Theoretical
omputer Science

On the NP-completeness of the perfect matching free subgraph problem

Mathieu Lacroix ${ }^{\text {a, }}$, A. Ridha Mahjoub ${ }^{\text {a }}$, Sébastien Martin ${ }^{\text {a }}$, Christophe Picouleau ${ }^{\text {b,* }}$
${ }^{a}$ Université Paris-Dauphine, LAMSADE, CNRS UMR 7243, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
${ }^{\mathrm{b}}$ Conservatoire National des Arts et Métiers, CEDRIC, 292 Rue St Martin, 75141 Paris, France

ARTICLE INFO

Article history:

Received 28 October 2011
Accepted 21 December 2011
Communicated by G. Ausiello

Keywords:

Bipartite graph
Matching
Blocker
Stable set
Tripartite graph
NP-complete
Structural analysis problem

Abstract

Given a bipartite graph $G=(U \cup V, E)$ such that $|U|=|V|$ and every edge is labelled true or false or both, the perfect matching free subgraph problem is to determine whether or not there exists a subgraph of G containing, for each node u of U, either all the edges labelled true or all the edges labelled false incident to u, and which does not contain a perfect matching. This problem arises in the structural analysis of differential-algebraic systems. The purpose of this paper is to show that this problem is NP-complete. We show that the problem is equivalent to the stable set problem in a restricted case of tripartite graphs. Then we show that the latter remains NP-complete in that case. We also prove the NP-completeness of the related minimum blocker problem in bipartite graphs with perfect matching.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph $G=(V, E)$, a matching of G is a subset of edges such that no two edges share a common node. Matchings have shown to be useful for modelling various discrete structures [4]. A graph is called bipartite (tripartite) if its nodes can be partitioned into two (three) disjoint sets such that every edge connects one node in a set to a node in a different set. A bipartite graph is called complete if there exists an edge between every pair of nodes of different sets. A complete bipartite graph is also called a biclique. A matching M in graph G is called perfect if every node of G is incident to some edge of M. Given a bipartite graph $G=(U \cup V, E)$ such that $|U|=|V|=n$, a matching M of G is then perfect if and only if $|M|=n$.

Given a graph $G=(V, E)$, a matching in G of maximum cardinality is called a maximum matching. Its size corresponds to the matching number of G which is denoted by $v(G)$. A stable set of a graph is a subset of nodes S such that no two nodes in S are adjacent. Given a graph $G=(V, E)$, the stable set problem in G consists in finding a stable set of maximum cardinality.

Theorem 1. Given a bipartite graph, if M is a maximum cardinality matching and S is a maximum stable set, then $|M|+|S|=$ $|U \cup V|$.

For more details on matching theory, the reader is referred to [4].
Let $G=(U \cup V, E)$ be a bipartite graph such that $|U|=|V|=n$. Let $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Suppose that every edge of E is labelled true or false, where an edge may have both true and false labels. For a node $u_{i} \in U$, let E_{i}^{t} and E_{i}^{f} denote the sets of edges incident to u_{i} labelled true and false, respectively. The perfect matching free subgraph problem

[^0](PMFSP) in G is to determine whether or not there exists a subgraph containing for each node $u_{i} \in U$ either E_{i}^{t} or E_{i}^{f} (but not both), and which is perfect matching free. This problem arises in the structural analysis of differential-algebraic systems.

The purpose of this paper is to show that PMFSP is NP-complete. For this we first show that PMFSP is equivalent to the stable set problem in a restricted case of tripartite graphs. Then we show that the latter remains NP-compete in that case.

Differential-algebraic systems (DASs) are used for modelling complex physical systems as electrical networks and dynamic movements. Such a system can be given as $f(\dot{x}, x, t)=0$ where t is time, x is the variable vector and \dot{x} the derivative vector of x with respect to time. Establishing that a DAS definitely is not solvable can be helpful. A necessary (but not sufficient) condition for solving a DAS is that the number of variables and equations must agree, and there must exist a mapping between the equations and the variables in such a way that each equation is related to only one variable and each variable is related to only one equation. If this is satisfied, then we say that the system is well-constrained [6]. The structural analysis problem for a DAS consists of verifying if the system is well-constrained.

