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Abstract

Series-parallel graphs are known to be precisely the graphs for which the
standard linear systems describing the cut cone, the cycle cone, the T -join
polytope, the cut polytope, the multicut polytope and the T -join dominant
are TDI. We prove that these systems are actually box-TDI. As a byproduct,
our result yields a min-max relation for a new problem: the trader multiflow
problem. The latter generalizes both the maximum multiflow and min-cost
multiflow problems and we show that it is polynomial-time solvable in series-
parallel graphs.
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1. Introduction

Throughout the paper, all the entries will be rational. A linear system
Ax ≥ b, x ≥ 0 is totally dual integral (TDI for short) if the maximum in the
LP-duality equation

min{c>x : Ax ≥ b, x ≥ 0} = max{b>y : A>y ≤ c, y ≥ 0}

has an integer optimal solution for all integer vectors c for which the optimum
is finite. This property is much sought-after since such systems describe
integer polyhedra when b is integer and yield min-max relations [? ]. An even
stronger property than TDIness is box-TDIness, where a box-TDI system is a
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TDI system Ax ≥ b, x ≥ 0 which remains TDI when adding box-constraints
` ≤ x ≤ u, for all rational1 vectors `, u. In other words, it is box-TDI if

max{b>y + `>z1 − u>z2 : A>y + z1 − z2 ≤ c, y ≥ 0, z1, z2 ≥ 0}

has an integer solution for all integer vectors c and all rational vectors `, u
for which the optimum is finite. General properties of such systems can be
found in Cook [? ] and Chapter 22.4 of Schrijver [? ]. Note that, although
every rational polyhedron {x : Ax ≥ b, x ≥ 0} is described by a TDI system
1
k
Ax ≥ 1

k
b, x ≥ 0, for some integer k, not every polyhedron is described by a

box-TDI system.
The book by Schrijver [? ] contains numerous min-max relations of

combinatorial optimization derived from TDI systems. When such systems
are box-TDI, most of the time, the matrix A is totally unimodular. The past
few years, this topic has received a renewed interest [? ? ], and other box-
TDI systems have been studied [? ? ? ], with matrices that are not totally
unimodular. A 0-1 matrix A so that the linear system Ax ≥ 1, x ≥ 0 is (box-
) TDI is called (box-) Mengerian. In 1977, Seymour [? ] proved that a 0-1
matrix associated with a binary clutter is Mengerian if and only if it does not
contain Q6 as a minor. In 2008, Chen, Ding and Zang [? ] proved that such
matrices are box-Mengerian if and only if they contain neither Q6 nor Q7 as
a minor. Recently, Ding, Tan and Zang [? ] announced a characterization
of the graphs for which a box-TDI system describes the matching polytope.

In 2009, Chen, Ding and Zang [? ] proved that a graph is series-parallel
if and only if the system 1

2
Ax ≥ 1, x ≥ 0 describing the 2-edge-connected

spanning subgraph polytope is box-TDI, where A is the cut-edge incidence
matrix of the graph. Another set of characterizations of series-parallel graphs
given by Schrijver asserts that they are precisely the graphs for which the
standard linear systems describing the cut cone, the cycle cone [? ], the cut
polytope [? ], the T -join polytope [? ] and the T -join dominant [? ] are
TDI — see Corollary 29.9c of [? ]. Moreover, it is proved in [? ] that a
graph is series-parallel if and only if the standard linear system describing
its multicut polytope is TDI.

Multiflows are among the most famous NP-hard problems in combina-
torial optimization and have been considerably studied, see for instance [?
]. We focus on integer multiflows in the present paper. Multiflow problems

1allowed to take infinite values
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involve two simple undirected graphs, a supply graph G = (V,E) and a de-
mand graph H = (V,R), and two vectors, a capacity vector c ∈ ZE

+ and a
demand vector d ∈ ZR

+. An edge e ∈ E is a link of capacity ce whereas an
edge r ∈ R is a net of demand dr. From now on, (G,H, c, d) will refer to such
a quadruplet. For a net r = st, let P(r) be the set of all st-paths in G, and
let P be the union of P(r) for all nets r. A multiflow of (G,H, c, d) is an
integer vector y ∈ ZP satisfying the following system of linear inequalities:

(mflow)


∑

P∈P(r)

yP ≥ dr for each net r ∈ R,∑
P∈P: e∈P

yP ≤ ce for each link e ∈ E,

y ≥ 0.

Two famous NP-hard problems are related to multiflows. Given G, H and c,
the maximum multiflow problem asks for a demand vector d such that there
exists a multiflow for (G,H, c, d) and

∑
r∈R dr is maximum.

