Lexicographical polytopes

Michele Barbato, Roland Grappe*, Mathieu Lacroix, Clément Pira
Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, (UMR 7030), F-93430, Villetaneuse, France

ARTICLE INFO

Article history:

Received 30 March 2015
Received in revised form 4 April 2017
Accepted 19 April 2017
Available online xxxx

Keywords:

Lexicographical polytopes
Polyhedral description
Superdecreasing knapsacks

Abstract

Within a fixed integer box of \mathbb{R}^{n}, lexicographical polytopes are the convex hulls of the integer points that are lexicographically between two given integer points. We provide their descriptions by means of linear inequalities.

© 2017 Elsevier B.V. All rights reserved.

Throughout, ℓ, u, r, s will denote integer points satisfying $\ell \leq r \leq u$ and $\ell \leq s \leq u$, that is r and s are within $[\ell, u]$. A point $x \in \mathbb{Z}^{n}$ is lexicographically smaller than $y \in \mathbb{Z}^{n}$, denoted by $x \preccurlyeq y$, if $x=y$ or the first nonzero coordinate of $y-x$ is positive. We write $x \prec y$ if $x \preccurlyeq y$ and $x \neq y$. The lexicographical polytope $P_{\ell, u}^{r \preccurlyeq s}$ is the convex hull of the integer points within [ℓ, u] that are lexicographically between r and s :

$$
P_{\ell, u}^{r \preccurlyeq s}=\operatorname{conv}\left\{x \in \mathbb{Z}^{n}: \ell \leq x \leq u, r \preccurlyeq x \preccurlyeq s\right\} .
$$

The top-lexicographical polytope $P_{\ell, u}^{\prec s}=\operatorname{conv}\left\{x \in \mathbb{Z}^{n}: \ell \leq x \leq u, x \preccurlyeq s\right\}$ is the special case when $r=\ell$. Similarly, the bottom-lexicographical polytope is $P_{\ell, u}^{r \preccurlyeq}=\operatorname{conv}\left\{x \in \mathbb{Z}^{n}: \ell \leq x \leq u, r \preccurlyeq x\right\}$.

Given $a, u \in \mathbb{R}_{+}^{n}$ and $b \in \mathbb{R}_{+}$, the knapsack polytope defined by $K_{u}^{a, b}=\operatorname{conv}\left\{x \in \mathbb{Z}^{n}: \mathbf{0} \leq x \leq u\right.$, $\left.a x \leq b\right\}$ is superdecreasing if:

$$
\begin{equation*}
\sum_{i>k} a_{i} u_{i} \leq a_{k} \quad \text { for } k=1, \ldots, n \tag{1}
\end{equation*}
$$

Close relations between top-lexicographical and superdecreasing knapsack polytopes appear in the literature. For the 0/1 case, that is when $\ell=\mathbf{0}$ and $u=\mathbf{1}$, Gillmann and Kaibel [2] first noticed that top-lexicographical polytopes are special cases of superdecreasing knapsack ones, and the converse has been later established by Muldoon et al. [5]. Recently, Gupte [3] generalized the latter result by showing that all superdecreasing knapsacks are top-lexicographical polytopes.

To prove this last statement, Gupte [3] observes that a superdecreasing knapsack $K_{u}^{a, b}$ is the top-lexicographical polytope $P_{\mathbf{0}, u}^{<s}$, where s the lexicographically greatest integer point of $K_{u}^{a, b}$. The non trivial inclusion actually holds because every integer point x of $P_{\mathbf{0}, u}^{\prec s}$ satisfies $a x \leq a s$. Indeed, by definition, if $x \prec s$, there exists $k \in\{1, \ldots, n\}$ such that $x_{k}+1 \leq s_{k}$ and $x_{i}=s_{i}$

[^0]

Fig. 1. Path representation of the points of $X_{\ell, u}^{\prec s}$.
for $i<k$. Hence, we have $b-a x \geq a s-a x \geq \sum_{i>k} a_{i}\left(s_{i}-x_{i}\right)+a_{k} \geq \sum_{i>k} a_{i}\left(s_{i}-x_{i}+u_{i}\right) \geq 0$, because of (1), $s_{i} \geq 0$ and $u_{i} \geq x_{i}$.

