q-gram analysis and urn models

Pierre Nicodème

École polytechnique, Palaiseau Laboratoire d'Informatique LIX

November 2003

Approximate pattern matching and the Jokinen-Ukkonen lemma

Def: q-gram any word of fixed size q

Edit operations over strings

- substitution $(l_1 \rightarrow l_2)$ $aabdd \rightarrow aadcc$
- insertion $(| \rightarrow l)$ $aa|dd \rightarrow aaecc$
- suppression $(l \rightarrow |)$ $aaedd \rightarrow aa|cc$

Edit distance $\delta(S_1, S_2)$ between two strings S_1 and S_2

- minimum number of edit operations transforming S_1 into S_2

Jokinen-Ukkonen 1991 (loose version)

if $|S_1| = m$ and $\delta(S_1, S_2) \leq k$, then at least m + 1 - (k+1)q of the m - q + 1 q-grams of S_1 occur in S_2

Example

$$S_1 = aaabaaab$$

$$S_2 = aaacaaaa$$

$$m = 8, \quad \delta(S_1, S_2) = 2 \rightarrow k = 2$$

$$2 - \operatorname{grams}(S_1) = \{\{aa, aa, ab, ba, aa, aa, ab\}\}$$

$$Q_{S_1,S_2} = 2 - \operatorname{grams}(S_1)$$
 present in $S_2 = \{\{aa, aa, aa, aa\}\}$

Jokinen-Ukkonen

$$|Q_{S_1,S_2}| \ge m+1-(k+1)q$$

 $4 \ge 8+1-(2+1)2=3$

Beware of the asymmetry: $|Q_{S_2,S_1}| = 5$

Application

When searching a pattern with errors in a text, slide over the text a window of same size as the pattern and discard windows which do not contain enough q-grams of the pattern

Aim of this work

Study of two statistics of q-grams in random sequences:

- number of "repeated" q-grams (number of q-grams occurring at least twice, without counting multiplicities

$$S = aaaabaaaabbb, \quad q = 2$$

$$Q_{\mbox{repeated}} = \{aa, ab, bb\} \quad |Q| = 3$$

 number of common q-grams to two sequences, without counting multiplicities

$$S_1 = aaaabaaaabbb$$

$$S_2 = aaaacaaaacbb$$

$$q = 2 \qquad Q_{\mathrm{common}} = \{aa, bb\} \quad |Q| = 2$$

(Remark: symmetrical counting)

- Jokinen-Ukkonen statistics

Bernoulli non-uniform model for the sequences

A heuristic approach

Dependent model

```
FGSEWWTYURR ... OOUYJREFDKB

FGSEWWTYU ...
GSEWWTYU ...
```

. . .

EWWWTYU ...

SEWWTYU ...

Independent model

```
TTG
GSE
UHI
ROY
...
sequence length l = n + q - 1 \Rightarrow n q-grams
```

- 1. analyse the independent model
- 2. perform simulations for the dependent model and compare with the independent model

Repeated q-grams

Equivalent problems

Input: an alphabet Σ $(|\Sigma|=s)$, an integer q, a random sequence S of size n+q-1

Dependent model

- 1. number of repeated q-grams
- 2. number of internal nodes at depth q of the suffix-tree build on S
- 3. number of self-intersections of a random walk of length n over the de Bruijn graph B(s,q)

Independent model

- 1. number of repeated q-grams
- 2. number of internal nodes at depth q of a trie build with n random keys over Σ
- 3. number of self-intersections of a random walk of length n over a complete graph $K(s^q)$
- 4. number of urns containing more than one ball in a system of s^q urns in which n balls are thrown

Suffix-trees

 $Q_{\text{repeated}} = \{ab, ba\}$

|Q| = 2 = number of internal nodes at depth q

DE BRUIJN graphs

DE BRUIJN graph B(s,q)