Given (G,H, c, d) and some cost vector w ∈ ZE
+ on the links, the min-cost

multiflow problem asks for a multiflow minimizing the sum of weye over all
links e ∈ E, where ye :=

∑
P∈P: e∈P yP is the amount of flow through link e.

A necessary condition for the existence of a multiflow in (G,H, c, d) is
the cut condition which requires that d(D ∩ R) ≤ c(D ∩ E) for all cuts D
of G+H, the latter being G+H = (V,E∪R) where E and R are considered
as disjoint, that is, G+H may contain parallel edges. Seymour [? ] proved
that a graph (V, F ) is series-parallel if and only if for all partitions F into E
and R, and for all c ∈ ZE

+ and d ∈ ZR
+, the cut condition implies the existence

of a multiflow.

Contribution. In this paper, we investigate some box-TDI systems related
to multiflows. Our main result is to strengthen the TDI characterizations of
series-parallel graphs mentioned earlier by proving that the standard linear
systems describing the cut cone, the cycle cone, the T -join polytope, the
cut polytope, the multicut polytope, and the T -join dominant are actually
box-TDI systems for series-parallel graphs — see Theorem ??.

From the box-TDIness of the cut cone, we derive a min-max relation for
series-parallel graphs that involves a new multiflow problem generalizing both
the maximum multiflow and min-cost multiflow problems. Given (G,H, c, d),
a profit ` ∈ ZR

+ and a cost u ∈ ZE
+, the trader multiflow problem asks to

maximize `>z1 − u>z2 over all (y, z1, z2) ∈ ZP+ × ZR
+ × ZE

+ such that y is a

multiflow of (G,H, c̃, d̃) with c̃ = c + z2 and d̃ = d + z1. Therefore, in this
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new multiflow problem, we gain `r for each additional unit of demand on net
r ∈ R that we are able to satisfy, we pay ue to add a unit of capacity on link
e ∈ E, and the goal is to maximize the total benefit. The min-max relation
we derive connects the trader multiflow problem and box-multicuts, where
box-multicuts are a generalization of multicuts. We also show that the trader
multiflow problem is polynomial time solvable in series-parallel graphs.

Outline. In Section ??, we establish our characterization of series-parallel
graphs in terms of box-TDI systems. Section ?? is devoted to the trader
multiflow problem. We first show how it generalizes both the maximum
multiflow and min-cost multiflow problems. Then, we provide our min-max
relation for the trader multiflow problem in series-parallel graphs and explain
why this problem is polynomial in these graphs. For the sake of clarity, the
most technical part of the proof of Theorem ?? is postponed to the Appendix.
The rest of this section is devoted to definitions.

Definitions. Throughout, G = (V,E) will denote an undirected graph and
T ⊆ V a set of vertices of even cardinality. A graph is series-parallel if it is
obtained from a forest by repeating the operations of replacing one edge by
two edges in parallel, or by two edges in series. Equivalently, these are the
graphs without K4 minor [? ]. Then, a series-parallel graph is planar and its
planar dual is also series-parallel. Following [? ], a cycle is a subset C ⊆ E
so that every vertex of (V,C) has an even degree. A minimal nonempty
cycle is a circuit. The cut defined by a subset of vertices U , denoted by
δ(U), is the set of edges having one extremity in U and the other one in
V \U . A minimal nonempty cut is a bond. Note that cycles (resp. cuts) are
disjoint unions of circuits (resp. bonds). A multicut is the set of all the edges
between different classes of some partition of the vertex set. A T -join is a
subset of edges F such that the odd degree vertices of (V, F ) are the ones in
T . Note that a cycle is an ∅-join. A T -cut is a cut δ(U) with |U ∩ T | odd.
For x ∈ RE and F ⊆ E, we use the notation x(F ) =

∑
e∈F xe. We will make

no difference between combinatorial objects and their characteristic vectors,
that is, for instance, we will speak of nonnegative combinations of cycles
instead of nonnegative combinations of characteristic vectors of cycles.

2. Box-TDI systems of series-parallel graphs

In this section, we first provide the systems involved in our main theorem.
Then, we state and prove Theorem ??, which establishes that the standard
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linear systems describing the cut cone, the cycle cone, the T -join polytope,
the cut polytope, the multicut polytope and the T -join dominant are box-
TDI if and only if the graph is series-parallel. These systems were already
known to be TDI [? ? ].

2.1. TDI systems of series-parallel graphs...

Let us write now the systems involved in Theorem ??. Let G = (V,E)
be an undirected graph and T ⊆ V a set of vertices of even cardinality.

Seymour [? ] proved that the cycle cone of G, that is, the set of non-
negative combinations of cycles of G, is described by the following set of
inequalities.

(Cycle cone)

{
x(δ(U) \ {e})− xe ≥ 0 for each U ⊆ V and each e ∈ δ(U),

x ≥ 0.

