
Worst case analysis of Poincaré-like algorithms

Sidi Mohamed SEDJELMACI

LIPN CNRS UMR 7030,
Université Paris-Nord

Av. J.-B. Clément, 93430 Villetaneuse, France.
E-mail: sms @lipn.univ-paris13.fr

Version: March 6th 2021.

Abstract: We prove the following result : Let n be a large integer. Let pmax be the largest
number of iterations in a Poincaré-like algorithm for an input vector A of n+ 1 integers of at most
n bits in size, Then

pmax = bλ0 n+ α ln(n) + β c , where

α =
1

2 Φ′(λ0)
and β =

ln(
√

2π)

Φ′(λ0)
+

1

2
,

where Φ(λ) = (1 + λ) ln(1 + λ) − λ ln(λ) for 1
8 < λ < 1

2 , and λ0 ' 0.2938 is the solution of
Φ(λ) = ln(2).

Keywords: Poincaré algorithm; Complexity analysis; Number theory.

1 Introduction

This paper deals with the complexity analysis of Poincaré-like algorithms that differ only
on their exit test. More precisely, we only consider a simple case of these related algorithms
and study its worst case. The other cases could be inspired by this basic case.

We prove our result in two times. First we prove that (Proposition 1) if p and N are two
positive integers and A = (a1, a2, · · · , aN) is any input vector of positive integers, then the
Poincaré algorithm reaches A = (1, 1, · · · , 1) after p iterations with

max (A) ≥ (p+N−1N−1) .

Then, for the case N = n + 1 (Theorem 1 and Corrolary 2), we give the exact value of
pmax, the maximun number of iterations in Poincaré’s algorithm.

In order to be self-contained, we start with the following:

Notation and definitions: Let A = (a1, a2, · · · , aN) and B = (b1, b2, · · · , nN) be two
vectors of N distinct integers, N ≥ 4.
• max (A) = max {a1, a2, · · · , aN } ; min (A) = min {a1, a2, · · · , aN }.
• A ≤ B if and only if ∀i , 1 ≤ i ≤ N , ai ≤ bj .
• ∆A = (a1, a2 − a1, · · · ai+1 − ai, · · · , aN − aN−1).

1

• ∆−1A = (a1 , a1 + a2 , · · · , a1 + a2 + · · ·+ ai , · · · , a1 + · · · aN).
• ∆−1 satisfies ∆ (∆−1A) = A and A ≤ B =⇒ ∆−1(A) ≤ ∆−1(B).
• A+ = Sort(A) is the increasing sorted vector of A.
• PN is the set of all one to one and onto applications from (1, 2, · · · , N) to (1, 2, · · · , N)

(also called permutations), Id ∈ PN is the identity permutation : Id(A) = A.
• ∀σ ∈ PN , σ(A) = (aσ(1), aσ(2), · · · , aσ(N)).
• σmax is defined by σmax(A) = (aσ(1), · · · , aσ(N)), with aσ(i) > aσ(i+1), 1 ≤ i ≤ N − 1.
• Let (un)n be sequence of reals, then (un)n = o(1), means (un)→ 0, when n→ +∞ .

Example 1 : (N = 5)
A = (22, 35, 51, 84, 113). So ∆A = (22, 13, 16, 33, 29) and (∆A)+ = (13, 16, 22, 29, 33),
σmax(A) = (113, 84, 51, 35, 22) and ∆−1(σmax(A)) = (113, 197, 248, 283, 305).

2 The algorithm

We may repeat the same process A ← (∆A)+ to the vector (∆A)+ instead of A and so
on until we reach a vector with small enough integers. Note also that (∆A)+ = M × A,
where M is an unimodular matrix, i.e.: det(M) = ± 1. The following algorithm due to
Poincaré [3] shows how to reduce the size of integers of A without divisions and, in the
same time, preserving some properties. Actually the author used it to compute some vol-
umes. It was also used for computing the GCD of many integers in parallel [2].

A Poincaré-like algorithm : A

Input: A = (a1, · · · , aN) is a vector of N positive distinct integers, such that
max{A} < 2n ; n,N ≥ 4 and a boolean condition cond on A such that
cond(A) is truth in the beginning.

Outut: A = (a1, · · · , aN) such that cond(A) is false.

A := Sort(A) ;
While (cond(A)) Do

A := ∆(A) ;
A := Sort(A) ; /* In increasing order */

Endwhile
Return A ;

In this paper we are concerned with a week condition on A : min (A) > 0 i.e.:
While (min (A) > 0) Do. It also means that we stop when we reach ai = 0, for some
index 1 ≤ i ≤ N . We want to find the worst case of this related algorithm.