In many practical situations, physical systems yield differential-algebraic systems with conditional equations. A conditional equation is an equation whose form depends on the (true or false) value of a condition. A conditional equation can generate several equations. A conditional differential-algebraic system may then have different forms depending on the set of conditions that hold. Here we consider conditional DAS's such that any conditional equation may take two possible values, depending on whether the associated condition is true or false and may generate only one equation. Moreover, we suppose that the conditions are independent. Consider for example the following DAS:

$$
\begin{align*}
& e q_{1}: \quad \text { if } a>0, \text { then } 0=4 \dot{x}_{1}^{2}+2 \dot{x_{1}}+4 x_{2}+2, \quad \text { else } 0=\dot{x_{2}}+4, \tag{1}\\
& e q_{2}: \quad \text { if } b>0, \text { then } 0=6 \dot{x_{2}}+2, \quad \text { else } 0=x_{1}+\dot{x_{2}}+1
\end{align*}
$$

If $a>0, b>0$, then system (1) is nothing but the system.

$$
\begin{array}{ll}
e q_{1}: & 0=4 x_{1}^{2}+2 \dot{x_{1}}+4 x_{2}+2 \tag{2}\\
e q_{2}: & 0=6 \dot{x}_{2}+2
\end{array}
$$

The structural analysis problem has been considered in the literature for non-conditional DAS's. In [6], Murota introduces a formulation of the problem in terms of bipartite graphs and shows that a system of equations is well constrained if and only if there exists a perfect matching in the corresponding bipartite graph. Given a DAS, one can associate a bipartite graph $G=(U \cup V, E)$, called incidence graph, where U corresponds to the equations, V to the variables and there is an edge $u_{i} v_{j} \in E$ between a node $u_{i} \in U$ and a node $v_{j} \in V$ if and only if the variable corresponding to v_{i} appears in the equation corresponding to u_{i}.

Given a conditional DAS, the associated structural analysis problem consists of verifying whether or not the system is well constrained for all the possible values. The SAP for a conditional DAS thus reduces to verifying whether or not the incidence bipartite graph, related to any configuration of the system, contains a perfect matching. In [2], the equivalence between the SAP for conditional DAS and the PMFSP has been shown. Also in [2], an integer programming formulation is proposed.

2. PMFSP and stable sets

The aim of this section is to show that PMFSP is equivalent to the stable set problem in a special case of tripartite graph. Let $H=\left(V^{1} \cup V^{2} \cup V^{3}, F\right)$ be a tripartite graph where $\left|V^{1}\right|=\left|V^{2}\right|=\left|V^{3}\right|=n, V^{j}=\left\{v_{1}^{j}, \ldots, v_{n}^{j}\right\}$ for $j=1,2,3$ and V^{1} and V^{2} are connected by the perfect matching $M=\left\{v_{1}^{1} v_{1}^{2}, v_{2}^{1} v_{2}^{2}, \ldots, v_{n}^{1} v_{n}^{2}\right\}$. We will consider the following problem: does there exist a stable set in H of size $n+1$? We will call this problem the tripartite stable set with perfect matching problem (TSSPMP). In what follows we shall show that both problems TSSPMP and PMFSP are equivalent.

Theorem 2. TSSPMP and PMFSP are polynomially equivalent.