It turns out that top-lexicographical polytopes are superdecreasing knapsack polytopes. Indeed, let $P_{\ell, u}^{\prec s}$ be a toplexicographical polytope for some s within $[\ell, u]$. Possibly after translating, we may assume $\ell=\mathbf{0}$. Define a by $a_{k}=$ $\sum_{i>k} a_{i} u_{i}+1$, for $k=1, \ldots, n$, and let $b=a s$. Since the associated knapsack polytope $K_{u}^{a, b}$ is superdecreasing, if $x \preccurlyeq s$ then $a x \leq a s=b$, for all x within [$\mathbf{0}, u$]. Moreover, the converse holds because, inequalities (1) being all strict, $s \prec x$ implies $b=a s<a x$. Therefore, $P_{\mathbf{0}, u}^{\prec s}=K_{u}^{a, b}$. These observations are summarized in the following.

Observation 1. Superdecreasing knapsacks are top-lexicographical polytopes, and conversely (up to translations).

Motivated by a wide range of applications, such as knapsack cryptosystems [6] or binary expansion of bounded integer variables (e.g., [8, p. 477]), several papers are devoted to the polyhedral description of these families of polytopes. For the $0 / 1$ case, the description appeared in [4] from the knapsack point of view. It was later rediscovered from the lexicographical point of view in [2,5]. Moreover, Muldoon et al. [5] and Angulo et al. [1] independently showed that intersecting a 0/1 topwith a $0 / 1$ bottom-lexicographical polytope yields the description of the corresponding lexicographical polytope. Recently, these results were generalized for the bounded case by Gupte [3].

In this paper, we provide the description of the lexicographical polytopes using extended formulations. Our approach provides alternative proofs of the aforementioned results of Gupte [3].

The outline of the paper is as follows. In Section 1, we provide a flow based extended formulation of the convex hull of the componentwise maximal points of a top-lexicographical polytope. Projecting this formulation is surprisingly straightforward, and thus we get the description in the original space. In Section 2, using the fact that a top-lexicographical polytope is, up to translation, the submissive of the above convex hull, we derive the description of top-lexicographical polytopes. We then show that a lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

1. Convex hull of componentwise maximal points

From now on, $X_{\ell, u}^{\preccurlyeq s}$ will denote the set of the points $p^{i}=\left(s_{1}, \ldots, s_{i-1}, s_{i}-1, u_{i+1}, \ldots, u_{n}\right)$, for $i=1, \ldots, n+1$ such that $s_{i}>\ell_{i}$, where $p^{n+1}=s$ by definition. Note that $X_{\ell, u}^{\preccurlyeq s}$ consists of the componentwise maximal integer points of $P_{\ell, u}^{\prec s}$, to which we added, for later convenience, the point $p^{n}=\left(s_{1}, \ldots, s_{n-1}, s_{n}-1\right)$ if $s_{n}>\ell_{n}$.

1.1. A flow model for $X_{\ell, u}^{\prec s}$

We first model the points of $X_{\ell, u}^{\prec s}$ as paths from 1 to $n+1$ in the digraph given in Fig. 1 .
Our digraph is composed of $n+1$ layers, each containing two nodes except the first and the last ones. There are three arcs connecting the layer k to the layer $k+1$, an upper arc y_{k}, a diagonal arc t_{k} and a lower arc z_{k}. The only exception concerns the first level, which does not have the upper arc.

The arcs connecting two successive layers correspond to a coordinate of $x \in X_{\ell, u}^{\prec,}$. More precisely, given a directed path P from 1 to $n+1$, we define the point x by setting, for $k=1, \ldots, n$,

$$
x_{k}= \begin{cases}u_{k} & \text { if } y_{k} \in P \\ s_{k}-1 & \text { if } t_{k} \in P \\ s_{k} & \text { if } z_{k} \in P\end{cases}
$$

As shown in Observation 2, the set of (x, y, z, t) satisfying the following set of inequalities is an extended formulation of $\operatorname{conv}\left(X_{\ell, u}^{\preccurlyeq S}\right):$

$$
\begin{align*}
x_{i}=u_{i} y_{i}+\left(s_{i}-1\right) t_{i}+s_{i} z_{i} & \text { for } i=1, \ldots, n, \tag{2}\\
y_{1}=0 & \tag{3}\\
y_{i}=y_{i-1}+t_{i-1} & \text { for } i=2, \ldots, n, \tag{4}\\
z_{i}=z_{i+1}+t_{i+1} & \text { for } i=1, \ldots, n-1, \\
t_{i}=0 & \text { whenever } s_{i}=\ell_{i}, \\
y_{n}+t_{n}+z_{n}=1 & \\
y_{i}, t_{i}, z_{i} \geq 0 & \text { for } i=1, \ldots, n .
\end{align*}
$$

