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Even in spaces of formal power series is required a topology in order to legitimate
some operations, in particular to compute infinite summations. In general the
topologies considered are just a product of the topology of the base field, an inverse
limit topology or a topology induced by a pseudo-valuation. As our main result
we prove the following phenomenon: the (left and right) topological dual spaces
of formal power series equipped with the product topology with respect to any
Hausdorff division ring topology on the base division ring, are all the same, namely
just the space of polynomials. As a consequence, this kind of rigidity forces linear
maps, continuous with respect to any (and then to all) those topologies, to be defined
by very particular infinite matrices similar to row-finite matrices.
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1. Introduction

Some manipulations of formal power series require some topological properties in order to be legitimate.

For instance, the usual substitution of a power series in one variable without constant term into another,
or the existence of the star operation, related to the Md&bius inversion formula, are usually treated using
either an order function (a pseudo-valuation) or, equivalently (while more imprecise), arguing that only
finitely many terms contribute to the calculation in each degree (this is the usual sort of arguments used
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in combinatorics?). In both cases is used, explicitly or not, a topology induced by a filtration: the “order”
of some partial sums must increase indefinitely for the sum to be defined (and the operation to be legal).
Quite naturally other topologies may be used: for instance if X is an infinite set, then the completion of the
algebra R(X) of polynomials in non-commutative variables (where R is a commutative ring with a unit)
with respect to the usual filtration (induced by the length of a word in the free monoid X*) is the set of
all series with only finitely many non-zero terms for each given length. The sum ) . x of the alphabet
(the “zéta function” of X) does not even exist in this completion. In order to take such series into account
— which could be fundamental for instance in the case of the Mébius inversion formula — we must use the
product topology (with a discrete R) or consider a graduation of X so that there are only finitely many
members of X in each degree. If some analytical investigations must be performed (such as convergence
ray, resolution of differential equations, or some functional analysis), the discrete topology of K € {R,C} is
not sufficient anymore; the absolute value of K turns to be unavoidable. Other topologies may be used for
particular needs.

Given a topology, compatible in a natural way with algebraic operations, on a space of formal power
series with coefficients in a topological field (or division ring), it can be useful to consider continuous linear
endomorphisms because they commute to infinite sums. Quite amazingly for a very large class of admissible
topologies (namely product topologies with respect to Hausdorfl topologies on the base field or division
ring) it appears that these continuous linear maps may be seen as infinite matrices of a particular kind
(each “row” is finitely supported) and that, independently of the topology chosen for the base field. In
other terms, a linear map can be represented as some “row-finite” matrix if it is continuous for one and
thus for all these topologies (see Section 7). Hence, in order to prove that an endomorphism is continuous
with respect to some topology, it suffices to prove this property for the more convenient topology in the
class. Note however that the representability of an endomorphism by a row-finite matrix is not sufficient
to guarantee that it is continuous, because the representation is not faithful. Nevertheless each row-finite
matrix represents a continuous linear endomorphism.

The explanation of this phenomenon relies on the following property of rigidity: the topological left and
right duals of a given space of formal series, equipped with the product topology, with coefficients in some
Hausdorff topological division ring, are forced to be the space of polynomials, independently of the topology
on the base division ring, as soon as it is Hausdorff. This is the main result of the paper, presented in
Section 3 (Theorem 5) and proved in Section 4. We also recast this result with a more category-theoretic
flavor (in Section 6) in order to show that it provides a natural equivalence between two categories of
vector spaces, extending some results of J. Dieudonné on linearly compact vector spaces [7]. Some direct
consequences of this property of rigidity, in particular the representation by row-finite matrices, are presented
in Section 7.

A formal power series is a set-theoretic map defined on a free monoid and with values in a ring, repre-
sented as an infinite sum. Hence, from a linear perspective (i.e., ignoring the multiplication of series, or in
other words, replacing the free monoid by any set), and a bit radically, the theory of formal power series
matches with that of spaces of ring-valued functions. Within this point of view, a polynomial turns to be a
finitely-supported map. Furthermore, as soon as a topology is considered for both the base ring (for instance
the discrete topology) and the function space (the product topology) these maps may also be represented as
sums of summable families (see Remark 14 below), whence formal power series are recovered, and nothing
is lost through such a general viewpoint. Therefore, if the multiplication of series is irrelevant for the desired

2 One observes that the topological aspects of combinatorics are often neglected, and sometimes ignored even in the most famous
textbooks. I cite Stanley [19, p. 196]: “Algebraically inclined readers can think of K((X)) [Author’s note: the space of formal power
series in non-commutative variables in the set X over K] as the completion of the monoid algebra of the free monoid X* with
respect to the ideal generated by X.” but this is of course false as soon as X is infinite, because in this case the series Zzex T
belongs to K((X)) while it does not belong to the completion of the monoidal algebra K[X*] with respect to the 9t-adic topology
induced by its augmentation ideal 9t = XK[X*].
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applications, like those presented hereafter, one can see formal series as functions, and this is precisely the
way we deal with them in this contribution.

As a last word, one mentions that a part of the results of this contribution already appeared as Chapter 5
of the unpublished author’s “habilitation” [16], and only in the commutative setting, i.e., for vector spaces
over a field and not over a more general division ring.

2. Some notations and basic facts

This quite long section is devoted to the introduction of some notations, and definitions, and to recall
some results which are useful for subsequent developments. Most of the notions occurring in this section are
standard and may be found in many textbooks, but they are recalled for the reader convenience. In the first
place, the algebraic notions of left, right and bimodules (and vector spaces, over division rings) are briefly
exposed (Section 2.2), followed, in Section 2.3, by the same objects equipped with “compatible” topologies.
Summability and its basic properties, which are fundamental for this paper, are presented in Section 2.4.
Finally, in Section 2.5, are introduced the basic definitions concerning duality in the context of topological
bimodules over (not necessarily commutative) topological rings; in particular one has to distinguish between
left, right and two-sided (topological) duals.

2.1. Some general notations and definitions

Except in Section 6, the categories [14] do not play an important role in this contribution. Nonetheless
the following helpful notation is introduced, and one freely uses a few very basic notions from category
theory (such as functors, “forgetful” functors and sub-categories for instance). If C denotes a category, and
a, b are objects of C, then by C(a,b) is meant the set of all morphisms (or arrows or also maps) in C from
a to b. For instance, let Ab be the category of abelian groups. Then, Ab(A, B) denotes the set of all group
homomorphisms from A to B. Names for various categories are introduced in what follows.

The category C°P is the opposite category of C: both categories share the same objects, and each f €
C(a,b) is a member of C°P(b,a). The composition of morphisms in C°P is the opposite of that in C. This
notion is important to define some dual functors (see Section 2.5).

2.2. (Bi)modules and (bi-)vector spaces

Throughout this contribution, unless stated the contrary, by a ring R is meant a (not necessarily com-
mutative) ring with an identity element (i.e., a unital ring), which is denoted by 1g (its zero is denoted
by Or). A division ring K (see [10]) is a non-zero ring (i.e., Og # 1x) whose non-zero members are invertible.
A commutative division ring thus is a field.

An abelian group M is said to be a left R-module (also called a left module over R) if it is equipped
with a left R-action, i.e., a map (r,v) € R X M — rv € M such that 1zv = v (i.e., each module is unital),
and (rs)v = r(sv), r(v + w) = rv + rw for each r,s € R and each v,w € M. Symmetrically one may
introduce a notion of right R-module (the right R-action is then denoted by (v,r) € M x R — vr € M).
Let S be another ring (with a unit). An abelian group M which is both a left R-module and a right
S-module is called a R-S-bimodule whenever the left R-action and the right S-action are compatible,
ie, r(vs) = (rv)s, r € R, v € V, s € S; the common value of r(vs) and of (rv)s is denoted by rvs.
When R and S are both division rings, then one obtains left (or right) R-vector spaces, and R-S-bi-vector
spaces.

Remark 1. If R is a commutative ring, then the structures of left and of right modules over R coincide, so
that one just talks about R-modules. Any R-module is a R-R-bimodule with the left action as right action
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(or vice versa). However it is easy to observe that not all R-R-bimodules arise in this way. Likewise when
R is a field, any K-vector space is a K-K-bi-vector space.

Given two left (or right) R-modules (or K-vector spaces) M, N, and a group homomorphism ¢ from M
to N, ¢ is said to be a left (or right) R-linear map if ¢(rv) = ré(v) (or ¢(vr) = ¢(v)r), r € R,v € V. If
M and N both are R-S-bimodules (or R-S-bi-vector spaces, in case both R and S are division rings), and
if : M — N is a group homomorphism, then ¢ is a R-S-linear map, or a left R-linear and right S-linear
map, when ¢(rvs) =ro(v)s,r € R, s€ S,veV.

One introduces the categories pRMod (respectively, rVect, when R is a division ring) of left R-modules
(respectively, left R-vector spaces) with left R-linear maps, Modg (respectively, Vectg) of right S-modules
(respectively, right S-vector spaces, when S is a division ring) with right S-linear maps, pBimodg (respec-
tively, gpBivectg) of R-S-bimodules (respectively, R-S-bi-vector spaces, when R, S are division rings) with
R-S-linear maps. One has the following commutative diagrams of obvious forgetful functors.

RBimodS

rMod Modg (1)

A

7

and also
rBivectg
U= \
r Vect Vectg (2)
The common value ;U o;| — | = U, o| — |, in both diagrams is sometimes denoted by | —|. In details, by ;| — |
(respectively, | — |,-) is meant the functor that consists in forgetting the structure of right (respectively, left)

R-module (or R-vector space) of a R-S-bimodule (respectively, R-S-bi-vector space), i.e., ;| M| (respectively,
|M)|,) is the underlying left R-module (respectively, underlying right S-module) of a R-S-bimodule M,
while ;U (respectively, U,.) is the functor that consists in forgetting the left (respectively, right) R-action
(respectively S-action) of a left R-module, or left R-vector space (respectively, right S-module, or right
S-vector space). Finally, | — | forgets both module (or vector space) structures on a bimodule (or bi-vector
space) and provides the underlying abelian group of a bimodule.

