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1. INTRODUCTION
In this paper, we modelize a community of autonomous

agents in which each agent acts in the environment following
some relational action model [4], describing the effect to be
expected when applying a given action in a given state. At
some given moment, the underlying action model is only
imperfectly known by agents and may have to be revised
according to the unexpected effect of the current action. In
a Multi Agent context, this revision process can and should
benefit of interactions between the agents. For that purpose,
we consider the general multi agent learning protocol SMILE
[2] together with the relational action model learner IRALE
[5] in order to modelize the interactions between agents.

2. SMILE
The SMILE protocol is based on a ”consistency mainte-

nance“ process: after revising his current model in order to
ensure that the revised model is consistent with the observa-
tions he has memorized, the agent communicates the revised
model to the other members of the community, and possi-
bly receives past observations they have memorized and that
contradict the revised model.

Each agent ri in a community of agents, or MAS, has
at some moment a current belief set Bi, also denoted as
his current model. He also has stored a set Ki of observa-
tions. A consistency property Cons(Bi,Ki) is defined re-
garding beliefs and observations: ri is said a-consistent iff
Cons(Bi,Ki) is true. Consistency of the agent with respect
to the community is defined as the consistency of the agent
with respect to the set of observations K = K1...Kn of all
the agents of the MAS (including ri): ri is mas-consistent
iff Cons(Bi,K) is true.

When encountering a contradictory observation k making
Cons(Bi,Ki ∪ k) false, an agent can apply a local revision
mechanism M to recover his a-consistency. M changes Bi in
B′

i and is such that observations coming from other agents
may be used as if the agent had observed them. M and
Cons have then to satisfy the following properties:

• Cons(Bi,Ki) ⇒ Cons(B′
i,Ki ∪ k)

• Cons(B,K1 ∪K2) iff Cons(B,K1) and Cons(B,K2).
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Now, a global revision mechanism Ms allows the agent
to restore its mas-consistency. The mechanism is triggered
by an agent ri upon direct observation of a contradictory
observation k, denoted as an internal counterexample, thus
enforcing revision of Bi into B′

i. To restore mas-consistency
the agent starts a set of interactions with the other agents.
Such an interaction I(ri, rj) between the learner agent ri
and another agent rj , acting as a critic, is as follows:

1. Agent ri sends the revision B′
i to rj .

2. Agent rj checks the revision B′
i. If this modification

preserves its a-consistency, rj notifies ri that he ac-
cepts B′

i, otherwise rj sends to ri a contradictory ob-
servation k′, denoted as an external counterexample,
such that Cons(B′

i, k
′) is false.

The sequence of interactions ends when all critics accept the
current revision B′

i.
What an agent makes of the mas-consistent models that

other agents communicate to him leads to various instanci-
ations of SMILE. In the individualistic variant iSMILE, an
agent simply ignores other agent’s models though he helps
building them by communicating counterexamples [1].

3. IRALE
In IRALE, the agent knows which actions are available

and has a complete representation of the current state, rep-
resenting both his own state and the environment state. He
sequentially performs actions that each possibly changes the
current state into a new state, thus forming a trajectory in
the space of states. The difference between these two states
is considered as the effect of performing this action in the
current state. IRALE describes states as a variable number
of objects related by various relations, and represents the
action model as a set Bi of STRIPS like first order rules.

Each rule r of Bi is composed of a precondition r.p, an
action r.a and an effect r.e. The precondition is a conjunc-
tion of positive literals, the action is a single literal, and the
effect is made of two conjunctions of literals: r.e.add, to be
added in the new state and r.e.del to be withdrawn. The
model has a default rule stating that whenever no rule ap-
plies, the action produces no effect, i.e. e.del = e.add = ∅.
In the same way, each observation k is a state/action/effect
triples k = (k.s, k.a, k.e) observed during the agents history.

A rule r applies to an observation k, i.e. r pre-matches
k, whenever its precondition/action parts matches the sta-
te/action parts of the observation, up to some grounding
substitution of r. Applying r results in predicting the effect



k.ê. When it is the observed effect k.e, we say that r post-
matches k. Observation k is contradictory when either there
is no rule in Bi that predicts the observed effect or the pre-
dicted effect does not match the, possibly empty, observed
effect.

The revision mechanism M involves both generalization
and specialization operators [5]. Generalization, for instance,
proceeds as follows: when no rule of Bi applies to k, a rule
r of Bi is selected such that first, up to generalizing some
constants into variables, r post-matches k, and, then, when
applying least general generalization to r and k, the result-
ing rule pre-matches k and does not contradict past obser-
vations in Ki. Note that an IRALE agent only memorizes
counterexamples, i.e. state/action/effect triples that have
at some moment contradicted their current action model.
Such memorization scheme ensures learning convergence in
the realizable case to the target action model.

The IRALE agents experimented here are equipped with a
symbolic planner and try to form and execute plans in order
to reach individual goals. At some instant, the agent tries to
build a plan. If planning succeeds, his current action model
predicts the effect ê in state s of the first action a of the
plan, the agent performs then the action and observes the
effect e. If e = ê, the agent applies the next action of the
plan; otherwise, he memorizes a new counterexample and
start a global revision by transmitting revised models to the
other agents until all agents accept the current model. If
planning fails, random actions are performed until an effect
is observed, and planning is attempted again.

4. EXPERIMENTS
We consider a variant of the blocks world domain [5] in

which color predicates are introduced: when the agent per-
forms the action move(a, b), a is actually moved on top of
b only if a and b have the same color. Otherwise, a is not
moved and its color shifts to the same color as b. When
blocks are either back or white, the target action model
needs 7 rules to model the action move and the state space
is composed of nearly 5 million states.

Experiments are performed for communities of 1, 5 and
30 agents, each consisting in 100 runs. For each agent, a run
is divided in episodes of at most 50 actions each. The agent
starts the first episode with a null model and the current
model at the end of an episode is the starting model at the
beginning of the next episode. During an episode, the agent
explores its environment, starting from a random state, and
tries to reach a random goal, both provided by an external
controller. Each agent uses FF [3] as a planner, and the
planner is allowed five seconds to find a plan or state that
planning has failed.

Experiments display a strong relation between the accu-
racy and the total number of revisions the agent has per-
formed, i.e the number of internal and external counterex-
amples in his memory. When there are many agents such
a memory size is obtained for far less actions than those
performed by an isolated agent (see Table 1).

Figure 1 reports the average number of goals achieved by
an agent during a run, as a task oriented measure of learning
success. We observe that for all community sizes, there is a
critical number of actions the agent has to perform before
starting to produce accurate plans and to reach his random
goals. This critical number is much smaller in the 30 agents
community case but a clear benefit is yet obtained in the 5

Nb. ag. Nb actions Accuracy Nb ex. Nb intern. ex.
1 250 97.0 21.31 21.31
5 100 96.8 21.32 6.16
30 30 97.2 21.36 2.00

Table 1: Numbers of actions and counterexamples
(total and internal) in an agent memory when accu-
racy reaches ≈ 0.97 in 1, 5 and 30 agents communities

agents community case.

Figure 1: Number of goals achieved by an agent
during a run in 1,5 and 30 agents communities

As a conclusion, each agent, when revising its current ac-
tion model, benefits from past observations communicated
by other agents on a utility basis: only observations contra-
dicting the current model of the learner agent are transmit-
ted. Agents are considered as autonomous entities, as for in-
stance robots or mobile devices, with no access to controllers
agents or shared memory. We argue that such autonomous
entities, still able to communicate with similar entities while
preserving their privacy, will play an important role in the
future.
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