Observation 2. $\operatorname{conv}\left(X_{\ell, u}^{\prec s}\right)=\operatorname{proj}_{x}\{(x, y, z, t)$ satisfying (2)-(8)\}.
Proof. First, note that there is a one-to-one correspondence between the points of $X_{\ell, u}^{\prec s}$ and the paths from layer 1 to layer $n+1$ of the digraph. This implies that $X_{\ell, u}^{\preccurlyeq s}$ is the projection onto the x variables of the integer points of $Q=$ $\{(x, y, z, t)$ satisfying (2)-(8)\}. The digraph being acyclic, the set of (y, z, t) satisfying (3)-(8) is a path polytope and thus is an integral polytope [7, Theorem 13.10]. The integrality of u and s implies that Q is integer, hence so is its projection onto the x variables, which concludes the proof.

1.2. Description of $\operatorname{conv}\left(X_{\ell, u}^{\prec s}\right)$

In the following result, we use Observation 2 to provide a linear description of $\operatorname{conv}\left(X_{\ell, u}^{\prec s}\right)$.
Lemma 3. $\operatorname{conv}\left(X_{\ell, u}^{\preccurlyeq s}\right)$ is described by the inequalities:

$$
\begin{align*}
\sum_{i=1, s_{i}>\ell_{i}}^{n} A_{i}(x) & \geq-1 & & \tag{9}\\
A_{k}(x) & \leq 0 & & \text { for } k=1, \ldots, n \tag{10}\\
A_{k}(x) & \geq 0 & & \text { when } s_{k}=\ell_{k} \tag{11}
\end{align*}
$$

where, for $k=1, \ldots, n$,

$$
A_{k}(x):=\left(x_{k}-s_{k}\right)+\left(u_{k}-s_{k}\right) \sum_{i=1, s_{i}>\ell_{i}}^{k-1}\left(\prod_{j=i+1, s_{j}>\ell_{j}}^{k-1}\left(u_{j}-s_{j}+1\right)\right)\left(x_{i}-s_{i}\right)
$$

Proof. By Observation 2, it suffices to project onto the x variables of the set of x, y, t, z satisfying (2)-(8).
For $k=1, \ldots$, n, we get $y_{k}=\sum_{i=1}^{k-1} t_{i}$ by (3) and (4). This, combined with (5) and (7), yields $z_{k}=1-\sum_{i=1}^{k} t_{i}$. Using those two equations in (2), and $t_{k}=0$ whenever $s_{k}=\ell_{k}$, we obtain

$$
\begin{equation*}
t_{k}=s_{k}-x_{k}+\left(u_{k}-s_{k}\right) \sum_{i=1, s_{i}>\ell_{i}}^{k-1} t_{i}, \quad \text { for } k=1, \ldots, n \tag{12}
\end{equation*}
$$

We now show by induction on k that, for all $k=1, \ldots, n$,

$$
\begin{equation*}
\sum_{i=1, s_{i}>\ell_{i}}^{k} t_{i}=\sum_{i=1, s_{i}>\ell_{i}}^{k}\left(s_{i}-x_{i}\right) \prod_{j=i+1, s_{j}>\ell_{j}}^{k}\left(u_{j}-s_{j}+1\right) . \tag{13}
\end{equation*}
$$

