Groupes, $\mathbb{Z}/n\mathbb{Z}$ et $(\mathbb{Z}/n\mathbb{Z})^*$

Exercice 1. Etudier l'ensemble des groupes d'ordre (c'est-à-dire de cardinal) 1, 2, 3, 4.

Exercice 2. Trouver l'ensemble des sous-groupes de $\mathbb{Z}/6\mathbb{Z}$

Exercice 3. (i) Dans $\mathbb{Z}/15\mathbb{Z}$, résoudre les équations suivantes

- (i) 4x = 12
- (*ii*) 12x = 4
- (ii) Combien existe-t-il d'homomorphismes de groupes f de $(\mathbb{Z}, +, 0)$ dans $(\mathbb{Z}/15\mathbb{Z})^*$ tels que f(1) = 7? Calculer l'image de 8 par un tel homomorphisme.

Exercice 4.

- (i) Rappelez les propriétés que vous connaissez sur le nombre de racines dans \mathbb{K} d'un polynôme dans $\mathbb{K}[X]$, pour \mathbb{K} étant respectivement $\mathbb{C}, \mathbb{R}, \mathbb{Z}$.
- (ii) Dans $\mathbb{Z}/6\mathbb{Z}$, trouver les racines du polynôme $P(X) = X^2 X$.
- (iii) Trouver dans $\mathbb{Z}/6\mathbb{Z}[X]$ deux factorisations distinctes de $X^2 X$ sous la forme $(X \dot{a})(X \dot{b})$.
- (iv) Trouver dans $\mathbb{Z}/2\mathbb{Z}[X]$ tous les polynômes de degré au plus 3. Quels sont ceux qui sont irréductibles? Factoriser en produit d'irréductibles les autres.
- (v) On suppose $n \in \mathbb{P}$. Montrer que
 - (i) tout polynôme de $\mathbb{Z}/n\mathbb{Z}[X]$ de degré k supérieur ou égal à 1 peut être mis sous la forme d'un produit d'une constante et d'un polynôme unitaire (coefficient de plus haut degré = 1).
 - (ii) que les polynômes de degré 1 ont au plus une racine dans $\mathbb{Z}/n\mathbb{Z}$
 - (iii) que si \dot{a} est une racine de P, alors $(X \dot{a})|P$. On pourra se ramener à P unitaire et raisonner par récurrence forte en utilisant $Q = P X^{k-1}(X \dot{a})$.
 - (iv) En déduire par récurrence sur k que si $n \in \mathbb{P}$, alors tout polynôme de degré k supérieur ou égal à 1, à coefficient dans $\mathbb{Z}/n\mathbb{Z}[X]$, admet au plus k racines.
- (vi) Qu'en concluez-vous?

Exercice 5. Soit $(G, \times, 1)$ un groupe commutatif fini de n éléments. On appelle ordre d'un élément $x \in G$ le plus petit entier naturel non nul k tel que $x^k = 1$.

- (i) Quel est le cardinal de $(\mathbb{Z}/15\mathbb{Z})^*$, ensemble des éléments inversibles de $\mathbb{Z}/15\mathbb{Z}$?
- (ii) Expliquer pourquoi tout élément d'un groupe fini possède un ordre?
- (iii) Soit $x \in G$, d'ordre k. Montrer que $\langle x \rangle = \{1, x, x^2, \dots, x^{k-1}\}$ est un sous-groupe de G.
- (iv) En déduire que k est un diviseur de n et que $x^n = 1$.
- (v) Quel est l'ordre des éléments de $(\mathbb{Z}/15\mathbb{Z})^*$?
- (vi) Le groupe $(\mathbb{Z}/15\mathbb{Z})^*$ est-il cyclique (y-a-t-il un élément d'ordre le cardinal de $(\mathbb{Z}/15\mathbb{Z})^*$? Application : soit $p \in P$ et $a \in \mathbb{N} - p\mathbb{N}$, montrer que $a^{p-1} - 1$ est divisible par p.