Remark 2. If R is a ring (or a division ring), then R itself turns to be a left (respectively, right) R-module (or
vector space), denoted by ;R (respectively, R,) with left (respectively, right) R-action given by left (respec-
tively, right) multiplication. Actually, R, with the above actions, acquires a structure of a R-R-bimodule (or
R-R-bi-vector space), denoted by ;R,. Of course one has ;|;R.| = R, |iRy|r = Ry, and |;R,| is the abelian
group structure of R.
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2.8. Topologies compatible with module (vector space) structures

2.8.1. Initial and product topologies

The following notions may be found, e.g., in [3].

Let E be a set, and let F be a collection of set-theoretic maps, with common domain E, ¢: E — Eg,
where each (Ey, T4) is a topological space. The initial topology induced by F on E is the coarsest topology
that makes continuous each ¢. This topology is Hausdorff if, and only if, F separates the members of E
(i.e., for every x # y in F, there exists some ¢ € F such that ¢(x) # ¢(y)), and (E4, 7y) is Hausdorff for
each ¢ € F.

Especially, if (F;, 7;) is a topological space for each ¢ in some index set I, then one can equip the cartesian

product [[;c;
called the product topology. Of course, it is Hausdorff as soon as each (F;, 7;) is a Hausdorff space.

F; with the initial topology induced by the projections m;:[[;c; Fi — Fj, j € I, which is

As a particular instance, if F is the function space FX, where X is a set and (F, ) is a topological space,
then the product topology (or topology of simple convergence or function topology) on FX is the initial
topology, denoted by n%, induced by the canonical projections 7,: f — f(z), z € X, from E onto F. It is
characterized by the following universal property. For every topological space (Y, 7y ), the map f:Y — FX
is continuous if, and only if, every map m, o f:Y — F, z € X, is continuous. Once again it is a Hausdorff
space whenever (F, 7) is Hausdorff.

2.8.2. Topological (bi)modules ((bi-)Jvector spaces)

Let R be a (not necessarily commutative) ring with a unit 1 (and zero Og). It is said to be a topological
ring when it is equipped with a topology 7 (not necessarily Hausdorff) with respect to which the ring
operations, z — —z, (z,y) — x + vy, (z,y) — xy, are continuous, when is considered on R x R the product
topology defined by 7 on each factor. One may also define the notion of a topological group in an obvious
way.

A division ring (respectively, field) K, which is also a topological ring, is said to be a topological division

1

ring (respectively, topological field) when the map x — z =+ is continuous on K* = K\ {Ox} (equipped with

the sub-space topology), i.e., the group of units K* is a topological group under the sub-space topology.

Remark 3. Any ring (respectively, division ring or group) is naturally a topological ring (respectively, division
ring or group) when equipped with the discrete topology d or the trivial topology t. In the later case, it is
of course not Hausdorff (unless for the zero ring and the zero group).

If (R, 7) (respectively, (K, 7)) is a topological ring (respectively, a topological division ring), then any left
(or right) R-module M (respectively, left (or right) K-vector space) is said to be a left (or right) topological
(R, 7)-module (respectively, a left (or right) topological (K, T)-vector space) if it is equipped with a topology
(Hausdorff or not) that makes continuous the module maps v — —v, (v,w) — v + w, (r,v) — rv (again
M x M and R x M are considered as topological spaces under the product topology). If, (S, u) is also a
topological ring, and if (M, o) is a R-S-bimodule which is both a topological left R-module and a topological
right S-module, then (M, o) is said to be a topological (R, T)-(S, 1)-bimodule. Of course, one similarly gets
a topological (R, T)-(S, u)-bi-vector space when (R, 7) and (S, ) are topological division rings.

Remark 4. Observe that (;R,,7) (respectively, (R, 7), (R, 7), (i|R|,,)) is a topological (R,7)-(R,T)-
bimodule (respectively, topological left (R, T)-module, topological right (R, 7)-module, topological group),
and we get the corresponding results for vector spaces when (R, 7) is a topological division ring.

Remark 5. When (R, 7) is a commutative topological ring (respectively, a topological field) and when (M, o)
is a topological (R, 7)-module (respectively, a topological (R, T)-vector space), then it is, in a natural way (see
Remark 1), a topological (R, 7)-(R, 7)-bimodule (respectively, a topological (R, 7)-(R, T)-bi-vector space).
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Let (R,7) and (S, u) be topological rings (or division rings), and let M be a topological left (or right)
R-module (or vector space), or a R-S-bimodule (or R-S-bi-vector space). Let F be a set of maps such
that for each ¢ € F, ¢: M — M, is a left R-linear (or right R-linear or R-S-linear) map, and (Mg, 74)
is a topological left (or right) (R, 7)-module (or vector space) or an (R,7)-(S, u)-bimodule (or bi-vector
space), i.e., with the same structure as that on M, then the initial topology induced by F on M turns M
into a topological left (or right) (R, 7)-module (or vector space) or a topological (R, 7)-(S, u)-bimodule (or
bi-vector space). Likewise an initial topology induced by a set of maps of the form ¢: G — G, where each
(Gy,Ty) is a topological group, endows a group G with a structure of a topological group.

Remark 6. In particular if (M;);c; is a family of topological groups or (bi)modules or (bi-)vector spaces,
then [],c; M;, with the product topology, turns to be a topological group or (bi)module or (bi-)vector
space. Hence, as soon as each M; is Hausdorff, this product topology also is Hausdorff. Moreover, if M; is
a topological (R, 7)-(S, u)-bimodule (or bi-vector space) for each ¢ € I, then its underlying left R-module
iel Mi|r =
M;| = [L;e; |M;l, are topological modules (or

structure ¢| [[,c; Mi| = [;c; 1/M;|, its underlying right S-module (or vector space) structure | ]|
[I;c; |M;l, and its underlying abelian group structure | [],.;
vector spaces) and topological groups (with the product topology).

A topology compatible with a ring (division ring, field, group, module, vector space) structure as above
is also referred to as a ring (or division ring, field, group, module, vector space) topology.
More details about the above notions may be found in [21].

2.4. Summability

Many intermediary results of this paper require the notion, and some properties, of a summable family
in a topological ring (or module). We recall them without any proof; we freely used them in the sequel, and
refer to [21] for further information concerning this concept.

Definition 1. Let G be a Hausdorff abelian group (that is, an abelian group — in additive notation — with a
Hausdorff topology such that the group operations, addition and inversion, are continuous), and let (z;);er
be a family of elements of G. An element s € G is the sum of the summable family (x;);cr if, and only if,
for each neighborhood V of s there exists a finite subset J C I such that ij eV.

jeJ

The sum s of a summable family (z;);er of elements of G is usually denoted by Zml (of course it is
iel
unique, when it exists, due to the separation axiom).

Proposition 1. If (z;):cs is a summable family of elements of a Hausdor(f abelian group G having a sum s,
then for any permutation o of I, s is also the sum of the summable family (T (;))icr-

Proposition 2. If (z;);cs is a summable family of elements of a Hausdorff abelian group G, then for every
neighborhood V' of zero, x; € V' for all but finitely many i € 1.

Proposition 3. Let G be the cartesian product of a family (Gx)xer of Hausdorff abelian groups (G has the
product topology). Then s is the sum of a family (x;);cr of elements of G if, and only if, w\(s) is the sum
of (wx(x;))ier for each X € L (where my, is the canonical projection from G onto Gy ).
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Proposition 4. If ¢ is a continuous homomorphism from a Hausdorff abelian group G to a Hausdorff abelian
group H, and if (x;);er is a summable family of elements of G, then (¢(x;))icr is summable in H, and

> blw) = (Z wz')

i€l i€l

Remark 7. The above propositions may be applied when G is the underlying abelian group of a Hausdorff
topological (bi, left or right) module (or vector space) according to Remark 4 (in particular, Proposition 3,
when the module into consideration has a product topology, and is Hausdorff, see Remark 6, and Proposi-
tion 4, with ¢ a continuous linear map between Hausdorff topological modules, since it is also a continuous
group homomorphism between their underlying topological abelian groups).

2.5. Duality

One recalls some well-known notions about (algebraic and topological) dual spaces in a non-commutative
setting (see [7] for instance).

2.5.1. Algebraic duals

Let R, S,T be unital rings.

Let M be a R-S-bimodule and N be a R-T-bimodule. The abelian group (under point-wise operations)
rMod(;|M|,|N]) (or gVect(;|M]|,;|N|) when R is a division ring) of all left R-linear maps (i.e., ¢(rz) =
r¢(z)) is an S-T-bimodule with left S-action (s - ¢)(x) = ¢(xs) and right T-action (¢ - t)(x) = ¢(x)t. In
particular when R = S = T, then it is a R-R-bimodule (or a R-R-bi-vector space, in case R is a division
ring), denoted by *M and called the left (algebraic) dual of M when N = R,..

Let M be an S-R-bimodule and N be a T-R-bimodule. The abelian group (under point-wise operations)
Modg(|M|,, |N|.) (or Vectr(|M|,,|N|,) if R is a division ring) of all right R-linear maps (i.e., ¢(zr) =
¢(z)r) is a T-S-bimodule with left T-action (¢ - ¢)(z) = t¢(x) and right S-action (¢ - s)(z) = ¢(sx). With
R =S =T one gets a R-R-bimodule (or a R-R-bi-vector space for R a division ring), denoted by M* and
called the right (algebraic) dual of M when N = R,.

Let M and N be S-T-bimodules. The set sBimody (M, N) (or the set gBivecty(M, N) when both S
and T are division rings) is an abelian group (under point-wise operations). When S = R =T and N = R,
it is called the two-sided (algebraic) dual *M* of M. Of course, *M™* =*M N M*.

Remark 8. Observe that *M* is of course not the right dual of the left dual (*M)* of M nor the left dual
of the right dual *(M*) of M.

With the above different duals, one gets three functors, namely

*(—): RBimod%’ — RBimodR,

(—)*: kBimod}® — gBimodpg
and
*(=)": gRBimod}} — Ab.

