Multiplex networks analysis

Rushed Kanawati

A^3, LIPN, CNRS UMR 7030
SPC - University Paris Nord

http://lipn.fr/~kanawati

rushed.kanawati@lipn.univ-paris13.fr

FRUMAM, Marseilles
4 February 2015

source: muxviz
INTRODUCTION

Multiplex network analysis

Community Detection in Multiplex Networks
 - Adaptation of monoplex community detection algorithms
 - MuxLicod Algorithm
 - Experiments

Link prediction in multiplex networks

Conclusion
Different *interaction* networks with similar topological features: *sparsity, small world, power-law degree distribution, high clustering coefficient, community structure, etc.*
A lot of interesting results using a simple model: interacting nodes
- Node’s characterization: centralities
- Diffusion models on simple networks
- Community detection
- Link prediction models
- …

Network science is mature enough to move towards more complex models
MULTIPLEX NETWORK

Definition
A set of nodes related by different types of relations

Motivation
- Real networks are **dynamic**.
- Real networks are **heterogeneous**.
- Nodes are usually **qualified** by a set of attributes.

Source: muxviz
MULTIPLEX NETWORKS: RELATED TERMS

Recommended readings

POWER OF MULTIPLEX MODEL

Multi-relationnal networks

European airports network
POWER OF MULTIPLEX MODEL

Dynamic networks

Academic collaborations per year
POWER OF MULTIPLEX MODEL

Attributed networks

Teenage friendship network - Behavioral attributes: Sport practice level, Alcohol, Tobacco & Cannabis consumption

Similarity graphs can be defined over nodes using attribute-similarity measures: β-threshold graphs, knn-graphs, Relative neighborhood graphs
Heterogeneous networks

DBLP author-centred multiplex network
Multiplex Network: Notations

\[G = \langle V, E_1, \ldots, E_\alpha : E_k \subseteq V \times V \ \forall k \in \{1, \ldots, \alpha\} \rangle \]

- **\(V \):** set of nodes (a.k.a. vertices, actors, sites)
- **\(E_k \):** set of edges of type \(k \) (a.k.a. ties, links, bonds)

Notations

- **\(A^{[k]} \):** Adjacency Matrix of slice \(k \) : \(a^{[k]}_{ij} \neq 0 \) if the nodes \((v_i, v_j) \in E_k\), 0 otherwise.
- **\(m^{[k]} = |E_k| \).** We have often \(m \sim n \)
- **Neighbor’s of \(v \) in slice \(k \):** \(\Gamma(v)^{[k]} = \{ x \in V : (x, v) \in E_k \} \).
- **All neighbors of \(v \):** \(\Gamma(v)^{tot} = \bigcup_{s \in \{1, \ldots, \alpha\}} \Gamma(v)^{[s]} \)
- **Node degree in slice \(k \):** \(d^k_v = \| \Gamma(v)^{[k]} \| \)
- **Total degree of node \(v \):** \(d^{tot}_v = \| \Gamma^{tot}(v) \| \)
MULTIPLEX NETWORK ANALYSIS

1. Node-related tasks
 Degree, centralities, neighborhood, dyadic metrics

2. Community-related tasks
 Graph partitioning, overlapping communities, local communities

3. Network-related tasks
 Link prediction
Analysis approaches

1. **Transformation into a monoplex centred problem**
 - Layer aggregation approaches.
 - Hypergraph transformation based approaches
 - *Ensemble approaches*

2. **Generalization of monoplex oriented algorithms to multiplex networks.**
Layer Aggregation
Layer Aggregation

Aggregation functions

\[A_{ij} = \begin{cases} 1 & \exists 1 \leq l \leq \alpha : A_{ij}^{[l]} \neq 0 \\ 0 & \text{otherwise} \end{cases} \]

\[A_{ij} = \| \{ d : A_{ij}^{[d]} \neq 0 \} \| \]

\[A_{ij} = \frac{1}{\alpha} \sum_{k=1}^{\alpha} w_k A_{ij}^{[k]} \]

\[A_{ij} = \text{sim}(v_i, v_j) \]
K-uniform hypergraph transformation

Principle

- A k-uniform hypergraph is a hypergraph in which the cardinality of each hyperedge is exactly \(k \).