Proof. Some parts of this proof are shortened. For the detailed proof see [3]. Let $G=(U \cup V, E)$ and $H=\left(V^{1} \cup V^{2} \cup V^{3}, F\right)$ be the graphs on which the problems PMFSP and TSSPMS are considered, respectively. We will first show that an instance of TSSPMP can be transformed into an instance of PMFSP. For an edge $v_{i}^{1} v_{i}^{2}$ of the perfect matching where $v_{i}^{1} \in V^{1}$ and $v_{i}^{2} \in V^{2}$, we consider a node u_{i} in U. And for a node v_{i}^{3} of V^{3} we consider a node v_{i} in V. Moreover, if $v_{i}^{1} v_{k}^{3}\left(\right.$ resp. $\left.v_{i}^{2} v_{k}^{3}\right)$ is in F for some $i, k \in\{1, \ldots, n\}$, then we add an edge $u_{i} v_{k}$ in E with label true (resp. false). Fig. 1 illustrates this transformation. Observe that graph $H=\left(V^{1} \cup V^{2} \cup V^{3}, F\right)$ can be obtained from graph $G=(U \cup V, E)$ by doing the reverse operations. Let E_{i}^{t} (resp. E_{i}^{f}) be the set of edges incident to u_{i} labelled true (resp. false), for $i=1, \ldots, n$.
In what follows, we will show that there exists a stable set in H of size $n+1$ if and only if there exists a subgraph $G^{\prime}=\left(U \cup V, E^{\prime}\right)$ of G such that for each node $u_{i} \in U$, either $E_{i}^{t} \subset E^{\prime}$ or $E_{i}^{f} \subset E^{\prime}$, and G^{\prime} is perfect matching free. In fact, suppose first that there exists a subgraph G^{\prime} of G that satisfies the required properties. Since G^{\prime} is perfect matching free, this implies that a maximum cardinality matching in G^{\prime} contains fewer than n edges. As $|U \cup V|=2 n$ by Theorem 1 there exists a stable set in G^{\prime}, say S^{\prime}, of size $\left|S^{\prime}\right| \geq n+1$. Now from S^{\prime}, we are going to construct a stable set in H with the same cardinality. Let S be the node subset of H obtained as follows. For every node $v_{j} \in V \cap S^{\prime}$, add node v_{j}^{3} in S. And for every node $u_{i} \in U \cap S^{\prime}$, add node v_{i}^{1} in S if $E_{i}^{t} \subseteq E^{\prime}$ and node v_{i}^{2} if $E_{i}^{f} \subseteq E^{\prime}$. As $\left|S^{\prime}\right| \geq n+1$, we have $|S| \geq n+1$. Now it is not hard to see that S is a stable set. Moreover from a stable set in H of size greater or equal to $n+1$ one can obtain along the same line a stable set in G with the same cardinality.

Fig. 1. Two equivalent TSSPMP and PMFSP instances.

3. The NP-completeness of PMFSP

In this section we show the NP-completeness of PMFSP. For this we shall show that TSSPMP is NP-complete. By Theorem 2, the result follows. In [7] it is shown that the stable set problem is NP-complete in tripartite graphs. (Recall that the problem is known to be polynomially solvable in bipartite graphs.) What we are going to show in the following is that the more restricted variant TSSPMP is also NP-complete. In other words, the stable set problem in tripartite graphs remains NPcomplete even when the sets of the partition of the graph have the same size and that the set of edges between two of the three sets of the partition correspond exactly to a perfect matching. In order to show the NP-completeness of TSSPMP, we shall use the one-in-three 3SAT problem. An instance of one-in-three 3SAT(1-in-3 3SAT) consists of n literals l_{1}, \ldots, l_{n} and m clauses C_{1}, \ldots, C_{m}. Each clause $C_{j}=\left(x_{j}^{1}, x_{j}^{2}, x_{j}^{3}\right)$ is the disjunction of three variables, where a variable is either a literal or its negation. Furthermore, for every $j \in\{1, \ldots, m\}$ and $k \in\{1,2,3\}, \bar{x}_{j}^{k}$ corresponds to the negation of x_{j}^{k}, that is, if $x_{j}^{k}=l_{i}$ (resp. $x_{j}^{k}=\bar{l}_{i}$) for some $i \in\{1, \ldots, n\}$, then $\bar{x}_{j}^{k}=\bar{l}_{i}\left(\right.$ resp. $\bar{x}_{j}^{k}=l_{i}$). The question is whether or not there exists an assignment of truth values ("true" or "false") to the literals such that each clause has exactly one true variable. This problem has been shown to be NP-complete [1].