Vertices: $V = \{0, 1, 2, \dots, s^q - 1\}$

Edges: $E = \{(v_i, v_j)\}$ with

 $v_j = s \times v_i \pmod{s^q} + x, \quad x = 0|1|2|\dots|(s-1)|$

Random walks over DE BRUIJN graphs

 $Q_{\rm repeated} = \{\textbf{01}, \textbf{10}\}$

|Q| = 2 = number of vertices accessed more than once

Trie and urns (indep. model)

keys = [00, 01, 00, 00, 10, 00] $Q_{repeated} = \{00\}$

|Q|=1= number of nodes at depth q containing more than one key equivalent to a system of 4 urns

 $key \leftrightarrow number of urn$

$$\ker = w_{q-1}w_{q-2}\dots w_0$$

$$\Pr(\operatorname{urn}_i) = \Pr(\ker_i) = \prod_{0 \le i \le q-1} \Pr(w_i)$$

Previous results

- Guibas and Odlyzko 1981, Rahman and Rivals 2000, 2003
 enumeration of autocorrelations, missing words
- Szpankowski and Jacquet 1994
 asymptotically, the distributions of path lengths of suffix-trees and of tries of same size are equal
 - J. Fayolle 2002, same result, but for the expectation
- Szpankowski and Sutinen 1999
 phase transition in q-gram filtration
- urn models: numerous results
 Johnson and Kotz 1977, Kolchin et al. 1978, Drmota et al. 2001,
 Flajolet et al. 2003

Analysis of the urn model

 X_n random variable counting the number of urns without collisions when n balls are thrown in the system of $m = s^q$ urns

 $Y_n = m - X_n$ counts urns with collisions

G.F.

$$F(z, u) = \sum \Pr(X_n = k) u^k \frac{z^n}{n!}$$

differentiations with respect to u

- \rightarrow gen. functions of moments of X_n
- \rightarrow extraction of *nth* Taylor coefficient and asymptotic evaluation

Poissonization

do not throw exactly n balls in the urns, but throw a random number of balls following a Poisson distribution.

The urns behave independently of each other

Poissonization - Depoissonization

 $\mathcal{P}_{p_i z}$ balls in urn i.

 $Pr(\text{no collision}) = e^{-p_i z} (1 + p_i z).$

u counts the urns without collisions

b.g.f. for urn i under the Poisson model

$$\phi_i(z, u) = e^{-p_i z} ((1 + p_i z) u + e^{p_i z} - 1 - p_i z)$$

for the system of urns (Poisson again) $\Phi = \prod \phi_i$

$$\Phi(z, u) = e^{-z} \prod_{0 \le i \le m-1} \left(e^{p_i z} + (u - 1)(1 + p_i z) \right)$$

"exact" g.f.
$$F(z, u) = \sum_{n=0}^{\infty} f_n(u) \frac{z^n}{n!}$$

$$\Phi(z,u) = \sum_{n>0} f_n(u) \frac{z^n}{n!} e^{-z} \Leftrightarrow f_n(u) = [z^n] n! e^z \Phi(z,u)$$

$$\Rightarrow F(z, u) = \prod_{0 \le i \le m-1} \left(e^{p_i z} + (u - 1)(1 + p_i z) \right)$$

Expectation and standard dev.

$$\mu_n = \mathbf{E}(X_n) \qquad m_n^{(2)} = \mathbf{E}(X_n^2)$$

$$m(z) = \sum \mu_n z^n = \left. \frac{\partial F(z, u)}{\partial u} \right|_{u=1}$$

$$m^{(2)}(z) = \sum m_n^{(2)} z^n = \left. \frac{\partial}{\partial u} u \frac{\partial F(z, u)}{\partial u} \right|_{u=1}$$

extract $[z^n]m(z)$ and $[z^n]m^{(2)}(z)$ + asymptotics

when $n \times p_i \to \theta_i$

$$\mu_{n} = \sum_{i} \left(e^{-\theta_{i}} (1 + \theta_{i}) + \frac{1}{2n} e^{-\theta_{i}} \theta_{i}^{2} (1 - \theta_{i}) + O\left(\frac{1}{n^{2}}\right) \right) \quad \text{and} \quad \gamma_{n} = m - \mu_{n}$$

$$\sigma_n^2 = m_n^{(2)} - \mu_n^2 \approx \sum_i e^{-\theta_i} (1 + \theta_i) \left(1 - e^{-\theta_i} (1 + \theta_i) \right) - \frac{1}{n} \left(\sum_i \theta_i^2 e^{-\theta_i} \right)^2$$