- Mapping a multiplex to a 3-uniform hypergraph \(\mathcal{H} = (\mathcal{V}, \mathcal{E}) \) such that:

\[
\mathcal{V} = V \cup \{1, \ldots, \alpha\}
\]

\[
(u, v, i) \in \mathcal{E} \text{ if } \exists l : A_{uv}^{[l]} \neq 0, u, v \in V, i \in \{1, \ldots, \alpha\}
\]

- Apply hypergraphs analysis approaches (Ex. tensor-based approaches)
MULTIPLEX: NODE DEGREE

Some options

- \[d_{v}^{\text{mux}} = \frac{1}{\alpha} \sum_{k=1}^{\alpha} d_{v}^{[k]} \]
- \[d_{v}^{\text{mux}} = - \sum_{k=1}^{\alpha} \frac{d_{v}^{[k]}}{d_{v}^{[\text{tot}]} log \left(\frac{d_{v}^{[k]}}{d_{v}^{[\text{tot}]}} \right)} \]
- \[\ldots \]
- \[d_{v}^{\text{mux}} = |\Gamma^{\text{mux}}(v)| \]
Multiplex: Node neighborhood

Some options

- $\Gamma^{mux}(v) = \bigcup_{k=1}^{\alpha} \Gamma^k(v)$
- $\Gamma^{mux}(v) = \bigcap_{k=1}^{\alpha} \Gamma^k(v)$
- $\Gamma^{mux}(v) = \left\{ x \in \Gamma(v)^{tot} : \text{sim}(x, v) \geq \delta \right\} \delta \in [0, 1]$
- $\Gamma^{mux}(v) = \left\{ x \in \Gamma(v)^{tot} : \frac{\Gamma(v)^{tot} \cap \Gamma(x)^{tot}}{\Gamma(v)^{tot} \cup \Gamma(x)^{tot}} \geq \delta \right\}$
- ...
MULTIPLEX: DYADIC MEASURES

Some options

- $X_{average} = \frac{\sum_{\alpha=1}^{m} X(u,v)^{[\alpha]} }{m} \quad \forall u,v \in V$ and $(u,v) \notin E_i.$

- $X_{ent}(u,v) = - \sum_{\alpha=1}^{m} \frac{X(u,v)^{[\alpha]} }{X_{total}} \log(\frac{X(u,v)^{[\alpha]} }{X_{total}})$ where $X_{total} = \sum_{\alpha=1}^{m} X(u,v)^{[\alpha]}.$

- \ldots
COMMUNITY?

Some definitions:

- A dense subgraph loosely coupled to other modules in the network
- A community is a set of nodes seen as one by nodes outside the community
- A subgraph where almost all nodes are linked to other nodes in the community.

What is a dense subgraph in a multiplex network?

BerlingerioCG11
Community detection in multiplex networks

Approaches

1. Transformation into a monoplex community detection problem
 - Layer aggregation approaches.
 - Multi-objective optimization approach.
 - Ensemble clustering approaches

2. Generalization of monoplex oriented algorithms to multiplex networks.
 - Generalized-modularity optimization
 - Seed-centric approaches
MULTI-OBJECTIVE OPTIMIZATION APPROACH

1. Rank the set of α layers according to some importance criteria
2. $C_1 \leftarrow \text{community}(G^{[1]})$
3. for $i \in [2, \alpha]$ do:
 $C_i \leftarrow \text{optimize} (\text{community}(G^{[i]}), \text{similarity}(C_{i-1}))$
4. return C_α
ENSEMBLE CLUSTERING APPROACHES
ENSEMBLE CLUSTERING APPROACHES

- CSPA: Cluster-based Similarity Partitioning Algorithm
- HGPA: HyperGraph-Partitioning Algorithm
- MCLA: Meta-Clustering Algorithm
- ...
ENSEMBLE CLUSTERING: APPROACHES

CSPA: Cluster-based Similarity Partitioning Algorithm

- Let \(K \) be the number of basic models, \(C_i(x) \) be the cluster in model \(i \) to which \(x \) belongs.