Theorem 3. TSSPMP is NP-complete.

Proof. It is clear that TSSPMP is in NP. To prove the theorem, we shall use a reduction from 1-in-3 3SAT. The proof uses ideas from [7]. So suppose we are given an instance of 1-in-3 3SAT with a set of n literals $L=\left\{l_{1}, \ldots, l_{n}\right\}$ and a set of m clauses $C=\left\{C_{1}, \ldots, C_{m}\right\}$. We shall construct an instance of TSSPMP on a graph $H=\left(V^{1} \cup V^{2} \cup V^{3}, F\right)$ where $\left|V^{1}\right|=\left|V^{2}\right|=\left|V^{3}\right|=p=3 n+m-1$ and the set of edges between V^{1} and V^{2} correspond exactly to a perfect matching. We will show that H has a stable set of size $p+1$ if and only if 1-in-3 3SAT admits a truth assignment. The construction will be done in 4 steps. First, with each literal $l_{i} \in L$, we associate the nodes $v_{i}^{1}, \bar{v}_{i}^{1} \in V^{1}, v_{i}^{2}, \bar{v}_{i}^{2} \in V^{2}$ and $v_{i}^{3}, \bar{v}_{i}^{3} \in V^{3}$, along with the edges $v_{i}^{1} \bar{v}_{i}^{2}, \bar{v}_{i}^{2} v_{i}^{3}, v_{i}^{3} \bar{v}_{i}^{1}, \bar{v}_{i}^{1} v_{i}^{2}, v_{i}^{2} \bar{v}_{i}^{3}, \bar{v}_{i}^{3} v_{i}^{1}$ in F. These nodes will be called literal nodes and the edges literal edges. Note that these edges form a cycle of length 6 , which will be denoted by Γ_{i} for $i=1, \ldots, n$. Therefore a stable set of H cannot have more than three nodes from a cycle Γ_{i}. Moreover, if the stable set contains three nodes, these must be either $\left\{v_{i}^{1}, v_{i}^{2}, v_{i}^{3}\right\}$ or $\left\{\bar{v}_{i}^{1}, \bar{v}_{i}^{2}, \bar{v}_{i}^{3}\right\}$. For every $j \in\{1, \ldots, m\}$ and $k \in\{1,2,3\}$, we associate with x_{j}^{k} the node set $\left\{v_{i}^{1}, v_{i}^{2}, v_{i}^{3}\right\}$ (resp. $\left\{\bar{v}_{i}^{1}, \bar{v}_{i}^{2}, \bar{v}_{i}^{3}\right\}$) if $x_{j}^{k}=l_{i}$ (resp. $x_{j}^{k}=\bar{l}_{i}$) for some $i \in\{1, \ldots, m\}$. As a consequence we have that $\left\{\bar{v}_{i}^{1}, \bar{v}_{i}^{2}, \bar{v}_{i}^{3}\right\}$ (resp. $\left\{v_{i}^{1}, v_{i}^{2}, v_{i}^{3}\right\}$) is associated with \bar{x}_{j}^{k} if $x_{j}^{k}=l_{i}$ (resp. $x_{j}^{k}=\bar{l}_{i}$) for some $i \in\{1, \ldots, m\}$.

Next, we add for each clause $C_{j}, j=1, \ldots, m$ the nodes $w_{j}^{1} \in V^{1}, w_{j}^{2} \in V^{2}, w_{j}^{3} \in V^{3}$ along with the edges $w_{j}^{1} w_{j}^{2}, w_{j}^{2} w_{j}^{3}$, $w_{j}^{3} w_{j}^{1}$. These nodes will be called clause nodes, the edges clause edges. Note that these edges form a triangle, which will be denoted by T_{j}, for $j=1, \ldots, m$.