(For instance the first functor sends a left and right R-linear map ¢: N — M to the left and right R-linear
map *¢: £ € *M +— Lo ¢ € *N.) Similarly, assuming that R is a division ring, one gets

*(—): rBivect®y — pBivectg,

(—)*: gBivecty — pBivecty
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*(—)": gBivecty, — Ab.

Remark 9. If R is a commutative ring, then it is possible to see the category pMod as a sub-category of
rBimodpg where the right action is taken as being the same as the left action (and similarly, if K is a field,
g Vect is a sub-category of gBivectk) as explained in Remark 1. In such a situation the three above dual
functors collapse into a unique one (—)*: RMod®® — gpMod (and similarly, (—)*: x Vect®® — xVect).

2.5.2. Topological duals

For a pair of topological spaces (E;,7;), ¢ = 1,2, let Top((E1,71), (E2,72)) be the set of all continuous
maps from (Ey,71) to (B2, 72).

Given any topological bimodule (M, o) over a topological ring (R, 7), one defines its left topological dual
(M,o) = *M N Top((M,0),(R,r)), its right topological dual (M,c)" = M* N Top((M, o), (R,r)) and its
two-sided topological dual ‘(M,c) =*M* N Top((M,0),(R,7)) =\(M,0) N (M,0).

It is quite immediate that (M, o) (respectively, (M, o)’) is a sub- R- R-bimodule of * M (respectively, M*),
and ‘(M, J)/ is a sub-group of *M*. Denoting by (r,-y TopBimod p .y the category of all topological
(R, 7)-bimodules (with continuous left and right linear maps), one gets functors

‘(-): (RT)TopBimod‘(’})2 - — rRBimodg,

(=) (RJ)TopBimodc(’lﬁ’z - — rRBimodp
and
'(=)": (r,r) TopBimod{},  — Ab.

Of course, when (K, 7) is a topological division ring, then one denotes by ) TopBivect ) the category
of all topological (K, 7)-vector spaces (with continuous left and right linear maps). In this situation, one has
the following functors

Y(—): (]K,T)TopBivect(()K - — kBivecty,

(7)/: (]K’T)TopBivect((’Hz n = kBivectk
and
() (KT)TopBivect‘(’H‘; . — Ab.

Remark 10. When (R, 7) is a commutative topological ring, then the category (g, TopMod of all topo-
logical (R, 7)-left modules (with continuous left linear maps) may be identified with a sub-category of
(RVT)TopBimod(R’T), and similarly when (K,7) is a topological field, then the category (. TopVect
of all topological (K, 7)-vector spaces is a sub-category of ,r) TopBivect ;); see Remark 5. In this
situation, there is only one topological dual functor of interest: (—)*: (g, TopMod®® — grMod (and
(=)*: (k,-) TopVect® — gVect).

3. Statement of the main result

When X is a sets, then for each map f € R¥, one defines its support supp(f) = {x € X: f(z) # 0}
Such a map f is said to be a finitely supported map, or a map with a finite support, when supp(f) is finite.
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The set of all finitely supported maps is denoted by RX). The set RYX is actually an abelian group under
point-wise addition. This abelian group also admits a left R-action (r, f) — (z — rf(z)) and a right R-action
(f,7) = (x = f(x)r), and this turns RX into a R-R-bimodule (or bi-vector space, when R is a division
ring), which is denoted by ;RX (see also Remark 2). Its underlying left (respectively, right) R-module (or
vector space) is denoted by ;R¥ (respectively, RX). It is quite clear that R™X) | with the same actions as
above, may be seen either as a R-R-bimodule (or bi-vector space) IRLX), a left R-module (or vector space)
1R or a right R-module (or vector space) R,

Observe that if (R, 7) (respectively, (K, 7)) is a topological ring (respectively, topological division ring),
and X is any set, then ;RX (respectively, ;KX) is a topological (R, 7)-bimodule (respectively, topological
(K, 7)-bi-vector space) when endowed with the product topology n% (see Section 2.3.1 and Remark 6). As
soon as 7 is Hausdorff, (R, n%) (respectively, (KX, n%)) also is.

For every zp € X, we define the characteristic function (or Dirac mass)

0z X — R
{1R if$:170, (3)

x .
Or otherwise.

The left (respectively, right) R-module ;R™X) (respectively, RSX)) is free with left (respectively, right) basis
{0:z e X}

Remark 11. In general, the R-R-bimodule lR,(«X), even if it is free as a left or a right R-module, with basis

{0,:x € X}, is not free as R-R-bimodule (because it satisfies the relation rd, = d,r, for each r € R,
x € X, which is not a consequence of the axioms of bimodules; in Section 6 is studied this particular kind
of bimodules, under the name of double modules).

Let us introduce the left evaluation map

I le-X)(X)RlRi( — R
Y o Y P f@) 0

zeX

As usually it is treated as an R-bilinear map ;(,-), called dual pairing (or canonical bilinear form, see [4]
or [12]), i.e.,
Tp@ f)=up,f)

In particular, for every x € X, I'(0, ® f) = (ds, f) = f(z), and then m,: f +— (0, f) = f(x) is the projection
of RX onto RS, = R. The dual pairing has the obvious properties of non-degeneracy:

1. for every p € R\ {0}, there is some f € RX such that ;(p, f) # 0,
2. for every f € R\ {0}, there is some p € R™X) such that ;(p, f) # 0.

By symmetry one also defines the right evaluation map

A: RX®r R - R
fop =Y f@)p(e) (5)

zeX

which is also bilinear and non-degenerate (more precisely, the associated R-bilinear map (-,-).:;RX x

R 5 R, defined by (f,p)r = A(f ® p), is non-degenerate).
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At last, let Z(R) be the center of the ring R, i.e., is the subset of R consisting of all those elements s of R
such that sr = rs for all r € R (the center is a commutative sub-ring of R). Let us introduce the following
group homomorphism, called the two-sided evaluation map

E ZR)XM e, RX — R
pef = Zp(x)f(x) (6)

zeX

By definition, for each p € Z(R)™X) and each f € RX, /(p, f) = E(p® f) = (f,p).. Note that its associated
bi-additive® map (p, f) — Z(p ® f) is not R-bilinear (because Z(R) is generally not a right (nor a left)
R-module).

Remark 12. When R is a commutative ring with a unit, then I' = A o o, where o(f @ p) = p® f is the
usual twist. Moreover, because in this case Z(R) = R, the following diagram commutes in the category of
abelian groups (where can denotes the canonical epimorphism).

can

RX) @7 RX " RX) @p RX

| .

R RX @p RO

~—

The objective of this paper is to prove the following “rigidity” result, and to explore some of its main
consequences.

Theorem 5. Let (K, 7) be a Hausdorff topological division ring, and let X be any set. Then, the right topolog-
ical dual (KX, 0%)" and the left topological dual ‘(JKX,n%) of (KX, n%) are isomorphic (as K-K-bi-vector

9

spaces) to IKS-X). The two-sided topological dual ‘(;KX,n% ' of (KX n%) is isomorphic to Z(K)X) (as
X X

T T
abelian groups).

Remark 13. Of course, when K is a field, then Theorem 5 amounts to say that (KX, n% )’ ~ K) as vector
spaces.

In order to illustrate the scope of this result, let us assume for awhile that (K,d) is a discrete field, and
that (V,7) is a Hausdorff topological (K, d)-vector space. The topology 7 on V is said to be linear if, and
only if, it has a neighborhood basis of zero consisting of sub-vector spaces.

Proposition 6. (/7,13]) Let V be a K-vector space together with a linear topology T. Then the following
conditions are equivalent:

1. (V,7) is complete, and all its open subspaces are of finite codimension.

2. V' is an inverse limit of discrete finite-dimensional vector spaces, with the inverse limit topology.

3. V is isomorphic, as a topological vector space, to the algebraic dual W* of a discrete vector space W,
with the topology of simple convergence. Equivalently, (V,T) is isomorphic to (KX, n‘)‘(), with the product
topology, for some set X.

3 Given abelian groups A, B,C, a map ¢: A x B — C is said to be bi-additive when it is a homomorphism of groups in each
variable.
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A topological vector space with the above equivalent properties is said to be linearly compact. As a minor
consequence of our main result (Theorem 5) we obtain a characterization of the topological duals of these lin-
early compact spaces: the topological dual of any linearly compact vector space is isomorphic to some K(X).
This actually establishes an equivalence between the opposite of the category of K-vector spaces and the
category of linearly compact K-vector spaces (see [1, Proposition 24.8, p. 107]). This result is extended in
Section 6.

4. The proof of Theorem 5
Lemma 7. Let R be a (not necessarily commutative) ring with unit, and let X be a set. Let us define

A RX) o REY

Ap): R — R (8)
P ~ ( = zpaf>>.

Then, for every p € R, X(p) € ((RX)*, X is a left and right R-linear map from (R 1o GRX)*, and is
one-to-one.

Proof. The first property is obvious (because it is equivalent to ;(p, fr) = (p, f)r, p € R, f € RX and
r € R). Let us check that A commutes to the left and right R-actions. Let p € RX), r € R. Then, for all

f e R, X(rp)(f) = rAp)(f) = (- X)) (f) and Xpr)(f) = i(pr, ) = i{p, 7 f) = A@)(rf) = (A(p) -7)(f)-
It remains to see that ) is one-to-one. Let p € R such that A(p) = 0, then for every f € R¥, A(p)(f) =0,
and in particular, for every z € X, 0 = A(p)(d) = 1(p, d2) = p(z), in such a way that p=0. O

Symmetrically (and without further ado), one gets the following.
Lemma 8. Let R be a (not necessarily commutative) ring with unit, and let X be a set. Let us define

p: R — REY
) = (p(p): RY — R ) 9)

Then, for every p € RX), p(p) € *(LRX), p is a left and right R-linear map from R to *(LRX), and is
one-to-one.