- Define a similarity graph on objects: \(\text{sim}(v, u) = \frac{\sum_{i=1}^{K} \delta(C_i(v), C_i(u))}{K} \)

- Cluster the obtained graph:
 - Isolate connected components after pruning edges
 - Apply community detection approach

- Complexity: \(\mathcal{O}(n^2kr) \): \(n \) # objects, \(k \) # of clusters, \(r \)# of clustering solutions
CSPA : Exemple

from Seifi, M. Cœurs stables de communautés dans les graphes de terrain. Thèse de l’université Paris 6, 2012
ENSEMBLE CLUSTERING: APPROACHES

HGPA: HyperGraph-Partitioning Algorithm

- Construct a hypergraph where nodes are objects and hyperedges are clusters.
- Partition the hypergraph by minimizing the number of cut hyperedges.
- Each component forms a meta cluster.
- Complexity: $O(nkr)$
ENSEMBLE CLUSTERING: APPROACHES

MCLA: Meta-Clustering Algorithm
- Each cluster from a base model is an item
- Similarity is defined as the percentage of shared common objects
- Conduct meta-clustering on these clusters
- Assign an object to its most associated meta-cluster
- Complexity: $O(nk^2r^2)$
Generalized modularity

\[
Q_{\text{multiplex}}(P) = \frac{1}{2\mu} \sum_{c \in P} \sum_{i,j \in c} \left(A_{ij}^{[s]} - \lambda_k \frac{d_i^{[k]} d_j^{[k]}}{2m^{[k]}} \right) \delta_{kl} + \delta_{ij} C_{ij}^{kl}
\]

\[
\mu = \sum_{j \in V} m^{[k]} + C_{jk}^l
\]

\[
C_{ij}^{kl} \text{ Inter slice coupling } = 0 \forall i \neq j
\]
MODULARITY OPTIMIZATION LIMITATIONS

Hypothesis

- The best partition of a graph is the one that maximize the modularity.
- If a network has a community structure, then it is possible to find a precise partition with maximal modularity.
- If a network has a community structure, then partitions having high modularity values are structurally similar.

All three hypothesis do not hold Good10, LAN11a.
SEED-CENTRIC ALGORITHMS

Algorithm 1: General seed-centric community detection algorithm

Require: $G = (V, E)$ a connected graph,

1: $C \leftarrow \emptyset$
2: $S \leftarrow \text{compute_seeds}(G)$
3: for $s \in S$ do
4: \hspace{1em} $C_s \leftarrow \text{compute_local_com}(s,G)$
5: \hspace{1em} $C \leftarrow C + C_s$
6: end for
7: return $\text{compute_community}(C)$
THE LICOD ALGORITHM [YK14]

1. Compute a set of seeds that are likely to be leaders in their communities

 Heuristic: nodes having higher degree centralities than their neighbors

2. Each node in the graph ranks seeds in function of its own preference

 In function of increasing Shortest path

3. Iterate till convergence: Each node modifies its preference vector in function of neighbor’s preferences

 Applying rank aggregation methods.
MuxLicod

Multiplex degree centrality

\[
d_i^{\text{multiplex}} = - \sum_{k=1}^{\alpha} \frac{d_i^{[k]}}{d_i^{[\text{tot}]}} \log \left(\frac{d_i^{[k]}}{d_i^{[\text{tot}]}} \right)
\]

Multiplex shortest path

\[
SP(u, v)^{\text{multiplex}} = \frac{\sum_{k=1}^{\alpha} SP(u, v)^{[k]}}{\alpha}
\]

Multiplex neighborhood

\[
\Gamma^{\text{mux}}(v) = \{ x \in \Gamma(v)^{\text{tot}} : \frac{\Gamma(v)^{\text{tot}} \cap \Gamma(x)^{\text{tot}}}{\Gamma(v)^{\text{tot}} \cup \Gamma(x)^{\text{tot}}} \geq \delta \}
\]
DATASETS

benchmark networks
Lazzega Lawyer network
#nodes 71
#layer 3
Datasets

Dataset
Physicians collaboration network
#nodes 246
#layers 3
Dataset

Bibsonomy
#nodes 361
#layers 2
DATASETS

Dataset

Vicker’s network [VC81]

