Calculabilité et décidabilité : TD5

Licence Info 3 - Michele Pagani 4 avril 2013

1 Modèles de calcul

Soit P un programme dans un parmi les modèles de calcul vu en cours (i.e. GOTO, CM, TM) et $\mathbf{x}_0, \dots, \mathbf{x}_n, \mathbf{y}$ des donnés, on écrive

$$[\![\mathtt{P}]\!](\mathtt{x}_0,\ldots,\mathtt{x}_n)=\mathtt{y}$$

lorsque $P \vdash (1, \sigma) \rightarrow^* (m + 1, \sigma')$ et

- dans le cas du langage GOTO:
 - 1. σ est le store qui associe aux premières n+1 variables (on suppose que les variables de GOTO soient ordonnées X_0, X_1, X_2, \ldots) la valeur $X_0 \mapsto x_0, \ldots, X_n \mapsto x_n$, et la valuer nil aux autres variables;
 - 2. $\sigma'(X_0) = y$ et $(m+1, \sigma')$ est un état final (i.e. le programme P a m instructions).
- dans le cas des machines CM:
 - 1. σ est le store qui associe aux premiers n+1 registres les valeurs $R0 \mapsto x_0, \ldots, Rn \mapsto x_n$, et la valeur 0 aux autres registres;
 - 2. $\sigma'(R0) = y$ et $(m+1, \sigma')$ est un état final (i.e. le programme P a m instructions).
- dans le cas des machines de Turing TM:
 - 1. σ est un store composé de $k \geq n+1$ rubans avec valeur

$$\sigma = (\underline{\mathtt{B}}\mathtt{x}_0, \dots, \underline{\mathtt{B}}\mathtt{x}_n, \underline{\mathtt{B}}, \dots, \underline{\mathtt{B}})$$

2. $\sigma' = (L_0 \underline{S}_0 R_0, \dots, L_k \underline{S}_k R_k)$ et $Pfx(R_0) = y$ et $(m+1, \sigma')$ est un état final (i.e. le programme P a m instructions). On rappelle que la fonction Pfx est définie par induction, $Pfx(R) = \epsilon$ si $R = \epsilon$ or R commence par B, et Pfx(R) = S Pfx(R') si R = SR' et S = 0 ou S = 1.

Exercice 1. Programmer dans chacun des modèles de calcul GOTO, CM, TM la fonction somme $n, m \mapsto n + m$. Détailler le calcul de la valeur de $[\![P]\!](x,y)$, où x et y sont les données représentant resp. 1 et 2 dans le modèle en considération.

Exercice 3. La succession de Fibonacci est définie par $F_0 = F_1 = 1$ et $F_{n+2} = F_n + F_{n+1}$. Programmer dans chacun des modèles de calcul GOTO, CM, TM la fonction $n \mapsto F_n$, associent à un nombre naturel n, l'n-eme numero dans la succession de Fibonacci.