In a similar way, the following holds.
Lemma 9. Let R be a (not necessarily commutative) ring with unit, and let X be a set. Let us define

¢: Z(R©X) — RR”

¢(p): R* — R (10)
Y ~ ( fooe l<p,f>=<f,p>r>'

Then, for every p € Z(R)X), ¢(p) € *(1RX)", ¢ is a group homomorphism from Z(R)X) to *(;RX)", and
s one-to-one.

Proof. The first point follows from the fact that p(z) € Z(R) for each x € X. The second point is obvious,
and the last point is proved as in the proof of Lemma 7. O
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Lemma 10. Let us assume that (R, T) is a topological ring (Hausdorff or not) with a unit, and that |RX
has the product topology. Then for every p € R, A(p) is continuous, i.e., A(p) € (L RX, n% ). Whence, by
Lemma 7, X € RBimodR(le»X), (RX,n%)).
Proof. It is clear since A(p) is a finite sum of (scalar multiples) of projections, A(p) = >, x p(2)i{dz, ")
(sum with finitely many non-zero terms). 0O

Again by symmetry, the following result is obtained.

Lemma 11. Let us assume that (R,T) is a topological ring (Hausdorff or not) with a unit, and that |RX
has the product topology. Then for every p € RX) | p(p) is continuous, i.c., p(p) € \(LRX, n%). Whence, by
Lemma 8, p € RBimodR(lRS,X),‘(lRX, ny)).

T

The “two-sided” corresponding result is given below.

Lemma 12. Let us assume that (R,T) is a topological ring (Hausdorff or not) with a unit, and that ;R:X has
the product topology. Then for every p € Z(R)X), ((p) is continuous, i.e., ((p) € (LR, H})/. Whence, by

r

Lemma 9, ¢ € Ab(Z(R)X) \(,RX, HTX)I) (where Ab denotes the category of abelian groups).

(s

Proof. This is clear from Lemma 10 since ¢(p) = A(p) for every p € Z(R)™) or from Lemma 11 since
((p) = p(p) for every p € Z(R)™M). O

Lemma 13. Let us assume that (R,T) is a Hausdorff topological ring with a unit, X is any set, and that
1RX has the product topology. For every f € RX, the family (f(2)0z)zex = (6:f(2))sex is summable in
(RX, %) with sum f.

Proof. By definition of the product topology, it is sufficient to prove that for every zy € X the family

(100005 f(2)02))aex = (f(2)02(70))rex
is summable in (R, 7) with sum ;(d,,, f) = f(zo), which is immediate. O

Remark 14. Lemma 13 legitimates the representation of a set-theoretic map f: X — R as the sum
Yowex f(@)0r = D cx 0of(x) of a summable family. In particular when X is a free (commutative or
not) monoid, then one recovers the usual formal power series (in commutative or not) variables.

Lemma 14. Under the same assumptions as Lemma 13, if £ € (RX, n%)’, then
Dy ={x € X:4(5;) is right invertible in R}
1s finite.

Proof. Since ¢ is a continuous (and a right R-linear) map, (f(x)d,)zex is summable with sum f, and
f(x)d, = 0, f(x) for each x € X, then the family (£(6,)f(z))zex is summable in (R, 7) with sum £(f) for
every f € RX. According to the properties of summability recalled in Section 2.4, for every neighborhood U
of Og in (R, 7), £(05)f(x) belongs to U for all but finitely many = € X. Let us consider a particular choice
for the map f, namely fo: X — R such that fo(z) = 0 for each = ¢ Dy, and fy(z) is a chosen right inverse
of £(d,) for each x € Dy. Since R is assumed Hausdorff, there is some neighborhood Uy of 0g such that
1g ¢ Uy. If Dy is not finite, then 1z = £(d;) fo(x) ¢ U for every & € Dy, which leads to a contradiction. O
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Still by symmetry:

Lemma 15. Under the same assumptions as Lemma 15, if £ € ‘(JRX, %), then

Gr={xz € X:4(5,) is left invertible in R}
18 finite.

Lemma 16. Let (K, 7) be a Hausdorff topological division ring, X be a set, and let us assume that lKi(
is equipped with the product topology n%. Let £ € (JKX)* (respectively, ¢ € *(KX)). If ¢ € (KX, n%)
(respectively, £ € (KX, %)), then £(5;) = 0 for all but finitely many x € X.

Proof. By Lemma 14, the set {z € X:4(J,) is right invertible in K} = {z € X:4(d,) # 0} is finite. Using
Lemma 15 one obtains the symmetric result. 0O

Lemma 17. Under the same assumptions as Lemma 16, X\ and p are onto.

Proof. Let ¢ € (JKX, n% )" be fixed. Let us define

T

pe: X — K
x = Y

52).

Of course py € K¥X. But according to Lemma 16, p; actually belongs to K(X). Let f € KX. We have

Apo)(f) = ilpe, £) = D pel@) f(x) = Y €(82) f(x) = £(f)

reX zeX

and then A(p;) = £. In a similar way one proves that p is onto. O
Finally,
Lemma 18. Under the same assumptions as Lemma 16, ¢ is onto.

Proof. Let ¢ € (KX, HTX)/ be fixed, and let us define, as in the proof of Lemma 17, pp:x € X — £(d,).

Of course, py is finitely supported. For each r € K, one has rl(d,) = £(rd;) = £(0,7) = £(6)r, hence
pe € Z(R)X). Finally £(f) =((pe). O

Now it is easy to conclude the proof of Theorem 5, since it follows directly from Lemmas 7, 10 and 17 for
the right dual, from Lemmas 8, 11 and 17 for the left dual, and from Lemmas 9, 12 and 18 for the two-sided
dual.

5. A few immediate remarks
5.1. Algebraic versus topological duals

In general, the algebraic duals *(;KX) and (;KX)* of ;KX are not isomorphic to KX Indeed, let for
instance (e;);cr be an algebraic right K-basis of ;K* (the existence of such a basis requires the axiom of
choice for sets X of arbitrary large cardinal number). Therefore, every map f € KX may be (uniquely)
written as a finite linear combination Zei fi, with f; € K for each i € I. Let us consider the unique

il
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right K-linear map ¢: ;KX — K such that £(e;) = 1 for each i € I. Thus, ¢ belongs to the right algebraic
dual (;KX)* of ;K:X. The family (6,)zcx is linearly independent in ;K¥ (or in KX). Thus we may consider
an algebraic right K-basis of ;KX that extends (0,)zcx (again by the axiom of choice, see for instance [9,
Proposition 5.3, p. 335] or [2, Proposition 2.2.9, p. 57]). Now, the corresponding functional ¢ takes a non-zero
value for each d,,.. Therefore, if X is infinite, then, according to Lemma 16, £ does not belong to the image of
A, or, in other terms, £ ¢ (KX, n%)’, whatever is the Hausdorff division ring topology 7 on K. In particular,
whenever (K, 7) is a Hausdorff topological division ring, ;K:X has the product topology, and X is infinite,
then / is discontinuous at zero (and thus on the whole ;KX). In brief, when X is infinite, A (respectively, p)
is not an isomorphism from ;KX to (;KX)* (respectively, *(;KX)), and (KX, 1% )’ (respectively, ‘(KX n%))
is a proper sub-space of (;K:X)* (respectively, *(;K:X)).

5.2. Number of field topologies

A field topology may be either Hausdorff or the indiscrete one. It remains many degrees of freedom since
actually it is known (see [11,15]) that every infinite field K has 22" distinct field topologies.

5.8. Formal power series

Let (R,d) be a discrete commutative ring, and let X be a set. Let X* be the free monoid on the
alphabet X, € be the empty word, and |w| be the length of a word w € X*. Let us define M>,, = {f €
RX:v(f) > n}, n € N, where v(f) = inf{n € N:Jw € X*, |w| # n, and f(w) # 0} for every non-zero
f € RX (the infimum being taken in NU{oo}, with co > n for every n € N, so that v(0) = co). The set R¥X ",
seen as the R-algebra R((X)) of formal power series in non-commutative variables, may be topologized (as
a topological R-algebra — see [21] — and, therefore, as a topological R-module) by the decreasing filtration
of ideals M>,,: this is an example of the so-called Krull topology (given a ring R together with a decreasing
filtration R = mp 2 my DO my O --- by two-sided ideals, the Krull topology on R is defined by declaring
the subsets m; to be a base for the open neighborhoods of zero; see [8]), which is Hausdorff, and is the
usual topology considered for formal power series in combinatorics and algebra; in case X is reduced to
a single element x, we recover the usual M-adic topology of K[[z]], where 9 = (z) is the principal ideal
generated by 2. Whenever X is finite, this Krull topology coincides® with the product topology with a
discrete R. According to Theorem 5, in case where X is finite and R is a topological field K, the topological
dual of K({(X)) (which is also a linearly compact space; see Section 3) is the space of polynomials K(X) in
non-commutative variables.

5.4. Dual space of the total contracted algebra

Take any monoid with a zero (see [5]) with the finite decomposition property (see [4,17]), and let R be a
commutative ring with a unit. Let us consider the total contracted R-algebra Ry[[M]] of the monoid with
zero M (see [17]) that consists, as an R-module, to { f € RM: f(0pr) = Og }, where 057 is the zero of M,
while Op is the zero of the ring R. It is clear that Ry[[M]] ~ RMo (as R-modules), with My = M\ {0 }. Now,
let us assume that K is a Hausdorff topological field. The product topology on K induces, as sub-space
topology, the product topology on K0  that corresponds to that of Ko[[M]]. The topological dual of KMo
being K(Mo) it is easy to check that (Ko[[M]])’ is isomorphic to the underlying vector space of the (usual)
contracted algebra (see [5]) Ko[M] of the monoid with zero M.

