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Introduction

What is a tiling?

e Tiling: covering of the plane with copies of basic shapes without gaps
and overlaps. The set of basic shapes is called a prototile set and the
elements are called tiles.
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Introduction

Wang tiles (1961)

e A set of tiles is called aperiodic if copies of them can cover the whole
plane but only in a non-periodic way.
e Berger in 1964 constructed the first aperiodic tileset: 20426 tiles!
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Introduction

Robinson tiling (1971)

Prototiles of Robinson tiling
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Introduction

Penrose tiling (1974)
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Introduction

Penrose tiling (1974)
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Prototileset of Penrose tilings

December 12, 2019 8 /90



N,

—~

1974

(

Penrose Tiling

/ 90

9

2019

o
-
s
3
Qo
=
I
i
3
(a]




Introduction

Motivation

e Rapid development of aperiodic tilings started after discovery of
quasicrystals in 1982 by Dan Shechtman (Nobel prize in 2011);

e The atomic arrangement of a quasicrystal breaks the periodicity (no
translational symmetry);

e Due to specific local structure of these materials the growth process
of such crystals is still poorly understood.
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Quasicrystals
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Introduction

Question

Is it possible to grow an aperiodic tiling locally?

The meaning of the locality constraint:
e units of the growing cluster must be added one by one;
e decisions are local, i.e. according to tiles within a fixed distance;

e no information must be stored between the steps.

December 12, 2019 13 / 90



Introduction

It is easy to make a mistake
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Introduction

Vertex-atlas and Local rules

e Vertex-atlas A(r): all the patterns of radius r;

e Local rules: a finite set of patterns that characterize the tiling.
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Introduction

Main Obstacle: Deceptions

e Deceptions: patterns allowed by local rules which cannot be extended
to a tiling of the entire plane;

Theorem (Dworkin, Shieh, 1995)

Deceptions exist for all aperiodic tilesets.
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Introduction

Possible Solution: avoid making choices

e (a) is allowed;
e (b) is forbidden.
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Introduction

Self-Assembly Algorithm (Socolar, 1991)

e Start with a finite pattern of Penrose tiling;
o Keep adding the forced tiles one by one until it is possible;

e When there are none left, add a thick tile to a special site;
e Repeat.

Theorem (Socolar, 1991)
The algorithm can build any Penrose tiling.
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Introduction

Self-Assembly Algorithm (Socolar, 1991)

e Start with a finite pattern of Penrose tiling;
o Keep adding the forced tiles one by one until it is possible;

e When there are none left, add a thick tile to a special site;
e Repeat.

Theorem (Socolar, 1991)
The algorithm can build any Penrose tiling.

e However, this algorithm is not local.
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Introduction

Defective Seeds

With a correct seed it is impossible to get all the tiles, but with a defective
seed one can grow a tiling of the entire plane except for a finite region!

The decapod, an example of such a seed for Penrose tiling.
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Demonstration

Demonstration.
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Cut-and-project Tilings with Local Rules

Example: Planar 2 — 1 Tiling
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Example: Planar 2 — 1 Tiling
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Cut-and-project Tilings with Local Rules

Cut-and-project tilings

Definition

Let E be a d-dim. affine space in R" called the slope.
Select the d-dim. faces with vertices in Z" lying in E + [0, 1]".
Project them onto E to get a so-called planar n — d tiling.
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Cut-and-project Tilings with Local Rules

Cut-and-project tilings

Theorem (De Bruijn, 1981)

Penrose tiling is planar 5 — 2 with the slope generated by
1
cos(27/5) sm(27r/5)
u= | cos(4r/5) v = | sin(47/5)
cos(67/5) sin(67/5)
cos(8m/5) sin(87/5)

December 12, 2019 36 / 90






Cut-and-project Tilings with Local Rules

Example: Golden-Octagonal

Golden-Octagonal tiling is planar 4 — 2 with the slope generated by
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Cut-and-project Tilings with Local Rules

Example: Ammann-Beenker

Ammann-Beenker tiling is planar 4 — 2 with the slope generated by

1 0
cos(/4) = sin(7/4)
cos(2m/4) sin(2m/4)
cos(3m/4) sin(37/4)
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Cut-and-project Tilings with Local Rules

Local Rules

Definition (Local rules)

A d-plane E C R” is said to admit /ocal rules if there exists a vertex-atlas
A(r) so that any n — d tiling with the same atlas is planar with the slope
parallel to E.

