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Context

The aim of this internship is the study of a new cellular
automaton, that we call the Red Stone Model. Cellular
automata, even in one dimension, show a richness of be-
haviours [1], and are, under various aspects, untractable
in general. This should not come as a surprise: these
systems can be seen as models in Non-Equilibrium Sta-
tistical Mechanics, for which, contrarily to Boltzmann
approach to Equilibrium, we lack a simple and solid for-
malism.

However, some rare examples have special ‘solvabil-
ity’ properties, often relying on a “hidden mathemati-
cal structure”, algebraic or combinatorial. One famous
case is the Abelian Sandpile Model (ASM) [2], that, after
the work of Dhar (and many others), has shown connec-
tions with the Kirchhoff Matrix-Tree Theorem, and the
Tutte polynomial of the associated graph. Another case
is the Asymmetric Simple Exclusion Process (ASEP) [3],
that can be solved through a matrix ansatz (due to Der-
rida), and shows connections with integrable spin chains
[6], and the Askey-Wilson polynomials [7]. Finally, we
mention the Box-Ball system of Takahashi and Satsuma,
which shows ‘solitons’ whose nature is related to Kashi-
wara crystal bases and Tropical Geometry [4].

Our scientific production within this topic up to now
is concerned with the Abelian Sandpile Model, for which,
together with Sergio Caracciolo and Guglielmo Paoletti,
we have contributed to establish the emergence of one-
and two-dimensional periodic patterns under determinis-
tic protocols, and classified them through a hierarchical
construction crucially based on certain properties of the
modular group. An extensive account of this can be found
in [5] (see also [9} 10} 11]).

This is the context in which the internship is situ-
ated... but the candidate is not required to know or un-
derstand all of it! (not even at the end of the period!)
Our ambitions will be simpler and more concrete. Let us
start by setting up our model. ..

Definitions

We start with an example. Consider a finite portion A

of the square grid, e.g. compactified on a torus, A =
722/ 3 i1av,+bi,- The cells of the grid are imagined as
‘boxes’ that can contain ‘marbles’ (or ‘stones’). A con-
figuration of marbles is determined by a pair (z,Z,) €
NA x A, with all z(z) > 0 and z(#,) > 1. We have z(&)
black marbles at site & # &,., while we have one red and
2(Z,) — 1 black marbles at Z,.. The dynamics is very sim-
ple: the red stone triggers the deployment (toppling) of
its cell, marbles being given to the neighbours, N-W-S-E
in cyclic order, the red one being given the last, so that
it triggers the toppling on this neighbour, and so on, as
shown in the example below.
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This dynamics induces a map on the set X (A, n), the
configurations on A with n marbles (which are a finite
number). Thus X (A,n) is partitioned into a collection
of periodic orbits, consisting of recurrent configurations,
on which arborescences of transient configurations are
rooted. Let’s call Xr and Xg the subsets of X corre-
sponding to recurrent and transient configurations, re-
spectively.

A useful special property of this model is that the red
stone itself performs a walk on A, while the whole con-
figuration performs a walk on X (A,n), a fact that is of
some relevance when characterising the orbits (especially
in a low-density regime).

The model is clearly generalisable to arbitrary ad-
jacency structures. We can replace the lattice A, and
the “N-W-S-E prescription”, with a collection of m
cells, and, for each ¢ € [m], a finite sequence (EZ =

(qbgi), éi), R ¢¢(1i()i))’ with ¢§i) € [m]. When the red stone
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is in ¢, the toppling gives one stone to ¢§l), one to ¢§i)7 and
so on, cyclically, up to full deployment, and giving the red
stone as last one. The equivalent of A is a digraph with
certain labels on the edges, with oriented edges (i, cbgz))
(having a label j). We will denote ® the collection of
¢:’s, and X (®,n) the analogue of X(A,n) above.