The T -join polytope of G is the convex hull of its T -joins. Seymour [? ]
proved that it is described by the following set of inequalities.

(T -join)

 x(F )− x(δ(U) \ F ) ≤ |F | − 1
for each U ⊆ V , F ⊆ δ(U)
with |U ∩ T |+ |F | odd,

0 ≤ x ≤ 1.

The T -join dominant of G is the set of vectors greater than or equal to some
T -join of G. This dominant is described by the following set of inequalities,
see Corollary 29.2b in [? ].

(T -join dominant)

{
x(C) ≥ 1 for each T -cut C,
x ≥ 0.

Sebő [? ] provided a minimal TDI system describing the T -join dominant
of G.

Let us assume that G is planar and let G∗ denote its dual graph. Recall
that the cycles of G are the cuts of G∗. Hence,

(Cut cone)

{
x(C \ {e})− xe ≥ 0 for each circuit C and each edge e ∈ C,
x ≥ 0,

describes the cut cone of G, that is, the set of nonnegative combinations of
cuts of G. Moreover, by taking T = ∅ in system (T -join), and then writing
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the planar dual, we have the following description of the cut polytope of G,
that is, the convex hull of its cuts.

(Cut)

 x(F )− x(C \ F ) ≤ |F | − 1
for each circuit C and F ⊆ C
with |F | odd,

0 ≤ x ≤ 1.

Actually, the systems (Cut cone) and (Cut) describe the cut cone and the
cut polytope for a larger class than planar graphs, namely graphs with no
K5-minor — see [? ] and [? ], respectively.

Schrijver showed that the systems (Cycle cone), (T -join) and (T -join dom-
inant) are TDI if and only if the graph is series-parallel — see Corollary 29.9c
of [? ]. A graph being series-parallel if and only if its dual is, this result,
combined with the fact that cycles are ∅-joins, implies that (Cut cone) and
(Cut) are TDI if and only if the graph is series-parallel.

Multicuts can be equivalently defined as arbitrary unions of cuts, or as sets
of edges D ⊆ E such that |D∩C| 6= 1 for all cycles C. The multicut polytope
of a graph is the convex hull of its multicuts, and is therefore contained in the
polyhedron defined by the inequalities of (Cut cone) and x ≤ 1. Chopra [? ]
showed that the following system, called (Multicut), describes the multicut
polytope of a graph if and only if the graph is series-parallel.

(Multicut)

{
x(C \ {e})− xe ≥ 0 for each circuit C and each edge e ∈ C,
0 ≤ x ≤ 1.

Corollary 4.1 of [? ] strengthens the result of Chopra [? ] by stating that
system (Multicut) is TDI if and only if the graph is series-parallel.

2.2. ... are actually box-TDI

We now strengthen the aforementioned TDIness results. More precisely,
we show that each system mentioned in Section ?? which is TDI for series-
parallel graphs is actually box-TDI for these graphs. Our theorem implies
Corollary 4.1 of [? ] and Corollary 29.9c of [? ].

Theorem 1. Let G = (V,E) be a graph. The following statements are
equivalent.

(i) G is series-parallel.
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(ii) System (Cut cone) is box-TDI.

(iii) System (Cycle cone) is box-TDI.

(iv) System (T -join) is box-TDI, for all T ⊆ V of even cardinality.

(v) System (Cut) is box-TDI.

(vi) System (Multicut) is box-TDI.

(vii) System (T -join dominant) is box-TDI, for all T ⊆ V of even cardinal-
ity.

Proof. Proof. Series-parallelness is already necessary for the systems of (ii)-
(vii) to be TDI — see [? ] for (vi) and Corollary 29.9c of [? ] for the others.
A box-TDI system being TDI, the necessity of (i) follows. For the other
directions, we will show that (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v) and (ii)⇒ (vi)
and (iv)⇒ (vii).

(i)⇒ (ii): Let G = (V,E) be series-parallel, c ∈ ZE and `, u ∈ QE with ` ≤
u. The primal problem is to optimize over the system (Cut cone) intersected
with the box {x : ` ≤ x ≤ u}. Since we have x ≥ 0, we may suppose that
` ≥ 0 and we get:

(P )


min c>x

x(C \ {e})− xe ≥ 0 for each circuit C of G and each edge e ∈ C,
0 ≤ ` ≤ x ≤ u.

To prove box-TDIness, one has to show that if the dual given below has an
optimal solution, then it also has an integer one.

(D)


max `>z1 − u>z2∑
circuitC3e

( ∑
f∈C\{e}

yC,f − yC,e

)
≤ ce − z1

e + z2
e for each e ∈ E,

y ≥ 0, z1, z2 ≥ 0.

