planar tiling)

Let E be a d-dim. affine space in Rn such that E ∩ Zn = ∅.
Select the d-dim. faces with vertices in Zn lying in E + [0, 1]n.
Project them onto E to get a so-called planar n→ d tiling.

Q. Are such tilings periodic or not?
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Cut the space and project onto a line

Billiard words are planar 3→ 1 tilings, but not the Tribonacci word.
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Cut the space and project onto a plane
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Cut an higher dim. space and project onto a plane
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And get a Penrose tiling (De Bruijn, 1981)
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Multigrid

Definition (Multigrid)

The multigrid with shifts s1, . . . , sn in R and grid vectors ~v1, . . . , ~vn
in Rd is the set of n families of equally spaced parallel hyperplanes

Hi := {~x ∈ Rd | 〈~x |~vi 〉+ si ∈ Z},

where at most d hyperplanes are assumed to intersect in a point.
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Dualization

z1
)f(z1

The grid hyperplanes divide the space into cells;

To each cell zi corresponds a vertex f (zi ) of the tiling;

If zi and zj are adjacent along a + ~v⊥k , then f (zj)− f (zi ) = ~vk
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Equivalence

Theorem (Gähler-Rhyner 1986)

Any multigrid dualization is a planar tiling, and conversely.

The grids are the intersection of the slope with the hyperplanes

Gi = {~x ∈ Rn | 〈~x |~ei 〉 ∈ Z}
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Another way to define vectorial spaces

Definition (Grassmann coordinates)

The Grassmann coordinates of a vector space R~u1 + . . .+ R~ud

are the d × d minors of the matrix whose columns are the ~ui ’s.

Q. How many Grassmann coordinates does have a subspace of Rn?

Q. What are the Grassmann coordinates of a hyperplane?
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Plücker relations

Theorem

A vector space is characterized by its Grassmann coordinates.

Q. What is the dimension of the set of d-dim. vector spaces of Rn?

Theorem

A non-zero real tuple (Gi1,...,id ) are the Grassmann coordinates iff,
for any 1 ≤ k ≤ n and any two d-tuples of indices they satisfy

Gi1,...,id Gj1,...,jd =
d∑

l=1

Gi1,...,id Gj1,...,jd︸ ︷︷ ︸
swap ik and jl

.
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Link with planar tilings

Proposition

The tile generated by ~vi1 , . . . ~vid has frequency |Gi1,...,id |.
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Pattern

Definition

A pattern of a tiling is a finite subset of the tiles of this tiling.

A r -map is a pattern formed by the tiles intersecting a closed r -ball.

The r -atlas of a tiling is th set of its r -maps.
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Window

Definition

The window of a planar n→ d tiling of slope E is the orthogonal
projection of E + [0, 1]n onto E⊥.

Q. What is the window of a 2→ 1 planar tiling?
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Window

Definition

The window of a planar n→ d tiling of slope E is the orthogonal
projection of E + [0, 1]n onto E⊥.

Q. What is the window of a 3→ 1 planar tiling?
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Window

Definition

The window of a planar n→ d tiling of slope E is the orthogonal
projection of E + [0, 1]n onto E⊥.

Q. What is the window of a 4→ 2 planar tiling?
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Window

Definition

The window of a planar n→ d tiling of slope E is the orthogonal
projection of E + [0, 1]n onto E⊥.

Q. What is the window of a 5→ 2 planar tiling?
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Tilings seen from the window
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Counting patterns

Complexity: function which counts the size of the r -atlas.

Theorem (Julien 2010)

A generic planar n→ d tiling has complexity Θ(rd(n−d)).

Q. What is the complexity of a Fibonacci word?

Q. What is the complexity of a Penrose tiling?
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Quasiperiodicity

Definition (quasiperiodic or repetitive or minimal)

A tiling is quasiperiodic if whenever a pattern occurs somewhere,
it reoccurs at uniformly bounded distance from any point.

Q. Is it true that periodic tilings are quasiperiodic?

Q. Is it true that non-periodic tilings are quasiperiodic?

Theorem

Planar tilings are quasiperiodic.