We start by the following observations for the worst case:
1) : Since the inputs A = (a1, a2, . . . , aN) and cA = (ca1, ca2, . . . , caN), for c ≥ 1 have

exactly the same number of iterations in algorithmA, then the worst case is obtained
when gcd(A) = gcd(a1, · · · , aN) = 1.

2) : Let p = p(N,n) be the number of iterations before min(A) = 0. Then after p
iterations we have A = (1, 1, 1, · · · , 1).

2

3) : From each step the previous vector A = (a1, · · · , aN) can be obtained by the
operator ∆−1 such that ∆(∆−1(A)) = A, defined by

∆−1(a1, a2, a3, · · · , aN) = (a1, a1 + a2, a1 + a2 + a3, · · · , a1 + a2 + · · · aN) .

Recall that we start the algorithm with the condition max(A) < 2n. Now if n and N are
fixed, then we want to now what is the maximun number of iterations p1 = p(N,n) to
reach the vector A = (1, 1, · · · , 1). The algorithm stops in the next step (min(A) = 0), and
the maximal number of steps in the algorithm is pmax = p1 + 1. We focus on the value of
p1.

Let A(k) be the value of vector A at iteration k, k ≥ 0, with A(0) = A. Each iteration
expresses as A(k+1) = ∆(A(k))+ = (π ◦∆)A(k), for some permutation π ∈ PN depanding
on ∆(A(k)) such that (π ◦∆)A(k) is increasingly sorted.

Suppose that at iteration p we reach A(p) = (1, 1, · · · , 1). We observe that ∆−1(A(p)) =
∆−1(1, 1, · · · , 1) = (1, 2, · · · , N). Since A(k+1) = (π ◦∆)A(k) for k ≥ 1, so for k = p − 1,
A(p) = (π ◦∆)A(p−1) and

A(p−1) = (∆−1 ◦ π−1)A(p) .

Here we cannot compute A(p−1) because we dont know the permutation π−1. In the
following we consider a special case.

Lemma 1: Let 0 ≤ k ≤ p. If we assume that A(p) = (1, 1, · · · , 1) and for each iteration
k, π is always the identity π = Id, i.e.: Id(A(k)) = A(k). Then at iteration p− k, we have

A(p−k) = ((k+1
1), (k+2

2), (k+3
3), · · · , (k+N−1N−1)) (1) .

Proof: Using ∆−1 each time, we have in turn :
A(p) = (1, 1, · · · , 1).
A(p−1) = (1, 2, 3, 4, 5, · · · , N − 1, N).
A(p−2) = (1, 3, 6, 10, 15 · · · , N(N + 1)/2).
So the property is valid for k = 0, 1, 2. By induction. Suppose that for a given 1 ≤ k ≤
N − 1, the relation (1) is valid for k. i.e.: A(p−k) = (1, (k+1

1), (k+2
2), (k+3

3), · · · , (k+N−1N−1)).

Let A(p−k) = (a
(p−k)
1 , a

(p−k)
2 , a

(p−k)
3 , a

(p−k)
N). So, for some k and 1 ≤ j ≤ N , we have

a
(p−k)
j = (k+j−1j−1) (2) .

Recall that ∆−1(x1, x2, · · · , xN) = (y1, y2, · · · , yN) with yj =
∑j
i=1 xi.

Since A(p−k−1) = (a
(p−k−1)
1 , a

(p−k−1)
2 , · · · , a(p−k−1)N) = ∆−1(A(p−k)) then

a
(p−k−1)
j =

j∑
i=1

a
(p−k)
i =

j∑
i=1

(k+i−1i−1) = (k+jj−1) . 2

Proposition 1: Let p and N be two a positive integers and A = (a1, a2, · · · , aN) be any
input vector of positive integers. If the algorithm reach A = (1, 1, · · · , 1) after p iterations
then

max (A) ≥ (p+N−1N−1) .

3

Proof: Let A = (a1, · · · , aN) is a vector of N distinct integers, such that 0 < a1 < a2 <
· · · < aN−1 < aN and σ ∈ PN . Recall that σ(A) = A = (aσ(1), aσ(1), · · · , aσ(N)).

Let ∆−1(A) = B = (b1, b2, · · · , bN), with bj =
∑j
i=1 ai and

∆−1(σ(A)) = C = (c1, c2, · · · , cN), with cj =
∑j
i=1 aσ(i). Since aσ(j) ∈ A, for all 1 ≤ k ≤

N , so cj is a sum of j distinct integers belonging to A. But bj is the smallest sum of j
distinct integers belonging to A which are a1, a2, · · · , aj , so bj ≤ cj or

∀σ ∈ PN , ∆−1(A) = ∆−1(Id(A)) ≤ ∆−1(σ(A)) ≤ ∆−1(σmax(A)) ,

where σmax(A) is the decreasing sorted vector of A. So

∀π−1 ∈ PN , ∀k , 1 ≤ k ≤ p , ∆−1(Id(A(p−k))) ≤ ∆−1(π−1(A(p−k))) .