#nodes 29
#layers 3
EVALUATION CRITERIA

1. Multiplex modularity
2. Redundancy [BCG11]

\[\rho(c) = \sum_{(u,v) \in \bar{P}_c} \frac{\| \{k : \exists A_{uv}^{[k]} \neq 0 \} \|}{\alpha \times \| P_c \|} \]

\(\bar{P} \) the set of couple \((u, v)\) which are directly connected in at least two layers
RESULTS: REDUNDANCY
RESULTS: MULTIPLEX MODULARITY
Comparison with GenLouvain

Experiments on DBLP dataset.

Redundancy results

Multiplex modularity results
MULTIPLEX NETWORKS: SUPERVISED DYADIC LINK PREDICTION APPROACH

\[G_{t_0} \quad G_{t_1} \quad G_{t_2} \quad \ldots \ldots \quad G_{t_k} \quad \ldots \ldots \quad G_{t_n} \]

\[t_0 \quad t_1 \quad t_2 \quad \ldots \ldots \quad t_k \quad \ldots \ldots \quad t_n \]

Learning \quad Labeling

Training

Testing

\[G_{learn} = \bigcup_{t=t_0}^{t_{k-2}} G_t \]

\[G_{label} = \bigcup_{t=t_{k-1}}^{t_k} G_t \]
EXPERIMENTS: DBLP

<table>
<thead>
<tr>
<th>Years</th>
<th>Properties</th>
<th>Co-Author</th>
<th>Co-Venue</th>
<th>Co-Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970-1973</td>
<td>Nodes</td>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Edges</td>
<td>116</td>
<td>1256</td>
<td>171</td>
</tr>
<tr>
<td>1972-1975</td>
<td>Nodes</td>
<td>221</td>
<td>221</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Edges</td>
<td>319</td>
<td>5098</td>
<td>706</td>
</tr>
<tr>
<td>1974-1977</td>
<td>Nodes</td>
<td>323</td>
<td>323</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>Edges</td>
<td>451</td>
<td>9831</td>
<td>993</td>
</tr>
</tbody>
</table>

Table: Basic statistics about the 3-layer DBLP multiplex networks

<table>
<thead>
<tr>
<th>Years</th>
<th># Positive</th>
<th># Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train/Test</td>
<td>Labeling</td>
<td>16</td>
</tr>
</tbody>
</table>

Table: # examples extracted from co-authorship layer (number of unconnected nodes in connected components)
Link prediction: Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-measure</td>
<td>AUC</td>
</tr>
<tr>
<td>Set_{direct}</td>
<td>0.0357</td>
<td>0.5263</td>
</tr>
<tr>
<td>$Set_{direct+indirect}$</td>
<td>0.0256</td>
<td>0.5372</td>
</tr>
<tr>
<td>$Set_{direct+multiplex}$</td>
<td>0.0592</td>
<td>0.5374</td>
</tr>
<tr>
<td>Set_{all}</td>
<td>0.0153</td>
<td>0.5361</td>
</tr>
<tr>
<td>$Set_{multiplex}$</td>
<td>0.0374</td>
<td>0.5181</td>
</tr>
</tbody>
</table>

Table: Comparative link prediction results applying decision tree algorithm using different types of attributes
CONCLUSIONS

- **Multiplex networks** provide a rich representation of real-world interaction systems
- **Promising community detection approaches**: Local approaches (seed-centric)
- **A lot of work to reformulate basic network concepts for multiplex settings.**
- **Problems**: Evaluation and interpretation of computed communities: Recommendation-task based evaluation!
- **Ideas to explore:**
 - Multiplex approach for enhancing community detection in monoplex networks
 - Ensemble selection approaches
 - Graph coarsening
 - Multiplex of multiplexes
Research in modeling, analyzing and mining large-scale networks has attracted an increasing effort in the last few years. A major trend of work in network modeling and mining concerns analyzing homogeneous static networks. However, in real world settings, networks are often dynamic, snapshot of a network. Multiplex network analysis.
PERSONAL RELATED BIBLIOGRAPHY

That’s all folks!

Questions?
BIBLIOGRAPHY I

