Local rules for canonical cut and project tilings

Thomas Fernique CNRS & Univ. Paris 13

M2 "Pavages" ENS Lyon October 15, 2015

Outline

- [Planar tilings](#page-2-0)
- [Multigrid dualization](#page-9-0)
- [Grassmann coordinates](#page-21-0)
- [Patterns](#page-27-0)
- [Local rules](#page-49-0)
- [Sufficient conditions](#page-55-0)
- [Necessary conditions](#page-71-0)

Outline

[Planar tilings](#page-2-0)

- [Multigrid dualization](#page-9-0)
- [Grassmann coordinates](#page-21-0)
- **[Patterns](#page-27-0)**
- [Local rules](#page-49-0)
- [Sufficient conditions](#page-55-0)
- [Necessary conditions](#page-71-0)

[Planar tilings](#page-2-0) [Multigrid dualization](#page-9-0) [Grassmann coordinates](#page-21-0) [Patterns](#page-27-0) [Local rules](#page-49-0) [Sufficient conditions](#page-55-0) [Necessary conditions](#page-71-0)

Cut the plane and project onto a line

Definition (Planar tiling)

Let E be a d-dim. affine space in \mathbb{R}^n such that $E \cap \mathbb{Z}^n = \emptyset$. Select the d-dim. faces with vertices in \mathbb{Z}^n lying in $E + [0, 1]^n$. Project them onto E to get a so-called planar $n \to d$ tiling.

Q. Are such tilings periodic or not?

[Planar tilings](#page-2-0) [Multigrid dualization](#page-9-0) [Grassmann coordinates](#page-21-0) [Patterns](#page-27-0) [Local rules](#page-49-0) [Sufficient conditions](#page-55-0) [Necessary conditions](#page-71-0)

Cut the space and project onto a line

Billiard words are planar $3 \rightarrow 1$ tilings, but not the Tribonacci word.

Cut the space and project onto a plane

[Planar tilings](#page-2-0) [Multigrid dualization](#page-9-0) [Grassmann coordinates](#page-21-0) [Patterns](#page-27-0) [Local rules](#page-49-0) [Sufficient conditions](#page-55-0) [Necessary conditions](#page-71-0)

Cut an higher dim. space and project onto a plane

[Planar tilings](#page-2-0) [Multigrid dualization](#page-9-0) [Grassmann coordinates](#page-21-0) [Patterns](#page-27-0) [Local rules](#page-49-0) [Sufficient conditions](#page-55-0) [Necessary conditions](#page-71-0)

And get a Penrose tiling (De Bruijn, 1981)

[Planar tilings](#page-2-0) [Multigrid dualization](#page-9-0) [Grassmann coordinates](#page-21-0) [Patterns](#page-27-0) [Local rules](#page-49-0) [Sufficient conditions](#page-55-0) [Necessary conditions](#page-71-0)
000000 00000 0000 0000 0000 0000 000

Outline

- [Planar tilings](#page-2-0)
- [Multigrid dualization](#page-9-0)
- [Grassmann coordinates](#page-21-0)
- **[Patterns](#page-27-0)**
- [Local rules](#page-49-0)
- [Sufficient conditions](#page-55-0)
- [Necessary conditions](#page-71-0)

Multigrid

Definition (Multigrid)

The multigrid with shifts s_1, \ldots, s_n in R and grid vectors $\vec{v}_1, \ldots, \vec{v}_n$ in \mathbb{R}^d is the set of n families of equally spaced parallel hyperplanes

$$
H_i := \{ \vec{x} \in \mathbb{R}^d \mid \langle \vec{x} | \vec{v}_i \rangle + s_i \in \mathbb{Z} \},
$$

where at most d hyperplanes are assumed to intersect in a point.

 $f(z_1)$

- The grid hyperplanes divide the space into cells;
- To each cell z_i corresponds a vertex $f(z_i)$ of the tiling;
- If z_i and z_j are adjacent along $a+\vec{v}_k^{\perp}$, then $f(z_j)-f(z_i)=\vec{v}_k$

- The grid hyperplanes divide the space into cells;
- To each cell z_i corresponds a vertex $f(z_i)$ of the tiling;
- If z_i and z_j are adjacent along $a+\vec{v}_k^{\perp}$, then $f(z_j)-f(z_i)=\vec{v}_k$

- The grid hyperplanes divide the space into cells;
- To each cell z_i corresponds a vertex $f(z_i)$ of the tiling;
- If z_i and z_j are adjacent along $a+\vec{v}_k^{\perp}$, then $f(z_j)-f(z_i)=\vec{v}_k$