Poisson convergence (Chen-Stein)

number of empty urns: Barbour - Holst 1989

$$I_k = \begin{cases} 1 \text{ if urn } k \text{ empty} \\ 0 \text{ elsewhere} \end{cases} \qquad W = \sum_k I_k \quad \mu = \mathbf{E}(W)$$

$$\text{urn } k$$

$$p_k$$

- (1) empty urn k by throwing the balls into the other urns
- (2) coupling: after this operation

$$\begin{cases}
J_{ik} = \begin{cases}
1 \text{ if urn } i \text{ empty} \\
0 \text{ elsewhere}
\end{cases} \Rightarrow J_{ik} \leq I_{ik} \ (i \neq k)$$

$$I_{ik} = I_i \ \forall k$$

$$\mathcal{L}(J_{1k}, \dots, J_{mk}) = \mathcal{L}(I_{1k}, \dots, I_{mk} | I_k = 1)$$

$$\Rightarrow d(W, \mathcal{P}_{\mu}) \leq \min(1, \mu) \left(1 - \frac{\mathbf{Var}W}{\mu}\right)$$

Poisson convergence (r-collisions)

if less than r balls in urn k

repeat until there are $\geq r$ balls in urn kfor all urns $i \neq k$ for each ball in urn ithrow it into urn k with proba. p_k

number of iterations finite with proba. 1 coupling + same proof as Barbour and Holst

$$\Rightarrow d(W, \mathcal{P}_{\mu}) \leq \min(1, \mu) \left(1 - \frac{\mathbf{Var}W}{\mu}\right)$$

Dependent model

Th: the language of words containing e repeated q-grams is rational, for all e

- 1. consider the DE BRUIJN directed graph B(s,q) as an automaton $(\Sigma,Q,0,\delta,F=Q)$ where the states of Q (vertices) are naturally numbered from 0 to s^q-1 and all states are terminal
- 2. Consider 3^{s^q} copies of B(s,q) corresponding of all combinations of labelling with $\lambda = 0|1|2$ of the vertices of B(s,q)
- 3. Number the copies along the numbering of the states and the labels: $B_N(s,q) \Leftrightarrow \text{label of vertex } n \text{ is the } nth \text{ digit of } N \text{ in base } 3.$
- 4. build a (huge) automaton $(\Sigma, \mathcal{Q}, 0_0, \Delta, \mathcal{Q})$ where $\mathcal{Q} = \{0, 1, \dots, s^q - 1\} \times \{0, 1, \dots, 3^{s^q} - 1\}$ (notation [n, N]) by connecting the copies

$$\begin{cases} \lambda = 0, 1 : \Delta([n, N_1], l) = [\delta(n, l), N_2] \ (N_2 = N_1 + 3^n) \\ \lambda = 2 : \Delta([n, N_1], l) = [\delta(n, l), N_1] \end{cases}$$

- 5. mark with letter u all transitions changing a label from 1 to 2 (first repetition)
- 6. Chomski-Schützenberger algorithm for marked automata

Experimental comparisons - Exp

$$n = 300$$
 $\Sigma = \{0, 1\}$ $s = 2$ $q = 10$

solid lines: theoretical curve for the trie

dots: simulations

Experimental comparisons - Std. dev.

repeated q-grams

$$n = 300$$
 $\Sigma = \{0, 1\}$ $s = 2$ $q = 10$

theoretical σ - trie (solid line)

simulations for σ trie (blue circles)

simulations for σ suffix-tree (black circles)

Small p

$$n = 300$$
 $s = 2$ $q = 10$

$$(0.995 + 0.005u)^{300} = 0.2223 + 0.3351u + 0.2518u^2 + 0.1257u^3 + 0.047u^4 \dots$$

Common q-grams to 2 sequences

Equivalent problems

Input: an alphabet Σ ($|\Sigma| = s$), an integer q, 2 random sequence S_1 and S_2 of size n + q - 1