4 Observe that if X is infinite both topologies are distinct: for instance, let (n)n>0 be a sequence of pairwise distinct elements
of X, then this family is easily seen to be summable in the product topology with R discrete, while it does not converge in the
Krull topology.
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5.5. Functional analysis

Theorem 5 may be applied for the discrete topology d on K € {R, C}, but also for the usual topologies 7.,
of R and C, in such a way that the topological dual spaces (R*)’ or (CX)’ for both the discrete topology and
the topology induced by the (usual) absolute values on R, C are identical since isomorphic to R(X) or C.
Notice that KX is a Fréchet space’, i.e., a denumerable projective limit of Banach spaces or equivalently
a locally convex and complete space with a denumerable family of seminorms (see [20]), real or complex
depending on whether K = R or K = C, when is considered the product topology relative to the absolute
value and when X is countable, and as such allows functional analysis like, for instance, Banach—Steinhaus,
open map and closed graph theorems that do not hold in the case of the same space with the product
topology relative to a discrete K.

6. A category-theoretic recasting of Theorem 5

Our objective is to prove that Theorem 5 actually provides an equivalence of categories of vector spaces,
that extends the equivalence between (the opposite category of) vector spaces and linearly compact vec-
tor spaces [7,1]. The first task, after some recalls about category theory, consists in defining the relevant
categories, and then, in a second times, to exhibit a natural equivalence between them.

6.1. Some basic category-theoretic notions

Recall from Section 2.1 that the category C°P is the opposite category of C: both categories share the same
objects, and each f € C(a,b) is a member of C°P(b, a). The composition of morphisms in C°P is the opposite
of that in C. A sub-category C of D is said to be full when for all objects a, b of C, C(a,b) = D(a,b).
A set O of objects in a category D determines a unique full sub-category, say Co, of D, namely the full
sub-category of D spanned by O, such that for all a,b € O, Cp(a,b) = D(a,b).

6.2. The category of double vector spaces

Let R be a (not necessarily commutative) ring with a unit. Let M be a R-R-bimodule such that ;|M]| is
a free left R-module. Let X be a basis of this module in such a way ;|M| ~ ;R (as left R-modules). In
general that does not imply that M ~ lex) as a bimodule (because the right action of R on M does not
necessarily coincides with that on lRﬁx) under the isomorphism).

Definition 2. Under the above assumptions one says that X is a double R-basis for the bimodule M whenever
for each r € R and each z € X, roz = xr.

Remark 15. Even if a R-R-bimodule M, which is free as a left R-module, admits a double R-basis X, this does
not imply that for every v € M, r € R, rv = vr. (E.g., let p € R™X) | then in general (rp)(x) = rp(x) # p(x)r,
zeX, reR)

Example 1. The set {d,:2 € X } is a double R-basis for (R,

When X is a double R-basis for M, then it is quite obvious that |M|, ~ R (as right R-modules), hence
|M|, is also a free right R-module, and X is also a basis for it. Whence, M ~ R (as R-R-bimodules).

5 It is not a Banach space when X is infinite.
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There even exists a canonical isomorphism ¢x: M — lRﬁx) which is uniquely determined by the relations

Ox(x) =0, x € X.
Following the terminology from [18] one introduces the following definition.

Definition 3. Let M be a R-R-bimodule. It is said to be a R-double module if it admits a double R-basis.
When R is a division ring, then it is called a R-double vector space.

Remark 16. In general not all the bases of an R-double module are double bases. E.g., take any non-
commutative division ring K (i.e., there are two elements r, s such that rs # sr or in other terms the center
Z(K) of K is not K itself). Then, for each X # (), { s6,:x € X } is a basis of ;R™X) (or of RgX)) which is
not a double R-basis (since 180, = §,78 # §,87).

One defines the full sub-category gpDblMod of pBimodpg spanned by those R-R-bimodules which
are R-double modules. According to the above discussion, each object of zpDblMod is essentially of the
form IRSX). When R is a division ring, then pkDblVect is the full sub-category of all R-double vector spaces
among the R-R-bi-vector spaces.

Remark 17. When K is a field, then any basis of a K-vector space is automatically a double basis. Hence
g Vect = gDDblVect.

Remark 18. Let us assume that K is a division ring, and let V' be a K-K-bi-vector space. Then, both ;|V| and
|V|, admit a K-basis. But it may happen that V' has no double K-basis at all. In [10, p. 158], N. Jacobson
gives an example of a bi-vector space over a field which, as a left vector space, has dimension 2, while, as a
right vector space, has dimension 3. Hence there is no hope for it to admit a double basis.

One readily observes that any free left (or right) module over a commutative ring R may be seen as an
R-double module when equipped with the same R-actions on the left and on the right.

6.3. Topologically-double vector spaces

Let (R, 7) be a topological ring. Let X be any set. One already knows that the bimodule ;RX admits a
somewhat natural topology compatible with its bimodule structure, namely the product topology n’, i.e.,
the coarsest topology 3 that makes continuous the projections m,: (R:X,3) — (R,7), f +— f(z). (Because
7, is a bimodule map, for each x, the product topology is a topology of R-R-bimodule.) One observes that
the set { ,: 2 € X }, while not being in general an algebraic basis of the left, or the right, module structure
on RX, plays a similar role (see Lemma 13 and Remark 14), and, furthermore, commutes to the actions:
réy =0,r, 7 € R,z € X.

Let (M, o) be a topological (R, T)-(R,7)-bimodule. It is said to be a topologically-double (R, T)-module
whenever there exists some set X such that (M, o) ~ (;RX, %) as topological R-R-bimodules (hence they
are both algebraically isomorphic and homeomorphic). Such a set X is referred to as a topological double
R-basis (even it is not assumed to be a subset of M).

One defines the category (g r)TopDblMod of all topologically-double (R, 7)-modules, whose morphisms
are those left and right R-linear maps which are also continuous. When R is a division ring, one may consider
the category (g -)TopDblVect of all topologically-double (R, T)-vector spaces.

Lemma 19. The left and the right topological duals, *(V,c) and (V,a)’, of a topologically-double (K, T)-vector
space (V,0) are double K-vector spaces.



L. Poinsot / Topology and its Applications 189 (2015) 147-175 163

Proof. Let us prove the case of the left topological dual (the proof for the right topological dual is left to the
reader). Let X be a topological double basis for (V, ), and let ¥ x: (V, o) ~ (;KX, 1% ) be an isomorphism of
topological (K, 7)-(K, 7)-bi-vector spaces (so both an algebraic isomorphism and a homeomorphism). Thus,
because ‘(—) is a functor, ‘U x:'(;KX,n%) ~ ‘(V,0) is an isomorphism of K-K-bi-vector spaces. According
to Theorem 5, ‘Ux o p: K& ‘(V,o) is also an isomorphism of K-K-bi-vector spaces. In particular,
{"x(p(dz)):x € X} is a left (or a right) basis of Y(V, o). It remains to check that it is a double basis.
Let r € Kand v € V. Then, (r - ‘Ux(p(dz)))(v) = (Cx(p(6)))(vr) = p(62)(Tx(vr)) = (Tx(vr),0z), =
(Ux(0)r,0z)r = (Ux(v),10:)r = (Tx(v),0.7)r = (Ux(v),0,),r = (Ux(p(dz)) - 7)(v). (In the case of the
right topological dual, one gets { ¥/, (A(d,)):x € X } as a double basis for (V,0)".) O

The above Lemma 19 provides at once functors
(=) (,-y TopDblVect® — gDblVect
and
(—)": (k,-yTopDblVect®® — gDblVect.
6.4. A topology on the algebraic duals

First of all one readily observes that one gets the following dual functors by restricting the domain
category.

*(=): RkDbIMod% — zBimodpg,
(—)*: kDbIMod? — zBimodp

and
*(—)": kDblMod%® — Ab.
Similarly, assuming that R is a division ring, one gets

*(—): RDblVecty — gBivectg,
(—)*: kRDblVectyy — pBivectp

and
(=)" RDblVect(I’;f — Ab.

Now, let M be an R-double module. Hence there exists some set X C M which is a double R-basis for M.
Since X is, in particular, a basis of left module, hence M ~ ;RX)_ one has [* M| = gkMod(;|M|,;R) ~ RX,
isomorphic as abelian groups, with a canonical isomorphism: ®x: £ — (z — £(x)).

Let v € M, and let us introduce the evaluation map at v as evpr(v): £ — £(v) from |[*M| to R. It is
automatically right R-linear even when M is just a R-R-bimodule, and not an R-double module. Indeed,
evy(0)(€-r)(x) = (- r)(z) = l(x)r = (evar(v)(€))r. Now, if v commutes to the left and right actions, i.e.,
rv = vr for all » € R, then evy;(v) also is left R-linear since evps(v)(r - €) = (r - £)(v) = £(vr) = L(rv) =
rf(v) = r(eva(v)(£)). Whence {evy(z):x € X } is a set of R-R-bimodule maps from *M to | R,.

Let us assume that (R, 7) is a topological ring. One equips the R-R-bimodule * M with the initial topology
IT% that makes continuous the evaluation maps evy(z): £ — £(z), € X, so that one obtains a topological
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R-R-bimodule (see Section 2.3.2). This topology is Hausdorff as soon as (R, ) is a Hausdorff topological
ring (because the evaluation maps at members of X separate the points of *M).

The isomorphism ®x lifts to an isomorphism of R-R-bimodules *M =~ ;RX. (Indeed, ®x(r - £)(z) =
(r-0)(z) = L(ar) = Lrx) = ré(zx) = r((Px(¥))(z)), and Px (L - r)(z) = L(x)r = (Px(¢)(z))r.) Under this
isomorphism evs(z) corresponds to the canonical projection m,:;RX — R, given by m,(f) = f(x). More
precisely, this means that the following diagram commutes for each x € X.

<]
“M a 1 RX
(12)
evar () T
1Ry

It then follows that the topology IT% on *M corresponds, under ®x, to the product topology on ;RX, and
® x turns to be also a homeomorphism from (* M, 1% ) onto (;RX, 17 ) with the product topology. Therefore,
(*M,1II%) is a topologically-double (R, 7)-module.

Lemma 20. The topology 11y on *M does not depend on the choice of the double R-basis X, i.e., for any
double R-basis Y of V, I, =117,.