The feasible set for (D) has the form Q = {z1, z2 ≥ 0, y ≥ 0 : z1 −
z2 + Ay ≤ c}, and its projection onto the space of z = (z1, z2) ∈ RE×E is
projz(Q) = {z1, z2 ≥ 0 : v>z1 − v>z2 ≤ v>c, for each v ∈ K} where K is
the projection cone K = {v ∈ RE : v>A ≥ 0>, v ≥ 0}. Observe that K is
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the set of v ∈ RE satisfying the inequalities of the system (Cut cone). Since
G is series-parallel, K is the cut cone of G [? ]. Therefore

projz(Q) = {(z1, z2) ∈ RE×E
+ : z1(D)−z2(D) ≤ c(D), for each cut D of G}.

The following claim states that projz(Q) is an integer polyhedron. It is a
direct corollary of a technical result whose statement and proof are postponed
to the Appendix.

Claim 2. projz(Q) is integer whenever c is integer.

Suppose D has an optimal solution. By Claim ??, there exists an integer
optimal solution (z̄1, z̄2) of max `>z1−u>z2 over projz(Q). We now build an
optimal solution (ȳ, z̄1, z̄2) of (D) as follows.

Let b := c − z̄1 + z̄2. Then b is integer and satisfies b(D) ≥ 0 for each
cut D of G. Define R as the set of all e ∈ E with be ≤ 0 and E ′ = E \ R.
Let G′ = (V,E ′) and H = (V,R). Let c′ ∈ ZE′

+ and d ∈ ZR
+ be defined by

c′e = ce for all e ∈ E ′ and dr = −cr for all r ∈ R. Then d(D∩R) ≤ c′(D∩E ′)
for each cut D of G′ + H. In other words, the cut condition is satisfied in
(G′, H, c′, d). Hence, G′ + H = G being series-parallel, Theorem 8.1 of [? ]
implies that there exists a multiflow ŷ of (G′, H, c′, d). Define ȳ as follows:

ȳC,e :=

{
ŷP if be ≤ 0 and P = C \ {e},
0 otherwise.

By construction, (ȳ, x̄1, x̄2) is an integer optimal solution of (D), and we are
done.

(ii)⇒ (iii): The system (Cycle cone) of a series-parallel graph is the system
(Cut cone) of its planar dual which is also a series-parallel graph. As the latter
system is box-TDI precisely for such graphs, we get the desired implication.

(iii) ⇒ (iv): In the following, Ax ≤ b is a system whose underlying poly-
hedron P = {x : Ax ≤ b} is pointed. The vertex system associated with a
vertex z of {x : Ax ≤ b} is the system Azx ≤ bz composed of the inequalities
of Ax ≤ b satisfied with equality by z.

Claim 3. The system Ax ≤ b is box-TDI if and only if the vertex system
associated with each vertex of P = {x : Ax ≤ b} is box-TDI.

Proof. Cook proves that a system is box-TDI if and only if, for each face F
of the associated polyhedron, the set of active rows for F forms a box Hilbert
basis [? , Proposition 2.2].
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Suppose that all the vertex systems of P are box-TDI. Let F be a proper
face of P and z be a vertex of F . Then, the active rows in Azx ≤ bz for
the minimal face of {x : Azx ≤ bz} containing F are exactly the same as
those in Ax ≤ b for F . Hence, by [? , Proposition 2.2], the set of active
rows for F forms a box Hilbert basis. Since this holds for every face of P ,
[? , Proposition 2.2] implies that Ax ≤ b is box-TDI. The converse can be
proved in a similar way.

Let T ⊆ V . Recall that vertices of the polytope defined by the system
(T -join) correspond to T -joins of G, and conversely. Let J be any T -join
of G. By Claim ??, it suffices to show that the vertex system of (T -join)
associated with vertex J is box-TDI. Let φJ : RE → RE be defined by

[φJ(x)]e :=

{
1− xe if e ∈ J ,
xe if e ∈ E \ J .

The next two claims exhibit properties of φJ .

Claim 4. The system obtained from (Cycle cone) by replacing x by φJ(x) is
the vertex system of (T -join) associated with J .

Proof. Schrijver proves that replacing x by φJ(x) in the vertex system of
(T -join) associated with J gives the system (Cycle cone) — see (29.61) to
(29.63) page 506 in [? ] for the details. As φJ(φJ(x)) = x, the assertion
follows.

Claim 5. Replacing x by φJ(x) preserves box-TDIness.

Proof. From the definition of box-TDI systems, it follows that replacing some
coordinates by their opposite preserves box-TDIness. So does translation, see
Theorem 5.34 in [? ].

The (Cycle cone) being box-TDI by (iii), Claims ?? and ?? imply the
box-TDIness of the vertex system of (T -join) associated with J . Since this
holds for any T -join J of G, Claim ?? gives the box-TDIness of (T -join).