Goals

We will be interested in various kinds of questions, that
can be roughly characterised as:

generic properties: facts that hold true for all configu-
rations, in a general system X (®,n). Example: an
algorithm to determine if a configuration in X (®,n)
is transient or recurrent.

statistical properties: facts that hold true ‘almost
surely’, for large regular systems, e.g. on portions
of the hypercubic lattice dimension D. Example:
the average velocity of the red stone, as a function
of the density.

special configurations: determine configurations with
peculiar or extremal properties. Example: longest
or shortest orbit in X (®,n), or orbits such that the
trajectory of the red stone has some ‘nice property’,
such as being a Hamiltonian cycle.

specialties at D = 1: when the system is on a linear
strip, the dynamics may induce “solitons”!. It is of
separate interest to investigate the conditions lead-
ing to this feature, and study the resulting scat-
tering theory. For examples, the model in D = 1
shows waves of velocity 1/(2¥ — 1), involving 1 red
and 2¢~1 —1 black stones (see figure below, showing
the time evolution of a 1-dimensional automaton,
to be compared with those in [11], showing a single
time slice of a 2-dimensional ASM).

Roadmap

A more precise list of issues that can be addressed, within
the internship or on a longer time-scale (e.g. on a poten-
tial PhD continuation), are as follows. The number of %
symbols denotes the level of difficulty (up to my present
perspective).

General graphs:
% 1) Understand low- and high-density regimes.
&% 2) Classify the invariants (the ASM analogue of this
being the theory developed in [8]).
&% 3) Construct an efficient (linear-time?) algorithm to
recognize if a configuration is transient or recurrent (the
ASM analogue of this being the Burning Test [2]).
&% 4) The cardinality of X (®,n) is trivial (it is just
m(™"7?)). Can we determine |X(®,n)|? Do we have
an analogue of the ASM bijection with spanning trees?

Regular lattices in dimension D:
%% 1) Determine the average velocity as a function of
the density, when we start from a random configuration
of given density.
&% 2) The evolution of a periodic initial configuration
may remain (quasi-)periodic for a good while (t ~ aV'),
with varying periodic patterns, and then suddenly break
into an apparently random configuration (cf. figure on
next page). Understand and formalise such a behaviour,
and determine if a maximal « exists, or « is unbounded.
*% 3) W.r.t. the previous question, I conjecture that we
either enter an orbit of length O(V'), or we reach asymp-
totically the same average velocity as in the random case.
Is this true?

1-dimensional strips:

% 1) Discuss conservation of momentum in D = 1.

%% 2) Study which systems have a form of conservation
of momentum, and what can be deduced from this.
*% 3) Study ‘solitons’ in systems on a l-dimensional
strip, which have conservation of momentum. Determine
their ‘spectrum’, and the ‘scattering matrix’ between the
soliton and a fixed obstacle.
& 4) Introduce more red stones. Can we extend the
dynamics, and design a system, such that the resulting
scattering matrix satisfies the Yang—Baxter relation?

Prerequisites

Mastering English is not a prerequisite! Knowing
some english is good, for reading books and papers...
but I do speak French.

Mathematics will be the main language here. There
are no strong specific prerequisites, though, not even the
texts mentioned in the bibliography. Some very basics
Combinatorics and Probability (e.g., what is a Markov
Chain) is useful. The notions of Physics (mostly Statis-
tical Mechanics) you might have noticed lurking in the
text are not a prerequisite: in case, I'll tell you what you

From wikipedia: a soliton is a [..] wave that maintains its shape while it travels at constant speed. [..] Drazin & Johnson [..]
ascribe three properties to solitons: (i) They are of permanent form; (i) They are localised within a region; (iii) They can interact with
other solitons, and emerge from the collision unchanged, except for a phase shift.



need, when you need it.

Some knowledge of programming languages at your

choise (say, among C++, Mathematica, Maple or Java)
could be useful for numerical investigations.
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Time evolution of a periodic configuration, at times ¢ = 0, 2V and 10V. Orange circles show the last few steps of

the

red stone trajectory.
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