By definition of t_{k}, (13) holds for $k=1$. Let us suppose that (13) holds for $k<n$ and show that it holds for $k+1$. The result is immediate if $s_{k+1}=\ell_{k+1}$, hence assume that $s_{k+1}>\ell_{k+1}$. We have

$$
\begin{aligned}
\sum_{i=1, s_{i}>\ell_{i}}^{k+1} t_{i} & =\left(s_{k+1}-x_{k+1}\right)+\left(u_{k+1}-s_{k+1}\right) \sum_{i=1, s_{i}>\ell_{i}}^{k} t_{i}+\sum_{i=1, s_{i}>\ell_{i}}^{k} t_{i} \\
& =\left(s_{k+1}-x_{k+1}\right)+\left(u_{k+1}-s_{k+1}+1\right) \sum_{i=1, s_{i}>\ell_{i}}^{k}\left(s_{i}-x_{i}\right) \prod_{j=i+1, s_{j}>\ell_{j}}^{k}\left(u_{j}-s_{j}+1\right) \\
& =\sum_{i=1, s_{i}>\ell_{i}}^{k+1}\left(s_{i}-x_{i}\right) \prod_{j=i+1, s_{j}>\ell_{j}}^{k+1}\left(u_{j}-s_{j}+1\right)
\end{aligned}
$$

Above, equality (14) follows from (12) applied to t_{k+1} and equality (15) follows using (13).
Injecting (13) in (12) yields

$$
\begin{equation*}
t_{k}=s_{k}-x_{k}+\left(u_{k}-s_{k}\right) \sum_{i=1, s_{i}>\ell_{i}}^{k-1}\left(s_{i}-x_{i}\right) \prod_{j=i+1, s_{j}>\ell_{j}}^{k-1}\left(u_{j}-s_{j}+1\right) \text { for } k=1, \ldots, n \tag{16}
\end{equation*}
$$

Up to now, we only used linear transformations, thus projecting out the variables y, z gives us (16), $\sum_{i=1, s_{i}>\ell_{i}}^{n} t_{i} \leq 1, t_{k}=0$ whenever $s_{k}=\ell_{k}$ and $t_{k} \geq 0$ otherwise. Then, projecting onto the x variable gives the desired result.

Note that the following derives from the above proof by combining (12) and the fact that, by (16), we have $t_{k}=-A_{k}$:

$$
\begin{equation*}
A_{k}(x)=\left(x_{k}-s_{k}\right)+\left(u_{k}-s_{k}\right) \sum_{i=1, s_{i}>\ell_{i}}^{k-1} A_{i}(x), \quad \text { for } k=1, \ldots, n . \tag{17}
\end{equation*}
$$

2. Lexicographical polytopes

In this section, we first provide the description of top-lexicographical polytopes. We then show that a lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

2.1. Description of top-lexicographical polytopes

The following observation unveils the polyhedral relation between a top-lexicographical polytope and the convex hull of its componentwise maximal points.

Observation 4. $P_{\ell, u}^{\prec s}=\left(\operatorname{conv}\left(X_{\ell, u}^{\prec s}\right)+\mathbb{R}_{-}^{n}\right) \cap\{x \geq \ell\}$.
Proof. Since $\operatorname{conv}\left(X_{\ell, u}^{\prec s}\right)$ is integer and contained in $\{x \geq \ell\}$, the polyhedron on the right is integer. Seen the definitions, the observation follows.

Remark that, when $\ell=\mathbf{0}, P_{\ell, u}^{\preccurlyeq s}$ is precisely the submissive of $\operatorname{conv}\left(X_{\ell, u}^{\preccurlyeq s}\right)$. Now, we derive from Lemma 3 and Observation 4 the linear description of top-lexicographical polytopes.

Theorem 5. $P_{\ell, u}^{\prec s}=\left\{x \in \mathbb{R}^{n}: \ell \leq x \leq u, A_{k}(x) \leq 0\right.$, for $\left.k=1, \ldots, n\right\}$.
Proof. Theorem 5 immediately follows from Observation 4 and the following description of $\operatorname{conv}\left(X_{\ell, u}^{\prec s}\right)+\mathbb{R}_{-}^{n}$,

$$
\begin{equation*}
\operatorname{conv}\left(X_{\ell, u}^{\preccurlyeq s}\right)+\mathbb{R}_{-}^{n}=\left\{x \in \mathbb{R}^{n}: x \leq u \text { and } A_{k}(x) \leq 0, \text { for } k=1, \ldots, n\right\} . \tag{18}
\end{equation*}
$$

To prove (18), denote by Q its right hand side. By Lemma 3, the above inequalities are valid for conv $\left(X_{\ell, u}^{\prec s}\right)$. Since their coefficients for x are nonnegative, they also hold for $\operatorname{conv}\left(X_{\ell, u}^{\prec s}\right)+\mathbb{R}_{-}^{n}$. Note that the latter and Q have the same recession cone, thus it remains to show that the vertices of Q are vertices of $\operatorname{conv}\left(X_{\ell, u}^{\prec s}\right)$. Let us prove it by induction on the dimension, the base case being immediate. We may assume that $u_{n}>s_{n}$, as otherwise $A_{n}(x)=x_{n}-s_{n}$ and the induction concludes. Let \bar{x} be a vertex of Q.