(iv) ⇒ (v): We have already shown that (T -join) is box-TDI if and only if
the graph is series-parallel. Recall that the cuts of a planar graph are the
cycles of its planar dual, and that cycles are ∅-joins. Therefore, (Cut) is
nothing but the system (∅-join) for the planar dual of the graph, and since
planar duality preserves series-parallelness, we get that (iv) implies (v).
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(ii) ⇒ (vi): This is immediate because (Multicut) is nothing but the box-
TDI system (Cut cone) together with the box-constraints x ≤ 1.

(iv)⇒ (vi): The system describing the T -join polytope being box-TDI, the
TDI system (T -join dominant) describing its dominant is also box-TDI —
by Theorem 22.11 of [? ].

Box-TDI systems have the remarkable property that any TDI system
describing the same polyhedron is also box-TDI [? ]. This gives the following
consequence of Theorem ??. The minimal TDI system describing the T -join
dominant given by Sebő [? ] becomes box-TDI when the graph is series-
parallel.

3. Trader multiflow vs box-multicut

In this section, we first explain how the trader multiflow problem genera-
lizes both the min-cost multiflow and maximum multiflow problems. We then
provide a min-max relation involving the trader multiflow problem and the
so-called box-multicuts. Finally, we briefly explain why the trader multiflow
problem is polynomial in series-parallel graphs.

3.1. Related multiflow problems

Recall that an instance (G,H, c, d, `, u) of the trader multiflow problem
is composed of two simple undirected graphs G = (V,E) and H = (V,R), a
capacity c ∈ ZE

+, a demand d ∈ ZR
+, a profit ` ∈ ZR

+ and a cost u ∈ ZE
+. The

trader multiflow problem aims at maximizing `>z1−u>z2 over all (y, z1, z2) ∈
ZP+ × ZR

+ × ZE
+ such that y is a multiflow of (G,H, c̃, d̃) with c̃ = c + z2 and

d̃ = d+ z1.
This problem contains the maximum multiflow problem as a special case.

Let (G,H, c, d, `, u) be an instance of the trader multiflow problem with d =
0, ` = 1 and u = +∞. In any optimal solution (ȳ, z̄1, z̄2), since u = +∞,
we have z̄2 = 0, that is, capacities remain unchanged. Since d = 0 and
` = 1, the problem reduces to find z̄1 such that

∑
r∈R z̄

1
r is maximum and

there exists a multiflow in (G,H, c, z̄1). This is nothing but the maximum
multiflow problem associated with (G,H, c).

The trader multiflow problem also contains the min-cost multiflow prob-
lem as a special case. Let (G,H, c, d, w) be an instance of the min-cost
multiflow problem. It is transformed into an instance (G′, H ′, c′, d′, `′, u′) of
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the trader multiflow problem as follows. Let G′ = (V ′, E ′) be the graph
obtained from G by subviding every link e ∈ E into two links e1, e2 in series.
Then, the amount of flow passing by e1 equals the amount of flow passing
by e2. Let c′e1 = ce and u′e1 = +∞. The capacity and cost of e1 is chosen in
order to limit the value of the flow passing by e1, e2 to ce. Let c′e2 = 0 and
u′e2 = we. The role of e2 is to charge a fee we for each unit of flow passing by
e1, e2. Let H ′ = (V ′, R), d′ = d and `′ = 0. In an optimal solution (ȳ, z̄1, z̄2)
of the trader multiflow problem, we may suppose without loss of generality
that z̄1 = 0 since `′ = 0. Since u′e1 = +∞, the amount of flow passing by
e1, e2 is no more than c′e1 = ce. Since c′e2 = 0, for each unit of flow passing by
e1, e2, one has to increase the capacity of e2 by one at cost u′e2 = we. Hence,
ȳ defines a multiflow in (G,H, c, d) minimizing the total cost of the flow.

3.2. Min-max theorem

Given a graph and integer vectors ` and u indexed on its edges, the
integer vectors x satisfying system (Cut cone) and ` ≤ x ≤ u are called
box-multicuts within [`, u]. If we are also given a cost vector c defined on
the edges, the minimum box-multicut problem seeks a box-multicut x within
[`, u] of minimum cost c>x.

Box-multicuts are a generalization of multicuts, these latter being box-
multicuts within [0,1]. Box-multicuts also generalize separating multicuts,
where, given a supply graph G and a demand graph H = (V,R), a separating
multicut is a multicut of G + H containing R. Indeed, separating multicuts
are box-multicuts of G+H within [`,1] where ` equals 1 for every net of R
and 0 otherwise.