At each step k in the left side, only the identity Id ∈ PN is considered and Lemma 1
yields for k = p, max (A) = (p+N−1N−1). For the right side we consider, at each step k, any

permutation π−1 ∈ PN so max (A) ≥ (p+N−1N−1). 2

Corollary 1: Let p and N be two a positive integers and A = (a1, a2, · · · , aN) be any
input vector of positive integers. If

(p+N−1N−1) ≤ max (A) < (p+NN−1) ,

then the algorithm terminates after at most p+ 1 iterations.

Proof: Thanks to Proposition 1, the worst case to obtain the last but one iteration is p,
so the worst case to reach the condition min {A} = 0 is p+ 1.

Example 2: If the number of integers of an input vector A is N = 5 and if max{A} = 113,
then p = 4 since the sequence ((k+N−1N−1))k≥0 yields

70 = (8
4) = (p+N−1N−1) < 113 < 126 = (9

4) = (p+NN−1) ,

and for any such vector A, the algorithm terminates for at most p+1 = 5 iterations. More
precisely, for any vector A of 5 positive integers such that 70 ≤ max{A} < 126, the worst
case is given by the vector

((p0), (
p+1
1), (p+2

2), (p+3
3), · · · , (p+N−1N−1)) = (1, 5, 15, 35, 70) .

The aim of the following is to give a closed form of p1 = p1(N,n), the maximum of
iterations to reach the vector (1, 1, · · · , 1), so that pmax = p1(N,n) + 1.

Lemma 2: Let N, p be two large positive integers and x a real, such that 1 ≤ x, p ≤ N ,
then

1) f(x) = fN (x) =
(N + x)N+x+1/2

xx+1/2
is increasing .

2) (p+N
N) = (

1√
2π

+ o(1))
f(p)

NN+1/2
.

Proof: 1) We observe that f(x) > 0. Let F (x) = ln f(x) = (N + x + 1/2) ln(N + x) −
(x+ 1/2) ln(x) so that f(x) = eF (x) and f ′(x) = F ′(x)eF (x). Now

F ′(x) = ln(
N + x

x
)− N

2x(N + x)
and

4

F
′′
(x) =

−N(x2 + (N − 1)x− (N/2))

(Nx+ x2)2
.

Since x2 + (N − 1)x − (N/2) > 0 for 1 ≤ x ≤ N , then F
′′
(x) < 0, F ′ is decreasing and

F ′(x) ≥ F ′(N) = ln 2− (1/4N) > 0. Hence F and f are both increasing.
2) We assume that both n and p are all tending to infinity, so we can use Stirling’s
approximation to evaluate all the factorials. We obtain

(p+N
N) = (1 + o(1))

√
N + p

2πpN

(N + p)N+p

ppNN

= (
1√
2π

+ o(1))
(N + p)N+p+1/2

pp+1/2NN+1/2
.

Hence the result. 2

Recall that p1 be the largest number of iterations in the algorithm to reach the vector
(1, 1, · · · , 1) for an input vector A of N integers of at most n bits in lenght. From Propo-
sition 1, we derive

p1 = max { 1 ≤ p ≤ N − 1 , s.t. : (p+N−1
N−1) < 2n } .

From a parallel algorithmic point of view, we must have N = nO(1), i.e.: polynomial with
respect to n, and for the sake of readability, from now on, we fix N = n+ 1 so

p1 = p1(n) = max { 1 ≤ p ≤ n , s.t. : (p+n
n) < 2n } .

Moreover, Proposition 1 and Lemma 2 yield

p1 = max { 1 ≤ p ≤ n , s.t. : f(p) < {
√

2π + o(1)} × 2n nn+1/2 } , (3)

where

f(x) = fn(x) =
(n+ x)n+x+1/2

xx+1/2
.

Lemma 3 : If N = n+ 1 and p1 = max { 1 ≤ p ≤ n , s.t. : (p+nn) < 2n } and let λ = p1/n ,
then

i) bn
4
c ≤ p1 < d

n

2
e .

ii) ∀n ≥ 8 ,
1

8
≤ λ < 1

2
.

Proof: First we prove that p < n, then n/4 < p < n/2.

f(n) =
(2n)2n+1/2

nn+1/2
= 22n+1/2nn > (

√
2π + o(1)) 2nnn+1/2 .

