Hyper/Multi-Coherence Spaces
and the Taylor Expansion of λ-terms

M1/M2 Internship proposal

Keywords
Denotational Semantics, λ-Calculus, Sequential Computation,
Linear Logic

Goal
Characterizing the Taylor expansion of ordinary λ-terms via
webbed denotational models.

Hosting institution
Logic, Computation and Reasoning (LCR) team
LIPN (Laboratoire d’Informatique de Paris Nord)
UMR CNRS 7030 – Institut Galilée – Université Paris 13.
99, avenue Jean-Baptiste Clément, 93430 Villetaneuse.
http://www-lipn.univ-paris13.fr/LCR

Supervisors
Michele Pagani http://www-lipn.univ-paris13.fr/~pagani/

Brief description

λ-calculus is a mathematical model of sequential functional pro-
gramming. The basic notion is that of applying an argument to
a function and to evaluate such an application by substituting all
occurrences of the function parameter with the argument [0].

The process of substitution can erase or copy the argument as
many times as needed. This fact has a mathematical appealing inter-
pretation through the so-called Taylor expansion of the λ-calculus
into the resource calculus [1, 2]. The resource calculus has a bounded
version of the λ-calculus application of the form $M(N^n)$, meaning
that the argument N is a resource that must be used by the func-
tion M exactly n times during the evaluation. The Taylor expansion
then translates the unbounded λ-calculus application $M(N)$ into the
series \(\sum_n \frac{1}{n!} M(N^n) \) of resource applications, recalling the standard Taylor expansion of the exponential function.

Of course, not every sum of resource terms is in the Taylor expansion of an ordinary \(\lambda \)-term, and the question of characterizing the series converging to \(\lambda \)-terms wait to be settled. A partial answer has been achieved in [3] in the setting of propositional linear logic, with a combinatorial criterion characterizing the sums of differential nets converging to linear logic proof nets.

Here, we address the question in the framework of the \(\lambda \)-calculus and we look for a characterization based on denotational semantics. We plan to consider the enrichments of the category \(\text{REL} \) of sets and relations described in [4]. Any set \(S \) of resource terms can be interpreted as a relation \([S] \) in \(\text{REL} \). We wonder whether there is a suitable enrichment \(C \) of \(\text{REL} \) such that \([S] \) is a morphism in \(C \) if, and only if, the terms in \(S \) appears in the Taylor expansion of a \(\lambda \)-term.

Understanding the convergence which is at the base of the Taylor expansion of \(\lambda \)-terms might be the starting point of renewing our notion of sequential computation, represented here by the \(\lambda \)-calculus.

References