Claim 6. $\sum_{i=1, s_{i}>\ell_{i}}^{n} A_{i}(\bar{x}) \geq-1$.
Proof. The indices i of $A_{i}(x)$ involved in sums throughout this proof satisfy $s_{i}>\ell_{i}$, yet to ease the reading, we will omit the subscripts " $s_{i}>\ell_{i}$ ". By contradiction, assume that $\sum_{i=1}^{n} A_{i}(\bar{x})<-1$. Since \bar{x} is a vertex, and x_{n} appears only in $x_{n} \leq u_{n}$ and $A_{n}(x) \leq 0$, at least one of them holds with equality. If the latter does, then by (17) and $u_{n}>s_{n}$, we get the contradiction $0=A_{n}(\bar{x}) \leq\left(u_{n}-s_{n}\right)\left(1+A_{1}(\bar{x})+\cdots A_{n-1}(\bar{x})\right)<\left(u_{n}-s_{n}\right)(1-1)=0$. Therefore $A_{n}(\bar{x})<0$ and $\bar{x}_{n}=u_{n}$. For $x \in \mathbb{R}^{n}$, we denote $\bar{x}^{\prime}:=\left(x_{1}, \ldots, x_{n-1}\right)$. Necessarily, \bar{x}^{\prime} satisfies to equality $n-1$ linearly independent of the remaining inequalities, and hence \bar{x}^{\prime} is a vertex of $\left\{x \in \mathbb{R}^{n-1}: x_{k} \leq u_{k}, A_{k}(x) \leq 0\right.$, for $\left.k=1, \ldots, n-1\right\}$. By the induction hypothesis, \bar{x}^{\prime} is a vertex of $\operatorname{conv}\left(X_{\ell^{\prime}, u^{\prime}}^{\prec s^{\prime}}\right)+\mathbb{R}_{-}^{n-1}$, hence $\sum_{i=1}^{n-1} A_{i}\left(\bar{x}^{\prime}\right) \geq-1$. But now $A_{n}(\bar{x})<0, \bar{x}_{n}=u_{n}$ and (17) imply $A_{1}\left(\bar{x}^{\prime}\right)+\cdots+A_{n-1}\left(\bar{x}^{\prime}\right)<-1$, a contradiction.

Let us show that $A_{k}(\bar{x})=0$ whenever $s_{k}=\ell_{k}$. Indeed, in this case, \bar{x}_{k} only appears in $A_{k}(\bar{x}) \leq 0$ and $\bar{x}_{k} \leq u_{k}$, and one is satisfied with equality since \bar{x} is a vertex. If $\bar{x}_{k}=u_{k}$, then by (17), Claim 6 and $A_{i}(\bar{x}) \leq 0$, for $i=1 \ldots$, n, we get $0 \geq A_{k}(\bar{x})=\left(u_{k}-s_{k}\right)\left(1+\sum_{i=1, s_{i}>\ell_{i}}^{k-1} A_{i}(\bar{x})\right) \geq 0$. Consequently, \bar{x} belongs to conv $\left(X_{\ell, u}^{\preccurlyeq s}\right)$ and this proves (18).

Symmetrically, bottom-lexicographical polytopes are described as follows.
Corollary 7. $P_{\ell, u}^{r \preccurlyeq}=\left\{x \in \mathbb{R}^{n}: \ell \leq x \leq u, B_{k}(x) \leq 0\right.$, for $\left.k=1, \ldots, n\right\}$, where, for $k=1, \ldots, n$,

$$
B_{k}(x)=\left(r_{k}-x_{k}\right)+\left(r_{k}-\ell_{k}\right) \sum_{i=1, r_{i}<u_{i}}^{k-1}\left(\prod_{j=i+1, r_{j}<u_{j}}^{k-1}\left(r_{j}-\ell_{j}+1\right)\right)\left(r_{i}-x_{i}\right)
$$

2.2. Lexicographical polytopes

By definition, we have $P_{\ell, u}^{r \preccurlyeq s} \subseteq P_{\ell, u}^{r \preccurlyeq} \cap P_{\ell, u}^{\gtrless s}$. It turns out that the converse holds, see Theorem 8. In particular, $P_{\ell, u}^{r \preccurlyeq} \cap P_{\ell, u}^{\gtrless s}$ is an integer polytope.