In the next step, for each $C_{j}=\left(x_{j}^{1}, x_{j}^{2}, x_{j}^{3}\right)$, we add edges between w_{j}^{1} (resp. $\left.w_{j}^{2}\right)$ and all the nodes associated with $\bar{x}_{j}^{1}, x_{j}^{2}$ and x_{j}^{3} (resp. $x_{j}^{1}, \bar{x}_{j}^{2}$ and x_{j}^{3}) which belong to V^{3}. Moreover, we add edges between w_{j}^{3} and all the nodes associated with x_{j}^{1}, x_{j}^{2} and \bar{x}_{j}^{3} which belong to V^{1} and V^{2}. All these edges will be called satisfiability edges.

Finally, we add the nodes $z_{q}^{1} \in V^{1}, z_{q}^{2} \in V^{2}, z_{q}^{3} \in V^{3}$ for $q=1, \ldots, n-1$. These nodes will be called fictitious nodes. For each fictitious node in $V^{1} \cup V^{2}$, we add edges to connect this node to the all nodes in V^{3}. And for each fictitious node in V^{3}, we add edges to connect this node to the all non fictitious nodes in $V^{1} \cup V^{2}$. We also add the edges $z_{q}^{1} z_{q}^{2}$ for $q=1, \ldots, n-1$. Observe that $\left|V^{1}\right|=\left|V^{2}\right|=\left|V^{3}\right|=p$. Moreover, the edges between V^{1} and V^{2} form a perfect matching given by the edges $v_{i}^{1} \bar{v}_{i}^{2}, \bar{v}_{i}^{1} v_{i}^{2}, i=1, \ldots, n, w_{j}^{1} w_{j}^{2}, j=1, \ldots, m$, and $z_{q}^{1} z_{q}^{2}, q=1, \ldots, n-1$.

Thus, from an instance of the 1-in-3 3SAT with n literals and m clauses, we obtain a tripartite graph with $9 n+3 m-3$ nodes and $10 n^{2}+4 n m-5 n+14 m+1$ edges. Fig. 2 shows an example of graph H when $L=\left\{l_{1}, l_{2}, l_{3}\right\}$ and $C=$ $\left\{\left(\bar{l}_{1}, l_{2}, \bar{l}_{3}\right),\left(l_{1}, l_{2}, l_{3}\right)\right\}$. For the sake of clarity, only the satisfiability edges are displayed. We have given the following claim without proof. For the proof see [3].
Claim 4. Any stable set in H cannot contain more than $3 n+m$ nodes. Moreover, if a stable set contains $3 n+m$ nodes, then it does not contain any fictitious node.

Fig. 2. A TSSPMP instance resulting from a 1-in-3 3SAT instance.
In what follows we show that there exists in H a stable set of size $3 n+m$ if and only if 1-in-3 3SAT admits a solution. (\Rightarrow) Let S be a stable set in H of size $3 n+m$. By Claim $4, S$ does not contain any fictitious node. Thus, as $|S|=3 n+m$, S intersects each cycle Γ_{i} in exactly three nodes and each triangle T_{j} in exactly one node. Moreover, we have either $S \cap \Gamma_{i}=\left\{v_{i}^{1}, v_{i}^{2}, v_{i}^{3}\right\}$ or $S \cap \Gamma_{i}=\left\{\bar{v}_{i}^{1}, \bar{v}_{i}^{2}, \bar{v}_{i}^{3}\right\}$, for $i=1, \ldots, n$. Consider the solution I for 1-in-3 3SAT defined as follows. If $v_{i}^{k} \in S$ (resp. $\bar{v}_{i}^{k} \in S$), $k=1,2,3$, then associate the true (resp. false) value to the literal l_{i}, for $i=1, \ldots, n$. In what follows we will show that for each clause $C_{j}=\left(x_{j}^{1}, x_{j}^{2}, x_{j}^{3}\right)$, we have exactly one variable with true value. For this it suffices to show that a clause node of T_{j} is in S if and only if the corresponding variable is of true value. Indeed, suppose that $w_{j}^{1} \in S$. We may suppose that $x_{j}^{1}=l_{i}$, the case where $x_{j}^{1}=\bar{l}_{i}$ is similar. By construction of H, as the satisfiability edge $w_{j}^{1} \bar{v}_{i}^{3}$ belongs to F, it follows that $\bar{v}_{i}^{3} \notin S$. By the remark above, this implies that $v_{i}^{1}, v_{i}^{2}, v_{i}^{3}$ belong to S. Therefore literal l_{i} has a true value in solution I. Thus x_{j}^{1} has a true value. It is similar for w_{j}^{2} and w_{j}^{3}. Conversely, if $x_{j}^{1}=l_{i}$, then by definition of I, v_{i}^{1}, $v_{i}^{2}, v_{i}^{3} \in S$. Moreover, the satisfiability edges $w_{j}^{2} v_{i}^{3}, w_{j}^{3} v_{i}^{2}$ belong to F. As $\left|S \cap T_{j}\right|=1$, it follows that $w_{j}^{1} \in S$.