Dependent model

- 1. number of repeated q-grams
- 2. number of bicolor nodes at depth q when superposing colored suffix-trees build on S_1 and S_2
- 3. number of intersections of two random walk of length n over the de Bruijn graph B(s,q)

Independent model

- 1. number of repeated q-grams
- 2. number of bicolor nodes at depth q when superposing two colored tries build each with n random keys over Σ
- 3. number of intersections of two random walks of length n over a complete graph $K(s^q)$
- 4. number of urns with bicolor collisions in a system of s^q urns in which n black and n white balls are thrown

Previous results

P. Flajolet, P. Kirschenhofer, and R. F. Tichy - 1988, W.
 Szpankowski -1993

asymptotically, all words of size $\log(n)/H$ are present in a text of size n

(H Renyi-entropy of the alphabet)

 $H = \log \omega_{\min}$ where ω_{\min} is the minimum of the probability of the letters of the alphabet

Analysis of the urn model

- g.f. and moments

double poissonization-depoissonization

$$F(z,t,u) = \prod_{0 \le i \le s^q - 1} \left(e^{p_i(z+t)} + (u-1)(e^{p_i z} + e^{p_i t} - 1) \right)$$

z black balls , t white balls u bicolor collisions

$$\mu_{n} = m - [z^{n}t^{n}] \frac{\partial F(z, t, u)}{\partial u} \Big|_{u=1}$$

$$= m - \sum_{i} \left(e^{-\theta_{i}} (2 - e^{-\theta_{i}}) - \frac{\theta_{i}^{2} e^{-\theta_{i}}}{n} (1 - e^{-\theta_{i}}) \right) + o(1)$$

$$\sigma_n^2 \approx \sum_i e^{-\theta_i} (2 - e^{-\theta_i}) \left(1 - e^{-\theta_i} (2 - e^{-\theta_i}) \right)$$
$$- \frac{2}{n} \left(\left(\sum_i \theta_i e^{-\theta_i} \left(1 - e^{-\theta_i} \right) \right)^2 - \sum_i \theta_i^2 e^{-2\theta_i} (1 - e^{-\theta_i})^2 \right)$$

Poisson convergence

Chen-Stein + coupling (reverse Barbour-Holst)

Experimental comparisons - Exp

$$n = 300$$
 $\Sigma = \{0, 1\}$ $s = 2$ $q = 10$

solid lines: theoretical curve for the trie

dots: simulations

Experimental comparisons - Std. dev.

common q-grams

$$n=300$$
 $\Sigma=\{0,1\}$ $s=2$ $q=10$ theoretical σ - trie (solid line) simulations for σ trie (blue circles) simulations for σ suffix-tree (black circles)

Cost of summations

$$\Sigma = \{1, 2, 3, 4\}, s = |\Sigma| \qquad m = s^q$$

group urns by families of urns with equal probability

|w| = q, $|w_i| = q_i$ number letters equal to i,

$$q = q_1 + q_2 + q_3 + q_4$$
 population of $(q_1, q_2, q_3, q_4) = \frac{q!}{q_1! q_2! q_3! q_4!}$

Number of families $C_{q,s}$ (cost of summation)

 $C_{q,s} = \text{compositions with} s \text{ summands } \geq 0 \text{ of } q$

= compositions with summands > 0 of q+s

$$C_s(z) = \left(\frac{z}{1-z}\right)^s$$

$$C_{q,s} = \left[z^{q+s}\right] \left(\frac{z}{1-z}\right)^s = \left(q+s-1\atop s-1\right)$$

ADN: $C_{10,4} = 286$ Proteins: $C_{3,20} = 1540$

Computing the moments (repeated q-grams)

The values of q_1 to q_{i-1} have been computed previously when Procedure Calcsum is entered and d = s - i.

 $s = |\Sigma|$ and q are handled as global constants.