Proof. It suffices to prove that for each y € Y, evps(y) is continuous from (*M, IT% ) to (R, 7), which amounts
to mean that II3, C II% by definition of an initial topology. Since X is a basis of, say, the left module M,
one has y = erXy Yo, Yo € R, and X, is a finite subset of X. Hence evy/(y) = erxy yzevas (z). It then
obviously follows that evy(y) is continuous (since any evy(z) is). O

Remark 19. The above lemma holds even if R does not satisfy the left (or right) invariant basis number
property (see e.g. [2]), which means that every finite bases of a left (or right) free module share the same
cardinality. (Infinite bases of a left, or a right, free module, over any non-zero ring, always have the same
cardinality as it is shown in [2, Proposition 2.2.8].)

Definition 4. Let (R, T) be a topological ring and let M be an R-double module. One denotes by IIj, the
topology of R-R-bimodule on *M which is equal, after Lemma 20, to any initial topology 11 for X a double
R-basis of M.

Let (R, 7) be a topological ring, and let M, N be two R-double modules. Let ¢ € pkDblMod(M,N) =
rBimodg(M, N). Then, one can prove that *¢: *N — *M, defined by *¢(¢) = £ o ¢, is continuous with
respect to the topologies IT5; and IT7,. By definition of the initial topology 117, (and according to Lemma 20),
for any double R-basis X of M, one needs to show that evps(x) o ¢: *N — R is continuous for all x € X.
Let Y be any double R-basis of N. Then, ¢(z) = 3_ .y ryy (where Yp is a finite subset of V). Moreover,
eva(z)og = evn(d(x)) = 3, cy, ryevn (y). Hence, because evy(y) is continuous for all y € Y, evys(2) 0 ¢ is
also continuous. Whence *(—) lifts to a functor from gDblMod®’ to (r,7) TopDblMod. In a symmetrical
way (the details are left to the reader) one also gets a functor (—)*: RDbIMod®® — (r .yTopDblMod.

6.5. An equivalence of categories
Let F,G:C — D be two functors. A natural transformation a: F = G is a family (a.). of arrows

ac: F(c) = G(c) of D indexed by objects of C such that the following diagram commutes for each objects
c1, co of C and each arrow f € C(cq, ca).
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Qe

F(e1) —— G(e1)
F(f) l l () (13)

F(e2) —— Glc2)

€2

In case all components a. of a are isomorphisms (i.e., morphisms f in D with a left and right inverse
1), then « is referred to as a natural isomorphism, and one denotes it by a: F ~ G. One observes that
if o F ~ G is a natural isomorphism, then o™ ':G ~ F, where a~! is the natural transformation with
components '

One also recalls from [14] that a functor F: C — D is an equivalence of categories, and the categories
C and D are equivalent, when there is a functor G:D — C and natural isomorphisms F' o G ~ Ip and
G o F ~ I¢, where I¢ is the identity functor of C (i.e., Ic(c) = ¢ for each object ¢ of C and Ic(f) = f for
each arrow f of C), and similarly for D.

Finally one mentions the following obvious fact: a functor F: C°° — D may be equally seen as a functor
F: C — D°P. Having that in mind, for (K, 7) a Hausdorff topological division ring, from Sections 6.3 and 6.4,
one has two pairs of functors, namely,

(—)": (x,-y TopDblVect — gDblVect,
*(—):xDblVect® — x ;) TopDblVect

and

(—): (,-) TopDblVect — gDblVect”,
(=)":xDblVect® — k ;)TopDblVect.

Our next goal is to prove that each pair is part of an equivalence of categories. Let us only treat in details
the case of the first pair (the second one may be carried on by symmetry). Let V' be a double K-vector
space, and let us introduce I'y: V' — (*V,IIT,)’ by

for each v € V and each £ € *V. (Actually one should first define I'yy as a map from V to V™V and proves
that its range is a part of (*V,II{,)’. For each v € V, £ € *V, and r € K, one has 'y (v)({ - 1) = (£ - 1) (v) =
L(v)r = (Ty (v)(€))r which shows that I'y (v) € (*V)*. Moreover I'y (v) is continuous from (*V,II,) to (K, 7)
because I'y (v) = evy (v), v may be written as a finite linear combination of members of a double basis of V,
and the evaluation maps at these elements are continuous by definition of IIf,. Hence I'y(v) € (*V)'.)
Furthermore, I'y is left and right K-linear. Indeed,

Ty (rv)(¢) = £(rv)
=rl(v)
=r(Tv(v)(£))

= (r-Tv(v)(0) (14)

and
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Ty (vr)(€) = £(vr)
= (r-0(v)
=Ty (v)(r-£)
= Ly (v) - r)(0). (15)

The kernel of I'y is reduced to 0: let v € kerI'y/, and let X be a double basis of V, then the canonical
projection m,:V — K, z € X, belongs to *V, so that I'y/(v)(7;) = 0 for all x € X. This implies that
v = 0. One now proves that I'y, is onto. To see this it suffices to observe that, for each double basis X of V,
the following diagram commutes in the category of K-K-vector spaces (and even in the category of double
K-vector spaces), and that the arrows ¢x (Section 6.2), A (Section 4) and @’y (Section 6.4) are isomorphisms
(for the later because P x is an isomorphism, and any functor preserves isomorphisms). Actually this directly
proves that 'y is an isomorphism.

1% S (VIR )
l T@'X (16)
ZKS"X) - ( T 7HX)

A

The above diagram commutes, because one has, for each v € V, £ € *V,

(@ 0 Ao ¢)(0))(€) = (A((v)) 0 2x)(¢)
= 1{¢x (v), Px (1)) (17)

Now, v =} .y v, as a linear combination (since X is a left basis of V'), hence one has

Hox(v),Px(£)) = l(Z Vg0, Z £(x)d0,) (by definitions of ¢x and Px)

reX zeX

Z v (). (18)

reX

Moreover one also has I'v(v)(£) = Tv (D, cx va®)(£) = D e x Val'v(2)(£) = D c x vel(2).
The fact that (I'y)y is a natural transformation follows from the equalities below. Let V, W be two
double K-vector spaces, and let ¢: W — V be a left and right linear map. For each w € W and £ € *V,

(Ty 0 @) (w))(£) = £(p(w)),

while

)- (19)

Hence, (T'v)v: I, Dbivecte =~ (*(—))’ is a natural isomorphism.
Now, let (V, o) be a topologically-double (K, 7)-vector space. Let us define the left and right K-linear
and continuous map

Ow.: (Vo) = ((((V,0)'), My )



L. Poinsot / Topology and its Applications 189 (2015) 147-175 167

O (v)(£) = £(v)

for each v € V, £ € (V,0)". (For each v € V, Oy, is indeed left K-linear because Oy, ,(v)(r - £) =
(r-£)(v) = r(l(v)) = r(O(,0)(v)(£)) for each £ € (V,0)" and each r € K, and, furthermore, © is indeed
left and right linear since ©(y,,)(rv)(f) = £(rv) = (£ 7)(v) = Ow,o)(V)(£ - 7T) = (1 - Ov,6y(v))(£), and
O, (vr)(£) = L(vr) = L(v)r = (O, (V)())r = (Ow,0)(v) - 7)(£).) Finally Oy, is indeed continuous:
let X be a topological double basis of (V o), then according to Lemma 19, { ¥ (A(d,)): x € X } is a double
basis for (V, o), where Wx:(V,0) ~ (KX, n%). The topology 17y, 5y on *((V,0)’) is the initial topology
that makes continuous the maps ev(y,,) (¥’ (A(0z))) = ev(v,o1)(A(0z) 0 Ux): (V,0) — K, z € X. One has
(ev(v,01) (A(02) 0¥ x) 0 Ov,6)) (V) = O(v,0) (V) (A(0z) 0 Ux ) = (A(62)) (¥ x (v)) = 10, Ux (v)) = (5 0 ¥x) ().
Since both ¥x and 7., v € X, are continuous, it follows that ev(y,o/)(A(dz) o ¥x) 0 O(y,,) also is, and by
definition of the topology H(TVJ),, O(v,s) itself is continuous.

O(v,s) is one-to-one: Let X be a topological double basis of (V, ), and let ¥ x: (V,0) ~ (KX, n%). Then,

U (KX, n%)" ~ (V,0)". Hence, according to Theorem 5, W'y o A: K ~ (V,0)". Let v € ker ©(y). Then,
in particular, for all z € X, Oy,»)(v)(¥x(A(d2))) = (P (A(02)))(v) = A(d2)(¥x (v)) = 1(dz, Yx(v)) = 0.
Thus, ¥x(v) =0 (by non-degeneracy of ;(-,-)) so that v = 0.

O (v, is onto: Let X be a topological double basis of (V,0), and ¥x: (V,0) ~ (KX, n%). Following

T

Section 6.4, because dx = {d,:xz € X } is a double basis of K one has Dy (*(lKgx))leTK(TX)) ~
(KX, n%). Finally, one has A ;K™ ~ (KX, n%), and ¥y: (KX, %) ~ (V,0), so that

XGRS 1%) ) M ngy) = CGKED), I o)
and also

(W) (C((V,0)), My ) = (“GKED), I ).

We now prove that the following diagram commutes implying that ©y,,) is actually an isomorphism (so it
is onto) since all the other arrows are isomorphisms.

Ow.0)

(V. 0) (V.o ), 1Ty 0)
g
7 T(*W'X»—l
(KX, %) C(GRX 15, I ) (20)

\ (*)\)71

ix
* X T
(G, )

To prove the commutativity of the above diagram, let v € V and ¢ € (V, ¢)’, and one computes the following:

(Ao (IX1)) 0 @5 0 Wx)(v)(0) = (P5, (Tx () (A (¥X1)'(0))

5(‘1’;?1(596))@) (21)
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(sum with only finitely many non-zero terms since £ o \IJ)_(l € (KX, n%))

=) UK (02)) 5 (T x (v))(8a)

rzeX
=1 ( > le(éa%)}(wx(v))(az))
zeX

=/{(v)

= O(v) (1) (0). (22)
Let us make explicit the penultimate equality. Since ¥x(v) € KX, one has WUx( Z 0V x (

zeX

(by Lemma 13). Then, v = Uy Z\If (v)(z) (by continuity), but ¥x(v)(z) =

zeX
50 (Vx (0))(30).
Finally, (©(v,0))(v,0) is a natural transformation from I,  ropDblvect to *((—)), as it can be shown in
the same way as (I'y)y
Hence, (©(v,0))(v,0): { %, TopDblVect =~ *((—)’) is a natural isomorphism.
The results from this section may be summarized in the following theorem which, thereby, is a category-
theoretic reformulation of (a part of) Theorem 5.