As a consequence, as S contains exactly one clause node from each T_{i}, it follows that each clause has exactly one true variable.
(\Leftarrow) Suppose that there exists a solution I of 1-in-3 3SAT. Let S be the node set obtained as follows. If l_{i} has true value in I, then add $v_{i}^{1}, v_{i}^{2}, v_{i}^{3}$ to S, otherwise add $\bar{v}_{i}^{1}, \bar{v}_{i}^{2}, \bar{v}_{i}^{3}$ to S. For each clause $C_{j}=\left(x_{j}^{1}, x_{j}^{2}, x_{j}^{3}\right), j=1, \ldots, m$, add node w_{j}^{k} to S if x_{j}^{k} has true value, for $k \in\{1,2,3\}$. We have that $|S|=3 n+m$. We now show that S is a stable set. For this, it suffices to show that no clause node in S is adjacent to a literal node. Consider $j \in\{1, \ldots, m\}$ and suppose that x_{j}^{1} has a true value in C_{j}. (The case where $x_{j}^{k}, k \in\{2,3\}$, has a true value is similar.) Node w_{j}^{1} associated with x_{j}^{1}, which is in S, is adjacent to exactly three literal nodes, namely the ones associated with $\bar{x}_{j}^{1}, x_{j}^{2}$ and x_{j}^{3}, in V_{3}. As I is a solution of the 1-in-3 3SAT, and in consequence, these variables have all false values, by construction, the nodes corresponding to these variables do not belong to S. Therefore w_{j}^{1} cannot be adjacent to one of these nodes, and hence the proof is complete.

From Theorems 2 and 3, we deduce the following corollary.
Corollary 5. PMFSP is NP-complete.

4. The minimum blocker perfect matching problem

In this section, we consider a variant of the PMFSP when there are no labels on the edges. This problem can be stated as follows. Given a graph $G=(U \cup V, E)$ with a perfect matching and $|U|=|V|$, find a perfect matching free subgraph with a maximum number of edges and covering the vertices of U. As it will turn out, this problem is nothing but a special case of the so-called minimum blocker problem [8].

Let $G=(U \cup V, E)$ be a bipartite graph with matching number $v(G)$. In [8], Zenklusen et al. define a blocker as a subset of edges $B \subset E$ such that $G^{\prime}=(U \cup V, E \backslash B)$ has a matching number smaller than $v(G)$. They define the minimum blocker problem (MBP) as follows. Given a bipartite graph $G=(U \cup V, E)$ and a positive integer k, does there exist an edge subset B of E with $|B| \leq k$ such that B is a blocker? They prove that MBP is NP-complete. Here, we are interested in a special case of the MBP, hereafter called the minimum blocker perfect matching problem (MBPMP), where G contains a perfect
matching. In what follows, we show that MBPMP is NP-complete. We also prove that it remains NP-complete in the case where $G^{\prime}=(U \cup V, E \backslash B)$ must cover U, which corresponds to the PMFSP with no edge labels.

Theorem 6. MBPMP is NP-complete.