- The grid hyperplanes divide the space into cells;
- To each cell z_i corresponds a vertex $f(z_i)$ of the tiling;
- If z_i and z_j are adjacent along $a+\vec{v}_k^{\perp}$, then $f(z_j)-f(z_i)=\vec{v}_k$

- The grid hyperplanes divide the space into cells;
- To each cell z_i corresponds a vertex $f(z_i)$ of the tiling;
- If z_i and z_j are adjacent along $a+\vec{v}_k^{\perp}$, then $f(z_j)-f(z_i)=\vec{v}_k$

- The grid hyperplanes divide the space into cells;
- To each cell z_i corresponds a vertex $f(z_i)$ of the tiling;
- If z_i and z_j are adjacent along $a+\vec{v}_k^{\perp}$, then $f(z_j)-f(z_i)=\vec{v}_k$

- The grid hyperplanes divide the space into cells;
- To each cell z_i corresponds a vertex $f(z_i)$ of the tiling;
- If z_i and z_j are adjacent along $a+\vec{v}_k^{\perp}$, then $f(z_j)-f(z_i)=\vec{v}_k$

- The grid hyperplanes divide the space into cells;
- To each cell z_i corresponds a vertex $f(z_i)$ of the tiling;
- If z_i and z_j are adjacent along $a+\vec{v}_k^{\perp}$, then $f(z_j)-f(z_i)=\vec{v}_k$

- The grid hyperplanes divide the space into cells;
- To each cell z_i corresponds a vertex $f(z_i)$ of the tiling;
- If z_i and z_j are adjacent along $a+\vec{v}_k^{\perp}$, then $f(z_j)-f(z_i)=\vec{v}_k$

Equivalence

Theorem (Gähler-Rhyner 1986)

Any multigrid dualization is a planar tiling, and conversely.

The grids are the intersection of the slope with the hyperplanes

$$
G_i = \{\vec{x} \in \mathbb{R}^n \mid \langle \vec{x} | \vec{e}_i \rangle \in \mathbb{Z}\}
$$

Outline

- [Planar tilings](#page-2-0)
- [Multigrid dualization](#page-9-0)
- [Grassmann coordinates](#page-21-0)
- **[Patterns](#page-27-0)**
- [Local rules](#page-49-0)
- [Sufficient conditions](#page-55-0)
- [Necessary conditions](#page-71-0)

Another way to define vectorial spaces

Definition (Grassmann coordinates)

The *Grassmann coordinates* of a vector space $\mathbb{R} \vec{u}_1 + \ldots + \mathbb{R} \vec{u}_d$ are the $d \times d$ minors of the matrix whose columns are the \vec{u}_i 's.

Q. How many Grassmann coordinates does have a subspace of \mathbb{R}^n ?

Q. What are the Grassmann coordinates of a hyperplane?

Theorem

A vector space is characterized by its Grassmann coordinates.

Q. What is the dimension of the set of d-dim. vector spaces of \mathbb{R}^n ?

Theorem

A vector space is characterized by its Grassmann coordinates.

Q. What is the dimension of the set of d-dim. vector spaces of \mathbb{R}^n ?

Theorem

A non-zero real tuple $(G_{i_1,...,i_d})$ are the Grassmann coordinates iff, for any $1 \leq k \leq n$ and any two d-tuples of indices they satisfy

$$
G_{i_1,...,i_d} G_{j_1,...,j_d} = \sum_{l=1}^d \underbrace{G_{i_1,...,i_d}}_{swap \, i_k \, and \, j_l}.
$$

Link with planar tilings

Proposition

The tile generated by $\vec{v}_{i_1}, \ldots \vec{v}_{i_d}$ has frequency $|G_{i_1,\ldots,i_d}|$.

Link with planar tilings

Proposition

The tile generated by $\vec{v}_{i_1}, \ldots \vec{v}_{i_d}$ has frequency $|G_{i_1,\ldots,i_d}|$.

Outline

- [Planar tilings](#page-2-0)
- [Multigrid dualization](#page-9-0)
- [Grassmann coordinates](#page-21-0)
- [Patterns](#page-27-0)
- [Local rules](#page-49-0)
- [Sufficient conditions](#page-55-0)
- [Necessary conditions](#page-71-0)

Pattern

Definition

A pattern of a tiling is a finite subset of the tiles of this tiling.

A r -map is a pattern formed by the tiles intersecting a closed r -ball.

The r -atlas of a tiling is th set of its r -maps.