Theorem 21. For every Hausdorff topological division ring (K,7), the categories xDblVect® and
,r) TopDblVect are equivalent. In particular, for every Hausdorff division ring topologies T, 0 on a division
ring K, the categories (x -yTopDblVect and k , TopDblVect are equivalent.

In the case where K is a field, the category xDblVect is the same as the category x Vect of K-vector spaces.
A very particular instance of Theorem 21 is then the equivalence between xVect and k 4yTopDblVect
(where d is the discrete topology) which is precisely the equivalence between K-vector spaces and linearly
compact K-vector spaces [1, Proposition 24.8, p. 107|. Furthermore this holds for all Hausdorff field topolo-
gies, and not only for the discrete one.

7. Some consequences of Theorem 5
7.1. A partial reciprocal to Theorem 5

We can deduce an immediate corollary of Theorem 5 which is a partial reciprocal to our main result.

Corollary 1. Let (K,7) be a topological division ring, and let X be a set. Let us assume that KX has

the product topology . Let us also assume that X is infinite. Then, 5K7(~X)

is isomorphic to (KX ,0%)
(respectively, ‘(JKX,n%)) by A (respectively, p), i.e., X (respectively, p) is onto, if, and only if, (K,T) is

Hausdorff.

Proof. If (K, 7) is Hausdorff, then according to Theorem 5 (KX, n%)’ (respectively, ‘(JK:X, n%)) is isomor-
phic to ZK,(n ) Let us prove the converse assertion. Let us assume that (KX, n%)’ (respectively, ‘(KX , n%))
is isomorphic to ZK( ) . Now, let (R,t) be an indiscrete topological ring. Then, with respect to the trivial
topology t on R, (JRX, 1;X)" = (JRX)* (respectively, ‘(;RX, 1;¥) = *(;RX)). Because X is infinite, the divi-
sion ring K cannot be indiscrete (see the above Section 5.1), i.e., 7 # t. But ring topologies on a division
ring (and in particular division ring topologies) may be either Hausdorff or the indiscrete one (see [21,
Corollary 4.7, p. 25]). O
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7.2. On the consequences on continuous linear maps

As explained in the Introduction, the rigidity of the dual spaces with respect to the change of product
topologies forces continuous linear maps (with respect to any of those topologies) to be represented by
“row-finite” matrices as we now show.

Let (K, 7) be a Hausdorff topological division ring, and let X, ¥ be two sets. As usually, we assume that
KZ has the product topology n% for Z € {X,Y}. The category of topological right (respectively, left, bi-)
vector spaces over (K, 7), with continuous and right (respectively, left, and left and right) linear maps, is
denoted as usually by TopVect g . (respectively, (k )TopVect, (KJ)TopBivect(K’T)).

Following Section 2.5.1, it is clear how to equip TopVect . ((V,0),(W,u)) and (k - TopVect((V,0),
(W, u)) with structures of K-K-bi-vector spaces, when both (V, o) and (W, u) are topological (K, 7)-(K, 7)-bi-
vector spaces. Of course, (g r)TopBivect  ,((V,0), (W, u)) is just an abelian group.

We denote by lK}fX(X) the K-K-bi-vector space (under component-wise operations) of all maps M:Y x
X — K such that for each y € Y, the set {2 € X:M(y,x) # 0} is finite (in particular K¥*(X) is its
underlying abelian group). If X =Y = N, then is recovered the usual notion of row-finite matrices (see [6]).
One may also define lKSX)XY as the bi-vector space of all maps M: X x Y — K such that for each y € Y,
the set { z € X: M(z,y) # 0} is finite. Of course, IKXX(X) and lKﬁx)XY are isomorphic under the transpose
map M*(x,y) = M(y,z), z € X,y € Y, for M € K¥*(X) Recall also that if p € K(X), then its support is
given by

supp(p) = {z € X:p(z) #0}. (23)

Let ¢ € TopVect(Kﬂ.)((lKi(, n%), (KY,n%)). We define the following map:

My: YxX — K

Lemma 22. For each ¢ € TopVect(K’T)((le,HTX), (KY,n%)), My € KY*X) and the map ¢ — My is
one-to-one, and is left and right K-linear.

Proof. For every = € X, the map

K

KX —
I b, 60 = 6(),) (25)
X

is an element of (;K;*,n%)" (because it is the composition of ¢ with the projection onto Ké,, and both
of them are right linear maps). According to Theorem 5, there is one, and only one, pg, € K) such
that for every f € KX, 1Dy, f) = ADoy)(f) = 18y, ¢(f)). In particular, for every z € X, ps,(z) =
1 Poyy 0z) = 1(0y, d(62)), hence {z € X:(5y,¢(d,)) # 0} = supp(py,y), and then My € K¥Y*(X) Now let
us assume that My = My, then for every (y,z) € Y x X, {0y, #(dz)) = 1{dy, ¢'(z)). Then, by bilinearity,
$(02)(y) — @' (62)(y) = 10y, $(0z) — ¢'(d5)) = 0. Since this last equality holds for every y € Y, ¢(0,) = ¢'(02)
for every z € X. Now, let f € KX, since f = Z 0. f(x) (sum of a summable family), by continuity,
reX

o(f) = Z &(0z) f(z) = Z ¢ (62) f(x) = ¢'(f). It remains to check that ¢ — My is left and right linear

reX zeX
(additivity is obvious). Let r € K, (y,2) € Y x X. One has
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I
<
(=)
<
<
—~ o~ —

and

M¢'T(y7x) =1 1

=]

< <
—~

< %
ﬁ
~—
/—\
Zﬂ
~—
~

(

= 1(dy, (

= 1(dy, P(dz7))
= 1(0y, &(
10y, (

= (My(y,2))r. O (27)

Remark 20. Given ¢ € (x ) TopVect(( KX, n% ), (KY,n7)), one may define yM: X xY — Kby 4 M(z,y) =
(¢(02),6,)r. The result corresponding to Lemma 22 in this case states that 4M € K*)*Y and the map
¢ — ¢M is one-to-one, and linear on both sides. It is also possible to establish a “two-sided” version. Let
¢ € &, TopBivect . (KX, %), (KY,n3)). Then, yM(z,y) = M} (x,y) € Z(K) for every (x,y) €
X x Y. Indeed, the map f €KX = 1(6,,0(f)) = ¢(f)(6y) = (my 0 ¢)(f) € K is a member of ‘(;K i(,nx)
Thus, by Theorem 5, there exists a unique pg,, € Z(K)X) such that ;(p, 4, f) = 1(d,, ¢(f)). In particular,
1Dy, 0z) = 1(0y, &( E)> = My(y,z) € Z(K). Moreover, My(y,x) = 1(Dy,4:0z) = (0, Py,0)r = oM (x,y). It
follows that M;; =M € Z(K)X)XY Of course, ¢ — »M and ¢ — M, are one-to-one homomorphisms of
abelian groups.

Theorem 23. The K-K-bi-vector spaces TopVect(K,T)((lKi(, n%), (KY,n%)) and KY ) are isomorphic.
More precisely the map ¢ — My of Lemma 22 is also onto.

Proof. Let M € KY*(X) Let us define 15,: KX — KY by

H=vu(d f2)d) = (Z M(y,x>f(m>> 8y,

zeX yeY \zeX

i.e., ar( Z M(y,x ). (Clearly the second sum on = € X has only finitely many non-zero terms
zeX
since M € KY*X) and therefore is defined in K.) The map vy is clearly right K-linear. Let us prove
that it is continuous. By definition of the product topology, it is sufficient to prove that for every y € Y,
Oy KX — K, defined by £, (f) = 1(8y, ¥ (f)) = Z M (y,x)f(x), is continuous and this is true since
reX
a1,y is a finite sum of scalar multiples of projections, so 1y € TopVect ik . ((KX,n%), (KY,n%)). Finally
we prove that My,, = M. Let (y,z) € Y x X, we have
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My, (y,7) = l<5y7 Yar(02))

0y, (ZMyz )5)
y' ey

zeX
= Z M(y,2)d.(2)
zeX
= M(y,z). (28)

The map ¢ — My thus is onto, and, by Lemma 22, it is a bijection. O

Remark 21. Once again, Theorem 23 admits a left version: The K-K-bi-vector spaces (K’T)TopVect((lKi( ,

n%), (KY, n%)) and ZKSX)XY are isomorphic under the map ¢ — 4, M. (To prove this statement it suffices,
as in the proof of Theorem 23, to show that the above map is onto by defining p/¢: KX — KY as p(f) =

> (Z f(x)M (z, y)> 8,.) In case where M € Z(K)X)XY |y r4p = ppse, so that a9 is both left and right
yeY \zeX

linear. If M € Z(K)Y>*(X) then Mt = Yar, so that ¥y is left and right linear. This leads to isomorphisms
between the abelian groups Z(K)X)*Y ~ - TopBivect T)((ZK’I" %), (KY, nf)) ~ Z(K)Y*X),

Over a not necessarily commutative ring R, the right notion of an algebra is that of an R-ring (see [1,
Definition 10.3, p. 36]), i.e., a ring (with a unit) A together with a (unit-preserving) homomorphism of rings
7: R — A (this naturally endows A with a structure of a R-R-bimodule: the left-action is given by r-a = n(r)a
and the right action by a-r = an(r), a € A, r € R). E.g., TopVect(KT)((le(,nTX) (KX, n%)) and, of
course, also (g -y TopVect((K;¥, %), ((K;¥, %)) are K-rings. (They are rings under the usual composition
of operators, and they are equipped with the respective maps from R, r — rid, and r — idr; the bi-vector
space structures thus obtained are the usual ones as it is easily checked.)