Patterns even have frequencies, related to the area of their regions.
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Slope shift

Proposition

If a slope a + E is in the smallest rational space containing b + E ,
then the planar tilings with these slopes have the same patterns.
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General n→ d tilings

Planar tilings are well ordered. . .

but they can easily be messed up!
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Local rules

Definition (Local rules)

A planar tiling of slope E has diameter r and thickness t local rules
if any tiling with a smaller or equal r -atlas lifts into E + [0, t]n.

Main Open Question

Which planar tilings do admit local rules?
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Link with quasicrystals

Planar n→ d tilings aim to model the structure of quasicrystals.

Local rules aim to model their stability (i.e., energetic interactions).
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Penrose tilings

Definition (Penrose tiling)

A Penrose tiling is a planar 5→ 2 tiling with slope

1

5
(1, 1, 1, 1, 1) + R

(
cos

2kπ

5

)
0≤k≤4

+ R
(

sin
2kπ

5

)
0≤k≤4

.

It is the dualization of the multigrid with vectors e
2ikπ

5 and shifts 1
5 .

Theorem (de Bruijn, 1981)

Penrose tilings have local rules of diameter 0 and thickness 1.
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n-fold tilings

Definition (n-fold tiling)

A n-fold tiling is a planar n→ 2 tiling which has the same finite
patterns as its image under a rotation by 2π/n.
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Local rules for n-fold tilings

Theorem (Socolar 1990)

An n-fold tiling has local rules when n is not a multiple of 4.

Local rules actually enforce an alternation condition:

When n is a multiple of 4, there are square tiles. . .



Planar tilings Multigrid dualization Grassmann coordinates Patterns Local rules Sufficient conditions Necessary conditions

Local rules for n-fold tilings

Theorem (Socolar 1990)

An n-fold tiling has local rules when n is not a multiple of 4.

Local rules actually enforce an alternation condition:

When n is a multiple of 4, there are square tiles. . .



Planar tilings Multigrid dualization Grassmann coordinates Patterns Local rules Sufficient conditions Necessary conditions

Subperiods

Definition (Subperiod)

A planar n→ d tiling has a subperiod if one gets a periodic tiling
by an orthogonal projection onto d + 1 well-chosen basis vectors.

For example, a Penrose tiling has 10 subperiods (video).

This translates in linear rational dependencies between Grassmann
coordinates over d + 1 indices. For Penrose:

G12 = G23 = G34 = G45 = G51, G13 = G35 = G52 = G24 = G41.
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Planarity issues

Proposition

The subperiods of a planar tiling can be enforced by local rules.

But these local rules may not suffice to enforce planarity. . .

Theorem (Bédaride-Fernique 2015)

A planar 4→ 2 tiling has local rules iff its slope is characterized by
its subperiods. In particular the slope is quadratic (or rational).
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4p-fold tilings

Theorem (Bédaride-Fernique 2015)

The 4p-fold tilings do not have local rules.
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Local rules of thickness 1

Full subperiods: any projection on d + 1 basis vector is periodic.

Theorem (Levitov 1988)

A planar tiling with thickness 1 local rules has full subperiods.

For n-fold tilings, this yields n ∈ {4, 6, 8, 10, 12}.

These are the only symmetries yet observed in real quasicrystals. . .
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Proof sketch

Consider a planar tiling which does not have full subperiods.
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Proof sketch

Shifting the slope creates flips. We shift without creating patterns.
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Proof sketch

There are lines of flips (corresp. to subperiods) and isolated flips.
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Proof sketch

The smaller the shift is, the sparser these flips are.
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Proof sketch

Given r , we eventually find a ring of thickness r without any flip.
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Proof sketch

This yields a planar tiling of thickness t > 1 with the same r -atlas.
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Algebraic obstruction

Theorem (Le 1995)

The slope of a planar tiling with local rules is algebraic.
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Some open questions

Planar 4→ 2 tilings have LR iff subperiods charaterize the slope.
This also holds for planar n→ n − 1 tilings.
Does this hold for any planar n→ d tiling?
If it does, the algebraic degree would be at most bn/dc. Tight?

Subperiods sometimes enforce planarity but not a particular slope.
When? Which sets of slopes can be obtained in this way?

We considered only uncolored tiles, i.e., tiling spaces of finite type.
What if we add colors, i.e., if we consider sofic tiling spaces?
 see Mathieu Sablik’s lecture.
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