Definition

The window of a planar $n \rightarrow d$ tiling of slope E is the orthogonal projection of $E+[0,1]^n$ onto $E^\perp.$

Q. What is the window of a $2 \rightarrow 1$ planar tiling?

Definition

The window of a planar $n \rightarrow d$ tiling of slope E is the orthogonal projection of $E+[0,1]^n$ onto $E^\perp.$

Q. What is the window of a $3 \rightarrow 1$ planar tiling?

Definition

The window of a planar $n \rightarrow d$ tiling of slope E is the orthogonal projection of $E+[0,1]^n$ onto $E^\perp.$

Q. What is the window of a $4 \rightarrow 2$ planar tiling?

Definition

The window of a planar $n \rightarrow d$ tiling of slope E is the orthogonal projection of $E+[0,1]^n$ onto $E^\perp.$

Q. What is the window of a $5 \rightarrow 2$ planar tiling?

Tilings seen from the window

Tilings seen from the window

Tilings seen from the window

Counting patterns

Complexity: function which counts the size of the r-atlas.

Theorem (Julien 2010)

A generic planar $n \to d$ tiling has complexity $\Theta(r^{d(n-d)}).$

Q. What is the complexity of a Fibonacci word?

Q. What is the complexity of a Penrose tiling?

Quasiperiodicity

Definition (quasiperiodic or repetitive or minimal)

A tiling is quasiperiodic if whenever a pattern occurs somewhere, it reoccurs at uniformly bounded distance from any point.

- Q. Is it true that periodic tilings are quasiperiodic?
- Q. Is it true that non-periodic tilings are quasiperiodic?

Quasiperiodicity

Definition (quasiperiodic or repetitive or minimal)

A tiling is quasiperiodic if whenever a pattern occurs somewhere, it reoccurs at uniformly bounded distance from any point.

- Q. Is it true that periodic tilings are quasiperiodic?
- Q. Is it true that non-periodic tilings are quasiperiodic?

Theorem

Planar tilings are quasiperiodic.

Patterns even have *frequencies*, related to the area of their regions.

Proposition

Proposition

Proposition

Proposition

Proposition

Outline

- **1** [Planar tilings](#page-2-0)
- 2 [Multigrid dualization](#page-9-0)
- 3 [Grassmann coordinates](#page-21-0)
- **[Patterns](#page-27-0)**
- 5 [Local rules](#page-49-0)
- **6** [Sufficient conditions](#page-55-0)
- 7 [Necessary conditions](#page-71-0)

General $n \rightarrow d$ tilings

Planar tilings are well ordered...

General $n \rightarrow d$ tilings

Planar tilings are well ordered... but they can easily be messed up!

Local rules

Definition (Local rules)

A planar tiling of slope E has diameter r and thickness t local rules if any tiling with a smaller or equal r-atlas lifts into $E + [0, t]^n$.

Main Open Question

Which planar tilings do admit local rules?

Local rules

Definition (Local rules)

A planar tiling of slope E has diameter r and thickness t local rules if any tiling with a smaller or equal r-atlas lifts into $E + [0, t]^n$.

Main Open Question

Which planar tilings do admit local rules?

Link with quasicrystals

Planar $n \rightarrow d$ tilings aim to model the structure of quasicrystals.

Local rules aim to model their stability (i.e., energetic interactions).

Outline

- 1 [Planar tilings](#page-2-0)
- 2 [Multigrid dualization](#page-9-0)
- 3 [Grassmann coordinates](#page-21-0)
- **[Patterns](#page-27-0)**
- 5 [Local rules](#page-49-0)
- 6 [Sufficient conditions](#page-55-0)
- **[Necessary conditions](#page-71-0)**

Penrose tilings

Definition (Penrose tiling)

A Penrose tiling is a planar $5 \rightarrow 2$ tiling with slope

$$
\frac{1}{5}(1,1,1,1,1)+\mathbb{R}\left(\cos \frac{2k\pi}{5}\right)_{0\leq k\leq 4}+\mathbb{R}\left(\sin \frac{2k\pi}{5}\right)_{0\leq k\leq 4}.
$$

It is the dualization of the multigrid with vectors $e^{\frac{2ik\pi}{5}}$ and shifts $\frac{1}{5}$.

Theorem (de Bruijn, 1981)

Penrose tilings have local rules of diameter 0 and thickness 1.

Definition (*n*-fold tiling)

Definition (*n*-fold tiling)

[Planar tilings](#page-2-0) [Multigrid dualization](#page-9-0) [Grassmann coordinates](#page-21-0) [Patterns](#page-27-0) [Local rules](#page-49-0) [Sufficient conditions](#page-55-0) [Necessary conditions](#page-71-0) 000000 000

Local rules for n-fold tilings

Theorem (Socolar 1990)

An n-fold tiling has local rules when n is not a multiple of 4.