Since f is increasing so we must have p < n.

If λ = p/n, we observe that

f(p) = f(λn) =

√
1 + λ

λ
nn { (

1 + λ

λ
)λ (1 + λ) }n .

5

• If p = n/2, then λ = 1/2 and 3
√

3 > 4, so for n ≥ 4

f(n/2) =
√

3nn (
3
√

3

2
)n > (

√
2π + o(1)) (2nnn+1/2) .

Hence
f(dn/2e) ≥ f(n/2) > (

√
2π + o(1)) (2nnn+1/2) ,

and by (3), p1 < dn/2e, or p1 ≤ dn/2e − 1 < n/2.

• If p = n/4, then, since 5× 51/4 < 8 :

f(
n

4
) =
√

5 nn (
5× 51/4

4
)n < (

√
2π + o(1)) (2nnn+1/2) .

So by (3), bn/4c ≤ p1 and p1 ≥ n/4− 1, hence i) .

ii) Let λ = p1/n then, from i) and for n ≥ 8 :

1

8
≤ 1

4
− 1

n
≤ λ =

p1
n
<

1

2
. 2

Lemma 4: Let Φ(x) = (1 + x) ln(1 + x)− x lnx for 1/8 < x < 1/2.

If N = n+ 1 and p = λn with 1/8 < λ < 1/2, then

f(λn) ≤ (
√

2π + o(1)) nn+1/22n ⇐⇒ Φ(λ) ≤ ln 2 +
ln(n)− Φ′(λ)

2n
+

ln(
√

2π + o(1))

n
.

Proof: Let p = λn with 1/8 < λ < 1/2, then

f(p) = f(λn) = nn
(1 + λ)n+λn+1/2

λλn+1/2
.

So
ln(f(p)) = ln(f(λn)) = n lnn+ (n+ λn+ 1/2) ln(1 + λ)− (λn+ 1/2) lnλ .

Then f(p) = f(λn) ≤ (
√

2π + o(1)) nn+1/22n yields

n{ (1 + λ) ln(1 + λ)− λ ln(λ)− ln(2) } ≤ 1

2
ln(

λn

1 + λ
) + ln(

√
2π) + o(1) ,

and

(1 + λ) ln(1 + λ)− λ ln(λ) ≤ ln(2) +
1

n
{ 1

2
ln(

λn

1 + λ
) + ln(

√
2π) + o(1) } .

But

ln(
λn

1 + λ
) = ln(n)− ln(

1 + λ

λ
) = ln(n)− Φ′(λ) .

Hence the result. 2

In the following we consider the real λmax, the maximun value of λ in Lemma 4.

Theorem 1: Let Φ(λ) = (1 + λ) ln(1 + λ) − λ ln(λ) for λ0 ≤ λ < 1
2 , where λ0 ' 0.2938

is the solution of Φ(x) = ln(2), so that Φ′(λ0) = ln(1+λ0λ0
) ' 1.4824. Let p1 be the largest

6

number of iterations to reach A = (1, 1, · · · , 1) in the algorithm A, for an input vector A
of n+ 1 integers of at most n bits in size. Then

p1 = bλ0 n+ a ln(n) + b c , where

a =
1

2 Φ′(λ0)
and b =

ln(
√

2π)

Φ′(λ0)
− 1

2
.

Proof : From Lemma 3, we have

f(
n

4
) < (

√
2π + o(1))nn2n+1/2 < f(

n

2
) ,

and since f is continuous, there exists λmax and p′1 = λmax n two reals such that

f(p′1) = f(λmax n) = (
√

2π + o(1))nn2n+1/2 (4) .

Note that λmax will be defined up to o(1/n) and p′1 up to o(1).

Thanks to Lemma 4, λmax is the solution of the equation

Φ(λ) = ln(2) +
ln(n)

2n
− Φ′(λ)

2n
+

ln(
√

2π) + o(1)

n
,

or

Φ(λ) +
Φ′(λ)

2n
= ln(2) +

ln(n)

2n
+

ln(
√

2π) + o(1)

n
(5) .

Recall that ln 2 = Φ(λ0). This suggests to seek a solution as

λmax = λ0 +
a ln(n) + b

n
+ o(

1

n
) ,

where a, b are two reals we have to find.

The function T (x) = Φ(x) + 1
2n Φ′(x) is regular for 1/8 < x < 1/2.