Procedure Calcsum
$$(f, d, n, \phi)$$
:

$$i = s - d \qquad \quad u = \sum_{k=1}^{i-1} q_k$$

If d > 1 Then

For
$$j$$
 To $s-u$ Do

$$q_i = j$$
 $f = \mathbf{Calcsum}(f, d-1, n, \phi)$

End of for

Else

$$q_s = q - \sum_{k=1}^{s-1} q_k$$

$$f = f + \frac{q!}{q_1! q_2! \dots q_s!} \phi(\theta_{q_1, \dots, q_s}, n)$$

End of if

Return (f)

End of procedure

$$\theta_{\xi} = \theta_{q_1, \dots q_s} = n \times \omega_1^{q_1} \omega_2^{q_2} \dots \omega_s^{q_s}$$

$$\phi_1 = \left(e^{-\theta_{\xi}} (1 + \theta_{\xi}) + \frac{1}{2n} e^{-\theta_{\xi}} \theta_{\xi}^2 (1 - \theta_{\xi}) \right)$$
$$\mu_n = m - \mathbf{Calcsum}(0, s, n, \phi_1)$$

$$\mu_n = m - \mathbf{Calcsum}(0, s, n, \phi_1)$$

 $n_1 = n_2 = 1000, q = 12, \Sigma = \{0, 1\} \ p_0 = p_1 = 0.5$ 50000 simulations

K number of common 12-grams Plot of the normalized variable \widehat{K} versus $\mathcal{N}(0,1)$

$$n_1 = n_2 = 1000, \ q = 12, \ \Sigma = \{0, 1\} \ p_0 = 0.1 \quad p_1 = 0.9$$
50000 simulations

K number of common 12-grams Plot of the normalized variable \widehat{K} versus $\mathcal{N}(0,1)$

Jokinen-Ukkonen statistics (common q-grams)

urn model

z counts black balls, $p_i = \Pr(\text{black ball falls in urn } i)$ t counts white balls, $x_i = \Pr(\text{white ball falls in urn } i)$

double poissonization-depoissonization, g. f. for one urn: $e^{p_i z} \times e^{x_i t}$

u counts the total number of black balls that are present in urns containing at least one white ball

$$\begin{bmatrix} 1 & (p_i z) & \dots & \frac{(p_i z)^i}{i!} & \dots \\ (x_i t) & \mathbf{u}(p_i z)(x_i t) & \dots & \frac{\mathbf{u}^i (p_i z)^i}{i!} (x_i t) & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \frac{(x_i t)^j}{j!} & \mathbf{u}(p_i z) \frac{(x_i t)^j}{j!} & \dots & \frac{\mathbf{u}^i (p_i z)^i}{i!} \frac{(x_i t)^j}{j!} & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

$$F(z,t,\mathbf{u}) = \prod_{0 \le i \le s^q - 1} e^{p_i \mathbf{u}z + x_i t} - e^{p_i \mathbf{u}z} + e^{p_i z} = \sum f_{\mathbf{k}ab} \mathbf{u}^{\mathbf{k}} z^a t^b$$

 $f_{kab} = \Pr(k \text{ black balls in urns with at least 1 white ball}$ when a white and b black balls are thrown).

Expectation and Standard Deviation

$$p_i = x_i, \quad a = b = n$$
 $n \to \infty, \quad n \times p_i \to \theta_i$

$$\kappa_i = \sum_i \theta_i \left(1 - e^{-\theta_i} \left(1 - \frac{\theta_i^2}{2n} \right) \right)$$

$$\mu_n pprox \sum_i \kappa_i$$

$$\sigma_n^2 \approx \sum_i \kappa_i(\theta_i - \kappa_i)$$

$$-\frac{1}{n} \left(\left(\sum_i \theta_i \left(1 - e^{-\theta_i} \right) \right)^2 + \left(\sum_i \theta_i^2 e^{-\theta_i} \right) \right)$$

Experimental comparisons - Exp

n = 300 $\Sigma = \{0, 1\}$ s = 2 q = 10

solid lines: theoretical curve for the trie

dots: simulations

Experimental comparisons - Std. dev.

common q-grams (Jok.-Ukk.)

$$n=300$$
 $\Sigma=\{0,1\}$ $s=2$ $q=10$ theoretical σ - trie (solid line) simulations for σ trie (blue circles)

simulations for σ suffix-tree (black circles)