The min-max relation between the trader multiflow and minimum box-
multicut problems given in the following Corollary ?? is a consequence of
Theorem ??. Its statement uses the following notation: given a supply graph
G = (V,E) and a demand graph H = (V,R) and two vectors v1 ∈ ZE

+ and
v2 ∈ ZR

+, the vector associated with the edges of G+H defined by v1 and v2

is denoted by (v1, v2).

Corollary 6. The maximum trader multiflow of (G,H, c, d, `, u) equals the
minimum box-multicut of G+H within [(0, `), (u,+∞)] with respect to costs
(c,−d), if G+H is series-parallel.

Proof. First, set ĉ = (c,−d), ˆ̀= (0, `) and û = (u,+∞). Consider the linear
program (P ) of the proof of Theorem ?? where G, c, ` and u are replaced by
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G+H, ĉ, ˆ̀ and û, respectively. Since ˆ̀
e = 0, we may suppose, without loss

of generality, that z̄1
e = 0 for all links e ∈ E in an optimal solution (ȳ, z̄1, z̄2)

of the dual (D). Moreover, as ur = +∞, z̄2
r = 0 for all nets r ∈ R. The dual

can then be written as:

(D′)



max
∑

r∈R `rz
1
r −

∑
e∈E uez

2
e∑

circuitC3r

(
yC,r −

∑
f∈C\{r}

yC,f

)
≥ dr + z1

r for each r ∈ R,∑
circuitC3e

( ∑
f∈C\{e}

yC,f − yC,e

)
≤ ce + z2

e for each e ∈ E,

y ≥ 0, z1, z2 ≥ 0.

By strong duality, the optimal values of (P ) and (D′) are equal, when
finite. In this case, we will show that there exists an integer optimal solution
for both problems.

We may suppose that ȳC,f = 0 if f ∈ E. Otherwise, one may decrease
ȳC,f by some ε > 0. If the solution becomes infeasible, then there exists a
circuit C ′ 3 f and f ′ ∈ C \ f with ȳC′,f ′ ≥ ε since c ≥ 0. Decreasing ȳC′,f ′

by ε and increasing ȳC′′,f ′ by ε where C ′′ is the circuit of C∆C ′ containing
f restores its feasibility. Similarly, we may suppose that ȳC,f = 0 if C \ f
intersects R. Thus, for every ȳC,f > 0, f ∈ R and C \ f ∈ P(r). Since
G+H is series-parallel, system (Cut cone) is box-TDI and (ȳ, z̄1, z̄2) may be
assumed integer. The latter then corresponds to an optimal solution to the
trader multiflow problem. Finally, since ˆ̀and û are integer, the box-TDIness
of system (Cut cone) implies that the optimal solution of (P ) is integer, that
is, a box-multicut of G+H within [ˆ̀, û].

Min-max relations involving min-cost multiflow and maximum multiflow
stem from Corollary ?? since the transformations described in Section ??
preserve series-parallelness. In particular, Corollary ?? implies that the two
following min-max relations of [? ] that hold if G+H is series-parallel:

• the maximum multiflow equals the minimum separating multicut,

• the minimum multiflow loss equals the maximum multicut,

where the minimum multiflow loss problem asks to remove a minimum num-
ber of demands of H to ensure the existence of a multiflow in G+H.

12



Applying the arguments used in the proof of (i)⇒ (ii) of Theorem ??, it
can be shown that optimizing over (D′) amounts to optimize over an integer
polyhedron similar to projz(Q). For series-parallel graphs, optimizing over
such a polyhedron is polynomial-time solvable [? ? ]. It yields an increase of
capacities and demands which maximizes the objective function and ensures
that the cut condition is satisfied. Then, applying Theorem 8.1 of [? ]
provides an optimal solution to the trader multiflow problem. To sum up,
we have the following complexity result.

Corollary 7. If G+H is series-parallel, then the maximum trader multiflow
problem on (G,H, c, d, `, u) is polynomial-time solvable for all vectors ` and
u and for all integer vectors c and d.

As seen in Corollary ??, our approach yields a polynomial algorithm,
however it relies on the ellipsoid method. We conclude with the question: is
there a combinatorial algorithm that solves the trader multiflow problem in
series-parallel graphs?

Appendix A.

The proof of Theorem ?? is based on Claim ?? which is a direct conse-
quence of the following result.

Lemma 8. Let G = (V,E) be a graph. The polyhedron P (G, c) defined by

P (G, c) := {(x, y) ∈ RE×E
+ : x(D)− y(D) ≤ c(D), for each cut D of G}

is integer for all integer weights c ∈ ZE if and only if G is series-parallel.