For M € K?*() and N € KY*(X)| one may define a multiplication, which is just the usual matrix
multiplication, MN € K#*(X) as (MN)(z,z) = > yey M(2,y)N(y,z) (there are only finitely many terms
in this sum because M € KZ*) and MN € K#*(X) because N € K¥*(X)). Tt is not difficult to check
that it is associative, i.e., if P € KX*W) then (MN)P = M(NP) € K#*W)_that it admits as a two-sided
identity the identity matrix Ix € KX*(X) (given by Ix(x,z) = 1, and Ix(x,2') = 0 for each z # '), and
that it is bi-additive. In particular, KX*(X) forms a ring under this operation, and even a K-ring with the
ring map 7: K — KX*(X) given by n(r) = rIx = Ixr (once again, the bi-vector space structure induced by
n on KX*(X) is the usual one).

In a similar way one may define an associative, unital and bi-additive multiplication K(¥)*Y x K(¥)xZ _,

X)X (its induced bi-vector space structure is the

K(X)XZ This also gives rise to a K-ring structure on K(
original one).

Finally, the above multiplications restrict to associative and bi-additive maps Z(K)%* () x Z(K)Y*(%) —
Z(K)Z>*(X) and Z(K)XOxY x Z(K)M)*Z - Z(K)X)*Z In particular, Z(K)X)*X and Z(K)X>*X) are
rings. (They are anti-isomorphic one to the other by the transpose map.)

We are now in position to establish a corollary of Theorem 23.

Corollary 2. For each ¢ € TopVecty ((KY,n%k), (KY,n3)) and ¢ € TopVecty ((K),n3),
(KZ,1%)), one has Myoy = MyM,, Mia, « = Ix, and in particular the K-rings TopVect(KT)((lKi(7 n%),
(KX, n%)) and KX e isomorphic (this means that both the underlying rings and the underlying
K-K-bi-vector spaces are isomorphic).
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Proof. Let (z,2) € Z x X. Then,
Miyop(2, ) = 1(0z, (¢ © ¢)(0))

=000 | > 6,06

yey

yey

=3 1(02,1(8y))i(8y, $(5a))

yeY
=Y My(z,y)My(y, )
yey
= (MypMy)(z, 7). (29)

The remainder of the proof is straightforward. O

Remark 22. The corresponding left version of Corollary 2 is as follows: yogM = ¢MyM for every
€ (K1) TopVect((lKT ,1%), (KY,n%)) and ¢ € (K, T)TopVect((lKT ,1%.), (KZ,n%)), and, in particular,
the K-rings (k) TopVect((;K;*, n%), (KX, %)) and KX are anti-isomorphic (they are isomorphic
as bi-vector spaces, however their underlying rings are anti-isomorphic). Finally, the corresponding “two-
sided” version states that for every ¢ in (K,T)TopBivect(K)T)((le,HTX), (KY,n%)) and for every i in
(KJ)TopBivect(K’T)((ZK,’,/,H{,) (KZ,n%)), Myoyp = MyMy and yogM = ,M M. Moreover the rings
(k) TopBivect g . (KX, n%), (KX, n%)) and Z(K)X*(X) are isomorphic, while they are anti-isomorphic
with Z(K)(X)*X (the transpose map is anti-isomorphism).

Remark 23. Let K be a division ring and let 7 be a Hausdorff division ring topology on K. Let X,Y be
two sets. By Theorem 23, if a right linear map ¢: ;KX — ;KX is continuous for the product topologies %
on KX and ny on KY', then it is also continuous with respect to the product topologies n% and ng for
any choice of a Hausdorff division ring topology on K. Conversely, if M € KY*(X) then the right linear
map ¥ar: KX — | KY, of the proof of Theorem 23, is continuous whatever is the Hausdorff division ring
topology on K. One observes that, of course, it is possible to define My for a right linear map ¢: KX — KY
even not continuous. But it is not true that if My € KY*(X) then ¢ is continuous. Indeed, let X = Y
be assumed infinite. The right vector space spanned by the linearly independent set {d,:2 € X } is Kg-X ),
According to the axiom of choice, {J,:2 € X } may be extended to an algebraic right basis B of KX.
Let V be the sub-vector space generated by B\ {d,:2 € X} # (. Of course, KX = KX) @V, and let
us consider the projection 7y : KX — KX onto V along K&X). Since K&X) = kermy, for every z,y € X,
1{0z, ™ (8y)) = 0, hence M, is the zero matrix. Therefore, because my # 0, 7 is not continuous (otherwise
it would contradict the fact that M_:¢ — My is one-to-one).

7.8. Topological dual and completion

In this section, we explicitly construct the canonical isomorphism between the two-sided topological dual
of lKgX) and the two-sided topological dual of ;KX when K is a complete (Hausdorff) division ring, using
the fact that the former is a completion of the later (for some convenient topologies).

Recall the following definition: let R be a ring with a Hausdorff (ring) topology 7, and M be a Hausdorff
topological (R, 7)-(R, 7)-bimodule. The completion of M is a pair (]\/4\,2) where M is complete (Hausdorff)
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topological (R, 7)-(R,7)-bimodule (i.e., complete both as a right and as a left topological module) and
i: M — M such that
1. The map ¢ is an isomorphism of topological (R, 7)-(R, 7)-bimodule structures from M into ]\7, ie. iis
both an (algebraic) isomorphism and a homeomorphism into M (or in other terms, ¢ is a continuous
one-to-one left and right R-linear map, and its inverse i ~1:i(M) — M is continuous where i(M) has
the sub-space topology induced by M ).
2. The image i(M) of M is dense in M.
3. For any complete (Hausdorff) (R, 7)-(R,7)-bimodule N and any continuous and (left and right) linear
map ¢: M — N, there exists one, and only one, continuous (left and right) linear map gfb\: M — N such
that ¢ o = ¢.

The notion of a completion for a topological bi-vector space over a topological division ring is similar.
In any case the bijection ¢ — ¢ provides, for each complete Hausdorff (R, 7)-(R,7)-bimodule (re-
spectively, bi-vector space) N, an isomorphism of abelian groups from (R,T)TopBimod(RyT)(M,N) to

(r,-) TopBimod g ) (M\,N) (respectively, from (R’T)TopBivect(RJ)(M,N) to (R)T)TopBivect(R,T)(]\/4\,]\])).

Lemma 24. Let (R, ) be a complete Hausdorff ring. Then, (RX,1%) is the completion of (lanX),pTX) (the
later being equipped with the initial topology p’ with respect to the obvious projections which coincides with
the sub-space topology induced by 1% on lR,(»X)) with 4: le-X) < 1RX being the canonical inclusion.

Proof. It is rather clear that (;RX,n%) is complete as a product of complete modules (see for instance [3]).
The facts that p% coincides with the sub-space topology induced by n% on ZRSX) and that ZRSX) is dense
in ;RX are also almost immediate. Let (V,0) be a (Hausdorff) complete (R, 7)-(R,7)-bimodule, and let
o: (lRﬁx),pTX) — (V, o) be a continuous left and right linear map. Let us check that the family (¢(d;))zex is
summable in (V, o). Let U be an open neighborhood of zero in (V, o). By continuity of ¢, ¢~1(U) is an open
neighborhood of zero. By a well-known characterization of an initial topology by a basis of open sets (see [3]),
it follows that there exists a finite subset Xy C X, and for each z € Xy, an open neighborhood U, of zero
in (R, 7) such that 0 € (,ex, 7 ' (Uz) C ¢~ 1(U). Let K C X be any finite subset such that K N Xy = 0.
Then, 7,(dy) = dy(x) = 0 € U, for every z € Xy and y € K (since Xy N K = (). Hence, by linearity
of the projections, > cx 6y € Nyex, 7Y (U,) € ¢~ Y(U), and thus doyer 9(6y) = ¢ (ZyeK 5y> e U.
Since (V, o) is complete, using Cauchy’s condition [21, Definition 10.3 and Theorem 10.4, pp. 63-64], it
follows that the family (¢(0;))zex is summable in (V, o). Then, one may define a map ngS: (RX — V by
5( f) =2 wex f(x)#(d;). This map is continuous (because it coincides with the unique continuous extension
of ¢ to the closure ;R of lex))’ and left and right linear. It is of course unique (again by the uniqueness
of the extension of a uniformly continuous maps to a closure). O

Let us assume that a ring R has a Hausdorff ring topology 7 that makes (R,7) a complete Hausdorff
ring. By Lemma 24, and according to the definition of a completion, taking (;R,, 7) in place of N, it is clear
that there exists a canonical isomorphism ¥ between the two-sided topological dual of (le,X), p%) and that

!/ ~ ~
of (JRX, %), since for every ¢ € ‘(lanX),pTX) there is a unique ¢ € ‘\(;RX, HTX)/ such that £oi = ¢ (hence

U(¢) = £). The isomorphism

X) N
v \(1R7(" )7pX) \/SRS’(’HX> (30)

_>
y4 A
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has inverse ¥=1(f) = foi = b x, for L € ‘\(RX,n%)". The isomorphism ¥ may be given an even more

li
explicit description. Let £ € ‘(lex), p%) . Then we have

U()=0 RX — R
Foom Y0 f@). (31)

rzeX

Indeed since f = Z 0. f(z) (sum of a summable family), we have
zeX

01> 0uf(a)

rcX
= Z Z((Sw) f(z) (since 7 is continuous and linear)
reX
= Z 0(6,)f(z) (since 8, € RXD) (32)
reX

Now, one assumes that (R, 7) is actually a complete Hausdorff division ring (K, 7). According to previously

~

introduced notations and to the above results, it follows that W(¢)(f) = £(f) = 1(pw(), f), where we recall
from the proof of Lemma 17, and from Theorem 5, that py ) € Z(K)X) is defined by puy(r) =V (l)(d,) =
0(65) = £(85). Note also that py ) = ¢THP(0)) = ¢1(0).
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