Proof. It is shown in [8] that MBP is NP-complete even in the case where $v(G)=|U|$ (see the proof of Theorem 3.3 in [8]). We consider this subproblem. Moreover, we suppose that $|U|<|V|$ (otherwise MBP would be MBPMP). Let $\operatorname{deg}(U)=\min _{u_{i} \in U}\left\{\operatorname{deg}\left(u_{i}\right)\right\}$. We suppose that $k<\operatorname{deg}(U)$ (in the case where $k \geq \operatorname{deg}(U)$, the $\operatorname{deg}(U)$ edges incident to the vertex with minimum degree in U clearly form a blocker).

Let $\tilde{G}=(\tilde{U} \cup \tilde{V}, \tilde{E})$ be the graph obtained from G where $\tilde{U}=U \cup \bar{U}$ and $\tilde{V}=V \cup \bar{V}$ where \bar{U} and \bar{V} are new vertex subsets such that $|\bar{U}|=\max \{|V|-|U|, k+1\},|\bar{V}|=\max \{k+1-|V|+|U|, 0\}$ and $\tilde{E}=E \cup\{\bar{u} v: \bar{u} \in \bar{U}, v \in \tilde{V}\}$. Note that \bar{U} contains at least $k+1$ nodes, $|\tilde{U}|=|\tilde{V}|$ and $(\bar{U} \cup \tilde{V}, \tilde{E} \backslash E)$ is a complete bipartite graph. Also note that, as $v(G)=|U|, \tilde{G}$ contains a perfect matching.

In what follows we will show that G contains a blocker of cardinality less or equal than k if and only if \tilde{G} so does. For this we first give the following claim.
Claim 7. Let $H=\left(W_{1} \cup W_{2}, F\right)$ be a complete bipartite graph such that $\left|W_{1}\right|=\left|W_{2}\right| \geq k+1$ for some $k \geq 0$. Then H does not contain a blocker of size $\leq k$.

Proof. Suppose that there is a blocker B of size $|B| \leq k$. Then the subgraph $H^{\prime}=\left(W_{1} \cup W_{2}, F \backslash B\right)$ has no perfect matching. From Hall's theorem (see [4]) there exists $i \in\{1,2\}$ and $W \subset W_{i}$ such that $|W|>|\Gamma(W)|$ in H^{\prime} where $\Gamma(W)$ stands for the neighbour set of W. Since H is a complete bipartite graph, we have $|B| \geq|W| \times\left(\left|W_{i}\right|-|\Gamma(W)|\right)$. Now, since for each triplet of nonnegative integers x, y, z with $x \geq y>z$ we have $y(x-z) \geq x$, by considering $x=\left|W_{i}\right|, y=|W|$ and $z=|\Gamma(W)|$, we conclude that $|B| \geq|W| \times\left(\left|W_{i}\right|-|\Gamma(W)|\right) \geq\left|W_{i}\right| \geq k+1$, a contradiction.

Now consider a blocker B of G with $|B| \leq k$, and suppose that B is not a blocker of \tilde{G}. Thus there exists a perfect matching of \tilde{G}, say M, which does not intersect B. Since $|M \cap E|=|U|=v(G)$ and B is a blocker of G, we have a contradiction. Thus B is also a blocker of \tilde{G}.