Local rules actually enforce an alternation condition:

[Planar tilings](#page-2-0) [Multigrid dualization](#page-9-0) [Grassmann coordinates](#page-21-0) [Patterns](#page-27-0) [Local rules](#page-49-0) [Sufficient conditions](#page-55-0) [Necessary conditions](#page-71-0) 000000 000 00000

Local rules for n-fold tilings

Theorem (Socolar 1990)

An n-fold tiling has local rules when n is not a multiple of 4.

Local rules actually enforce an alternation condition:

When n is a multiple of 4, there are square tiles...

Subperiods

Definition (Subperiod)

A planar $n \rightarrow d$ tiling has a *subperiod* if one gets a periodic tiling by an orthogonal projection onto $d + 1$ well-chosen basis vectors.

For example, a Penrose tiling has 10 subperiods (video).

Subperiods

Definition (Subperiod)

A planar $n \rightarrow d$ tiling has a *subperiod* if one gets a periodic tiling by an orthogonal projection onto $d + 1$ well-chosen basis vectors.

For example, a Penrose tiling has 10 subperiods (video).

This translates in linear rational dependencies between Grassmann coordinates over $d + 1$ indices. For Penrose:

$$
\mathsf{G}_{12} = \mathsf{G}_{23} = \mathsf{G}_{34} = \mathsf{G}_{45} = \mathsf{G}_{51}, \qquad \mathsf{G}_{13} = \mathsf{G}_{35} = \mathsf{G}_{52} = \mathsf{G}_{24} = \mathsf{G}_{41}.
$$

Planarity issues

Proposition

The subperiods of a planar tiling can be enforced by local rules.

But these local rules may not suffice to enforce planarity...

Planarity issues

Proposition

The subperiods of a planar tiling can be enforced by local rules.

But these local rules may not suffice to enforce planarity. . .

Theorem (Bédaride-Fernique 2015)

A planar $4 \rightarrow 2$ tiling has local rules iff its slope is characterized by its subperiods. In particular the slope is quadratic (or rational).

Outline

- [Planar tilings](#page-2-0)
- [Multigrid dualization](#page-9-0)
- [Grassmann coordinates](#page-21-0)
- **[Patterns](#page-27-0)**
- [Local rules](#page-49-0)
- [Sufficient conditions](#page-55-0)
- [Necessary conditions](#page-71-0)

Theorem (Bédaride-Fernique 2015)

Full subperiods: any projection on $d + 1$ basis vector is periodic.

Theorem (Levitov 1988)

A planar tiling with thickness 1 local rules has full subperiods.

For *n*-fold tilings, this yields $n \in \{4, 6, 8, 10, 12\}$.

These are the only symmetries yet observed in real quasicrystals. . .

Consider a planar tiling which does not have full subperiods.

Shifting the slope creates *flips*. We shift without creating patterns.

There are lines of flips (corresp. to subperiods) and isolated flips.

The smaller the shift is, the sparser these flips are.

Given r , we eventually find a ring of thickness r without any flip.

This yields a planar tiling of thickness $t > 1$ with the same r-atlas.

Algebraic obstruction

Theorem (Le 1995)

The slope of a planar tiling with local rules is algebraic.

Algebraic obstruction

Theorem (Le 1995)

The slope of a planar tiling with local rules is algebraic.

Planar $4 \rightarrow 2$ tilings have LR iff subperiods charaterize the slope. This also holds for planar $n \to n - 1$ tilings. Does this hold for any planar $n \rightarrow d$ tiling? If it does, the algebraic degree would be at most $|n/d|$. Tight?

Planar $4 \rightarrow 2$ tilings have LR iff subperiods charaterize the slope. This also holds for planar $n \to n-1$ tilings. Does this hold for any planar $n \rightarrow d$ tiling? If it does, the algebraic degree would be at most n/d . Tight?

Subperiods sometimes enforce planarity but not a particular slope. When? Which sets of slopes can be obtained in this way?

Planar $4 \rightarrow 2$ tilings have LR iff subperiods charaterize the slope. This also holds for planar $n \to n-1$ tilings. Does this hold for any planar $n \rightarrow d$ tiling? If it does, the algebraic degree would be at most n/d . Tight?

Subperiods sometimes enforce planarity but not a particular slope. When? Which sets of slopes can be obtained in this way?

We considered only uncolored tiles, *i.e.*, tiling spaces of finite type. What if we add colors, *i.e.*, if we consider sofic tiling spaces? \rightsquigarrow see Mathieu Sablik's lecture.