Proof. Necessity. First, note that P (Ĝ, ĉ) has a fractional extreme point if Ĝ
is the complete graph K4 with cost ĉe = −1 on the three edges of a triangle
and ĉe = +1 on the remaining star. Indeed, the point p̂ = (x̂, ŷ) defined
by ŷe = 1/2 for the edges of the triangle and zero elsewhere is the unique
optimal solution of maximizing ˆ̀>x− û>y over P (Ĝ, ĉ), where ˆ̀ is zero and û
is the all-one vector. Now, let Ḡ be a graph which is not series-parallel, then,
by [? ], it has a K4-minor, that is we can remove and contract some edges of
Ḡ to obtain K4. Let us extend (ĉ, ˆ̀, û) to (c̄, ¯̀, ū) by defining ¯̀

e = −∞ and
ūe = +∞ for the new edges e, with c̄e = +∞ if e must be contracted, and
c̄e = 0 if it must be deleted. Clearly, the point p̄ obtained by extending p̂
with zero components is the unique optimal solution of maximizing ¯̀>x−ū>y
over P (Ḡ, c̄).

13



Sufficiency. By contradiction, let (G, c) be a counter-example with a mini-
mum number of edges. Throughout, p̄ = (x̄, ȳ) will denote some fractional
extreme point of P (G, c) and

b̄ := c− x̄+ ȳ.

Note that b̄(D) ≥ 0, for each cut D.

First, note that G has no loops or bridges. Indeed, a loop belongs to
no cut, and a bridge e appears exactly in three nonredundant constraints,
namely xe ≥ 0, ye ≥ 0 and ye − xe ≥ ce, two of which are satisfied with
equality by any extreme point.

Moreover, P (G, c) is full-dimensional. To see this, observe that the point
p = (x, y) ∈ RE×E defined by xe = 1 and ye = +∞ for all e ∈ E belongs
to P (G, c). Moreover, for each edge e ∈ E, the point pxe (resp. pye) obtained
from p by resetting xe to zero (resp. ye to zero) also belongs to P (G, c) since
each cut has size at least two. The 2|E| + 1 points p, pxe , pye , for e ∈ E, are
affinely independent, hence the dimension of P (G, c) is 2|E|.

In consequence, the point p̄ is the solution of a system of 2|E| equations
of the following type, where the left-hand-side forms a full-rank matrix.

x̄e = 0 for some edges e, (A.1)

ȳe = 0 for some edges e, (A.2)

x̄(D)− ȳ(D) = c(D) for some bonds D 6= ∅. (A.3)

Suppose G has two parallel edges ē and f̄ . Then, replacing (x̄ē, ȳē) by
(x̄ē, ȳē) + (x̄f̄ , ȳf̄ ) and (x̄f̄ , ȳf̄ ) by (0, 0) yields a feasible point (x̃, ỹ) because
ē and f̄ belongs to the same cuts. This point (x̃, ỹ) satisfies all the equations
(??)-(??) except possibly the equations (??) and (??) associated with ē. But
these two equations are not satisfied only if x̄f̄ > 0 or ȳf̄ > 0 respectively.
This implies that (x̃, ỹ) satisfies 2|E| equations among (??)-(??), x̄f̄ = 0, and
ȳf̄ = 0. Hence, it is also an extreme point of P (G, c). Therefore resetting
cē := cē + cf̄ and removing f̄ gives a counter-example with a smaller number
of edges, a contradiction. We have just proved the following.

G has no parallel edges. (A.4)

Note that, if both x̄e > 0 and ȳe > 0 for some edge e, then one could reset
x̄e := x̄e − ε and ȳe := ȳe − ε (for some ε > 0) and still satisfy (??)-(??),
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contradicting the extremality of p̄. Thus,

for all e, either x̄e = 0 or ȳe = 0. (A.5)

We can choose c so as to minimize the norm of p̄ (e.g. Euclidean). Con-
sequently, nonzero coordinates of p̄ are fractional. Indeed, we have

0 ≤ p̄ < 1, (A.6)

as otherwise, if x̄e ≥ 1 (resp. ȳe ≥ 1) for some edge e, then (??)-(??) would
still be satisfied after resetting x̄e := x̄e−1 and ce := ce−1 (resp. ȳe := ȳe−1
and ce := ce + 1).

By (??) and by construction of series-parallel graphs, there are two edges
ē and f̄ in series. We may assume w.l.o.g. that b̄ē ≤ b̄f̄ . Since D̄ = {ē, f̄} is a

cut, we have b̄f̄ ≥ −b̄ē. Denote by p̂ = (x̂, ŷ) ∈ RE\{f̄}×E\{f̄} the restriction of

p̄ to E\{f̄}×E\{f̄}, and let Ĝ be the graph obtained from G by contracting
f̄ , and ĉ the restriction of c to E \ {f̄}. Clearly, p̂ belongs to P (Ĝ, ĉ), and
the latter is full-dimensional since neither loops nor bridges appeared in Ĝ.