Conversely, suppose that G has no blocker B with $|B| \leq k$. If \tilde{G} contains a blocker, say \tilde{B} with $|\tilde{B}| \leq k$, then let $\tilde{B}_{1}=\tilde{B} \cap E$. Obviously, $\left|\tilde{B}_{1}\right| \leq k$. We claim that \tilde{B}_{1} is a blocker of G. In fact, if this is not the case, then there must exist a matching M^{\prime} in the graph $\left(U \cup V, E \backslash \tilde{B}_{1}\right)$ with $\left|M_{\tilde{U}}^{\prime}\right|=|U|=v(G)$. Let V^{\prime} be the subset of nodes of V covered by M^{\prime}. Let $H=\left(W_{1} \cup W_{2}, F\right)$ be the biclique with $W_{1}=\bar{U}=\tilde{U} \backslash U$ and $W_{2}=\tilde{V}^{\prime}$ where $\tilde{V}^{\prime}=\tilde{V} \backslash V^{\prime}$. Clearly, $\left|W_{1}\right|=\left|W_{2}\right| \geq k+1$. Let $\tilde{B}_{2}=\tilde{B} \cap F$. As $\left|\tilde{B}_{2}\right| \leq k$, by the claim above, the subgraph $\left(W_{1} \cup W_{2}, F \backslash \tilde{B}_{2}\right)$ contains a perfect matching say $M^{\prime \prime}$. As $M^{\prime} \cup M^{\prime \prime}$ is a perfect matching of $(\tilde{U} \cup \tilde{V}, \tilde{E} \backslash \tilde{B})$, this contradicts the fact that \tilde{B} is a blocker of \tilde{G}, and the proof is complete.

In the proof of Theorem 6 , graph \tilde{G} is constructed in such a way that $\operatorname{deg}(u) \geq k+1$ for all $u \in \tilde{U}$. Therefore, any graph obtained from \tilde{G} by removing the edges of any blocker B with $|B| \leq k$ covers the vertices of \tilde{U}. This implies that the variant of the PMFSP without labels on the edges, considered in this section, is also NP-complete.

5. Concluding remarks

In this note we have shown that PMFSP is NP-complete. This is in connection with the SAP. For this, we have supposed that the conditions related to a DAS are independent. As the problem is NP-complete in this case, it remains NP-complete in the more general case, when several conditions may be involved in an equation of the system, and some dependences exist between the conditions. This general version of the problem has been addressed in $[2,5]$.

Acknowledgements

We would like to thank the referees for their valuable comments. Also we would like to thank Sébastien Furic, Bruno Lacabanne and El Djillali Talbi from LMS-Imagine for stimulating discussions. This work has been supported by the projects ANR-06-TLOG-26-01 PARADE and ANR-09-JCJC-0068 DOPAGE. The financial support is much appreciated.

References

[1] M.R. Garey, D.S. Johnson, Computers and Intractability : A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, New-York, 1979.
[2] M. Lacroix, A.R. Mahjoub, S. Martin, Combinatorial optimization model and mip formulation for the structural analysis of conditional differentialalgebraic systems, Computers \& Industrial Engineering 61 (2011) 422-429.
[3] M. Lacroix, A.R. Mahjoub, S. Martin, C. Picouleau, On the NP-Completeness of the Perfect Matching Free Subgraph Problem, Technical Report No 312, LAMSADE, Université Paris-Dauphine (2011).
[4] L. Lovasz, M.D. Plummer, Matching Theory, North-Holland, 1986.
[5] S. Martin, Analyse structurelle des systèmes algébro-différentiels conditionnels : complexité, modèles et polyèdres, Ph.D. Thesis, Université ParisDauphine, 2011.
[6] K. Murota, Matrices and Matroids for Systems Analysis, Springer-Verlag, 2000.
[7] C. Phillips, T.J. Warnow, The asymmetric median tree: a new model for building consensus trees, Combinatorial Pattern Matching (1996) $234-252$.
[8] R. Zenklusen, B. Ries, C. Picouleau, D. de Werra, M.-C. Costa, C. Bentz, Blockers and transversals, Discrete Mathematics 309 (2009) $4306-4314$.

[^0]: * Corresponding author. Tel.: +33 1402720 27; fax: +33 140272769.

 E-mail addresses: mathieu.lacroix@lipn.univ-paris13.fr (M. Lacroix), mahjoub@lamsade.dauphine.fr (A. Ridha Mahjoub), martin@lamsade.dauphine.fr (S. Martin), christophe.picouleau@cnam.fr (C. Picouleau).
 ${ }^{1}$ Current address: Université Paris 13, LIPN, CNRS UMR 7030, 99 av. J.-B. Clément, 93430 Villetaneuse, France.