Theorem (Bedaride, Fernique, 2017)

A planar 4 — 2 tiling admits local rules if and only if it is determined by
its subperiods (easily checked on the generating vectors).
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Cut-and-project Tilings with Local Rules

Examples

§ @ <Y o S

e Penrose tillings have local rules.

o Golden-Octagonal tilings have local rules.

e Ammann-Beenker tilings do not have local rules!

Proposition

In order to have a local self-assembly algorithm for a planar tiling it is
necessary for the slope of the tiling to admit local rules.
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The Local Self-Assembly Algorithm

Forced Vertex Example:
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The Local Self-Assembly Algorithm

Local Algorithm

Given r > 0, a vertex-atlas A(r) and a finite pattern S:
e pick at random a vertex v in S and let P(v, r) be the subpattern of
radius r and center v;
e consider the set F of all the elements in the vertex-atlas A(r) that
matches with the subpattern P(v, r);
e add to S all the vertices that appear in every pattern of F;

e Repeat.

December 12, 2019 47 / 90




The Local Self-Assembly Algorithm

Main Conjecture

For a planar tiling T with local rules, a seed S, and a big enough
vertex-atlas, the algorithm generates the intersection of all the tilings with
slopes parallel to the slope of T which have S as a subset.
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The Local Self-Assembly Algorithm

Golden-Octagonal Growth
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The Local Self-Assembly Algorithm

Golden-Octagonal Growth
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The Local Self-Assembly Algorithm

Golden-Octagonal Growth
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The Local Self-Assembly Algorithm
Smaller Seed
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The Local Self-Assembly Algorithm

Bigger Seed
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The Local Self-Assembly Algorithm

Ammann-Beenker

Ammann-Beenker tiling does not have local rules and will not grow.
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The Local Self-Assembly Algorithm

Conclusions

Infinite growth is observed for infinite family of tilings

Algorithm permits to jump over undefined tiles and avoid being stuck

The algorithm is local but it misses some tiles (Conway worms)

Bigger seed — bigger proportion of the plane covered
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Window

Window

Definition (Window)

The window W of a planar tiling with a slope E C R” is the orthogonal
projection of [0,1]" onto E+, where E*- is a complementary space to E

W = 7+([0,1]").

December 12, 2019 58 / 90



Window

Regions in the Window

To every pattern of a tiling we can assign a region in the window:

R(PY= [ (W—7"(x).

x:m(x)eP
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Subregions in the window




Window

Golden-Octagonal

December 12, 2019 61 /



Window

Golden-Octagonal

g © %
<
[eadsagsadiaelied jesd
< Q %
< o %
< < %
< < &QQ
< <
Qc@% @ 8
@t 2 Q
© Qe
Q
S £ a
< Q © Q
Q Q
g

December 12, 2019 62 / 90



Window

Golden-Octagonal
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Window

Golden-Octagonal
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Window

Conclusions

o Empty stripes consist of patterns which are close to the border of the
window when projectied to the perpendicular space

e Bigger seed — more information about the position of the window —
bigger proportion of the plane covered
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Defective Seeds
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Defective Seeds

Reminder: Defective Seed for Penrose Tilings

e Growth starting from the decapod covers the entire plane except for
finite (and untileable) region in the center
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Defective Seeds

Window

The window for Penrose tiling.
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Defective Seeds

Examples
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Defective Seeds

Examples

R(tiling) = {point}.
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Defective Seeds

Examples

R(decapod) = {point}
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Defective Seeds

Defective Seeds For Tilings with Local Rules

For any tiling with local rules T and for any R > [max(||pi||1)], where
{pi} is the set of subperiods of T, there exist a seed D with following

properties:
e every subpattern of D of radius R is correct (i.e. it is a subset of a
tiling with the same slope)

e R(D) = {point}
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Defective Seeds

Golden-Octagonal Defective Seed
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Defective Seeds

Golden-Octagonal Defective Seed
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Defective Seeds

Golden-Octagonal Defective Seed
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Defective Seeds

Defective Seeds

For all the planar tilings with local rules there is a set of defective seeds
such that the growth with such seeds will produce a tiling of the entire
plane except for a finite region.
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Shadows
Shadows

Definition

The jjk-shadow of a 4 — 2 planar tiling is the orthogonal projection of its
lift to the space generated by e;, ¢; and ey.
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Shadows
Shadows Can Vote!
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Shadows
Shadows Can Vote!
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Thank you for your attention!
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Shadows

Conway worms
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Shadows

now to Construct The Defective Seeds?
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Shadows

Conway worms
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Shadows

Marginal sites
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