Moreover, since c is integer and p̄ fractional, (??) and (??) imply that at
least two edges have a fractional x̄ or ȳ coordinate. Therefore p̂ is fractional,
and hence, by minimality of |E|, p̂ is not an extreme point of P (Ĝ, ĉ).

Remark that in fact we have:

b̄f̄ = |b̄ē| (A.7)

If it is not true, then p̄ does not saturate the constraint associated to D̄,
and moreover b̄f̄ > b̄ē. Hence, except maybe for x̄f̄ = 0 or ȳf̄ = 0, the edge
f̄ appears in no equation among (??)-(??). Then p̂ is an extreme point, a
contradiction.

By the integrality of c, a direct consequence of (??)-(??) is that:

Exactly one of x̄ē, ȳē is fractional ⇐⇒ exactly one of x̄f̄ , ȳf̄ is fractional.(A.8)

Since p̂ is not extreme, there is a (nonzero) direction d̂ = (d̂x, d̂y) ∈
RE\{f̄}×E\{f̄} and an ε > 0 such that

p̂ =
1

2
(p̂+ ε · d̂) +

1

2
(p̂− ε · d̂)
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where both p̂ + ε · d̂ and p̂ − ε · d̂ belong to P (Ĝ, ĉ). Extend the direction
d̂ = (d̂x, d̂y) ∈ RE\{f̄}×E\{f̄} to a direction d̄ = (d̄x, d̄y) ∈ RE×E by arbitrarily
defining the two missing components d̄x

f̄
and d̄y

f̄
. So

p̄ =
1

2
(p̄+ ε · d̄) +

1

2
(p̄− ε · d̄) ∀ε > 0

where the points p̄+ = p̄ + ε · d̄ and p̄− = p̄ − ε · d̄ are different. Since p̄ is
extreme, we can assume that p̄+ = (x̄+, ȳ+) /∈ P (G, c). Clearly, we have

x̄ē = 0 (resp. ȳē = 0) implies d̄xē = 0 (resp. d̄yē = 0). (A.9)

Define b̄+ := c− x̄+ + ȳ+. By (??), there are two cases.

Case 1: b̄ē = b̄f̄ ≥ 0.
Define

d̄xf̄ =

{
d̄xē − d̄

y
ē if x̄f̄ > 0

0 otherwise
and d̄y

f̄
=

{
d̄yē − d̄xē if ȳf̄ > 0

0 otherwise.

By definition of d̄, and by (??)-(??), we have

b̄+
ē − b̄ē = (ȳ+

ē − ȳē)− (x̄+
ē − x̄ē) = ε(d̄yē − d̄xē) = (ȳ+

f̄
− ȳf̄ )− (x̄+

f̄
− x̄f̄ ) = b̄+

f̄
− b̄f̄ .

Therefore, b̄+
ē = b̄+

f̄
. By (??), choosing a small enough ε ensures the nonneg-

ativity of p̄+. Since p̄+ does not belong to P (G, c), we get that p̄+ violates
x(D̄)− y(D̄) ≤ c(D̄), that is,

b̄+
ē + b̄+

f̄
= b̄ē + b̄f̄ + 2ε(d̄yē − d̄xē) < 0, ∀ε > 0 (A.10)

Notice that exactly one of x̄ē and ȳē is fractional, as otherwise (??) would
imply d̄xē = d̄yē = 0, and then (??) would give the contradiction b̄(D̄) < 0.
Consequently, we have b̄ē+ b̄f̄ > 0, a contradiction to the fact that (??) holds
for all ε > 0. This settles Case 1.

Case 2: b̄ē = −b̄f̄ < 0.
Define

d̄xf̄ =

{
d̄yē − d̄xē if x̄f̄ > 0

0 otherwise
and d̄y

f̄
=

{
d̄xē − d̄

y
ē if ȳf̄ > 0

0 otherwise.

By definition of d̄, and by (??)-(??), we have b̄+
ē − b̄ē = ε(d̄yē − d̄xē) =

(x̄+
f̄
− x̄f̄ )− (ȳ+

f̄
− ȳf̄ ) = b̄f̄ − b̄+

f̄
. Therefore, b̄+

f̄
= −b̄+

ē .
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In particular, p̄+ satisfies the constraint of the cut D̄, and since nonnega-
tivity is ensured, then p̄+ violates the constraint of a cut D containing f̄ but
not ē, that is

b̄+(D) = b̄(D) + ε(d̄y(D)− d̄x(D)) < 0 (∀ε > 0) (A.11)

Since D′ = D ∪ {ē} \ {f̄} is a cut, we have b̄(D′) ≥ 0, thus b̄(D) = b̄(D′) −
b̄ē + b̄f̄ > 0. This contradiction to (??) finishes the proof.
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