For the sake of readability, here λ means λmax. Taylor’s theorem for fonction T yields

Φ(λ) +
Φ′(λ)

2n
= Φ(λ0) +

Φ′(λ0)

2n
+ { a ln(n) + b

n
+ o(

1

n
) } {Φ′(λ0) +

Φ′′(λ0)

2n
}

+
1

2
{ a ln(n) + b

n
+ o(

1

n
) }2 {Φ′′(t) +

Φ′′′(t)

2n
} ,

for some real t, λ0 < t < λmax.

However Φ′′(t) and Φ′′′(t) are both bounded, so the last term is an o(1/n) and for λ = λmax :

Φ(λ) +
Φ′(λ)

2n
= Φ(λ0) +

Φ′(λ0)

2n
+ { a ln(n) + b

n
+ o(

1

n
) } {Φ′(λ0) +

Φ′′(λ0)

2n
}+ o(

1

n
) .

or Φ(λ) +
Φ′(λ)

2n
= Φ(λ0) + { 1

2
+ b } × Φ′(λ0)

n
+ aΦ′(λ0)×

ln(n)

n
+ o(

1

n
) (6) .

Then (5) and (6) yield

aΦ′(λ0) =
1

2
and (

1

2
+ b) Φ′(λ0) = ln(

√
2π) .

7

n 10 11 12 13 14 15 16 17 20 25

p1(n) 4 4 4 4 5 5 5 6 7 8

Table 1: Some elements of the sequence (p1(n))n≥1.

Hence

a =
1

2 Φ′(λ0)
and b =

ln(
√

2π)

Φ′(λ0)
− 1

2
(7) .

Corrolary 2 : The maximal number of iteration in algorithm A for an input vector of
n+ 1 integers of at most n bits in size is

pmax = bλmaxn+ 1c = bλ0n+ a ln(n) + b+ 1c ,

for large enough integers n, and where a and b are defined in (7). Moreover, pmax is
obtained for the input vector

A = (1, (p+1
1), (p+2

2), (p+3
3), · · · , (p+np)) .

Proof: From (3) and (4), we derive f(p1) < (
√

2π + o(1))nn2n+1/2 = f(p′1), where p′1 is
the real defined in (4). Since f is a continuous increasing function then p1 < p′1 = λmax n.
Recall that p1 is an integer while p′1 is a real. Moreover, λ0, a and b are not rationals, so

bλmax nc < λmax n = p′1 and f(bλmax n) < f(λmax n) = f(p′1) .

So the integer bλmax nc is the largest integer p satisfying

f(p) < f(p′1) = (
√

2π + o(1))nn2n+1/2 ,

then by (3)
p1 = bλmaxnc = bλ0n+ a ln(n) + bc .

The maximal number of iteration in the Algorithm A is pmax = p1 + 1 since we must
perform one more iteration to reach min(A) = 0. So

pmax ≤ bλmaxnc+ 1 = bλ0n+ a ln(n) + b+ o(1) + 1c = bλ0n+ a ln(n) + b+ 1c ,

where a and b defined in (7). 2

Remarks :
• Actually, we have found a sequence (p1(n))n satisfying

p1(n) = max { p | (n+pn) < 2n} = bλ0n+ a ln(n) + b c ,

where a and b defined in (7). Some examples are given in Table 1.

• The formula of p1 is valid only for large enough n, because the hidden constant behind
o(1) could be large.

8

• Numerical values of α = a and β = b+ 1 yield approximately

pmax ' b (0.2938)n+ 0.3373 ln(n) + 1.1198 c .

Example 3 : For n = 20, we have (2720) = (277) < 220 < (288) = (2820) which yields

p1 = p1(20) = max { p | (20+p20) < 220} = 7 .

So pmax = p1 +1 = 8. The worst case is given by the input vector A of 21 positive integers
od at most 20 bits in size :

A = (1, (81), (
9
2), (

10
3), (114), (125), . . . , (2518), (

26
19), (

27
20))

= (1, 8, 36, 120, 330, 792, . . . , 230230, 888030) .

We easily check that after 8 iterations we obtain min {A} = 0. Moreover, for n = 20 :

b (0.2938)n+ 0.3373 ln(n) + 1.1198c = b 8.00626 · · ·c = 8 .

References

[1] V. Brun, Algorithmes Euclidiens pour trois et quatre nombres, 13th Congr. Math. Scand.
Helsinki, S. (1957) 45–64.

[2] S.M. Sedjelmaci, Fast parallel GCD algorithm for many integers Poster talk presented at
ISSAC 2013, Boston, USA and ACM Communications in Computer Algebra, Vol 47, No. 3,
Issue 185, September 2013, 92-93.

[3] H. Poincaré, Sur une généralisation des fractions continues, in C. R. Acad. Sci. Paris Sér. A
99, (1884) 1014–1016.

9