Theorem 8. A lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.
Proof. It remains to prove that $P_{\ell, u}^{r \preccurlyeq s} \supseteq Q$, where $Q=P_{\ell, u}^{r \preccurlyeq} \cap P_{\ell, u}^{\preccurlyeq s}$. Let us prove it by induction on the dimension, the onedimensional case being immediate.

If $r_{1}=s_{1}$, then the problem reduces to the $(n-1)$-dimensional case, and using induction concludes.
If $r_{1}+1 \leq \pi \leq s_{1}-1$ for some integer π, then let ℓ^{\prime} be obtained from ℓ by replacing ℓ_{1} by π. By $s_{1}>\ell_{1}^{\prime}$ and the definition of $A_{k}(x)$, applying Theorem 5 gives $P_{\ell, u}^{\prec s} \cap\left\{x_{1} \geq \pi\right\}=P_{\ell^{\prime}, u}^{\prec s}$. Moreover, since $\pi>r_{1}$, the latter is contained in $P_{\ell, u}^{r \preccurlyeq}$. Therefore $Q \cap\left\{x_{1} \geq \pi\right\}=P_{\ell^{\prime}, u}^{\prec s}$ is integer. Similarly, $Q \cap\left\{x_{1} \leq \pi\right\}$ is integer, hence so is Q, and we are done.

The remaining case is when $r_{1}=s_{1}-1$. Let $\bar{x} \in P_{\ell, u}^{r<} \cap P_{\ell, u}^{\prec s}$. If $\bar{x}_{1}=s_{1}$, when \bar{x} is written as a convex combination of integer points of $P_{\ell, u}^{\prec s}$, all of them have their first coordinate equal to s_{1}, and hence belong to $P_{\ell, u}^{r<s}$. By convexity, so does \bar{x} and we are done. A similar argument may be applied if $\bar{x}_{1}=r_{1}$. Therefore, we may assume that $r_{1}<\bar{x}_{1}<s_{1}$.

Let $\lambda=\bar{x}_{1}-r_{1}$, and define y by $y_{1}=s_{1}$ and $y_{k}=u_{k}+\frac{\bar{x}_{k}-u_{k}}{\lambda}$ for $k=2, \ldots, n$. Similarly, define z by $z_{1}=r_{1}$ and $z_{i}=\ell_{i}+\frac{\bar{x}_{i}-\ell_{i}}{1-\lambda}$, for $i=2, \ldots, n$. The following claim finishes the proof, where, given two points v and w of $\mathbb{R}^{n}, \max (v, w)$ (resp. $\min (v, w))$ will denote the point of \mathbb{R}^{n} whose i th coordinate is $\max \left\{v_{i}, w_{i}\right\}\left(\right.$ resp. $\left.\min \left\{v_{i}, w_{i}\right\}\right)$ for $i=1, \ldots, n$.

Claim 9. \bar{x} is a convex combination of $\bar{y}=\max (y, \ell)$ and $\bar{z}=\min (z, u)$ which both belong to $P_{\ell, u}^{r \preccurlyeq s}$.
Proof. First, let us show that $y \in \operatorname{conv}\left(X_{\ell, u}^{\preccurlyeq s}\right)+\mathbb{R}_{-}^{n}$. As $\bar{x} \leq u$, we have $y \leq u$. Moreover, $A_{1}(y)=y_{1}-s_{1}=0$. Now, we prove by induction that $A_{k}(y)=\frac{1}{\lambda} A_{k}(\bar{x})$ for $k=2, \ldots, n$. Using (17), $A_{1}(y)=0$, the definition of y_{k}, and the induction hypothesis, we have $A_{k}(y)=\frac{1}{\lambda}\left[\bar{x}_{k}-s_{k}+(\lambda-1)\left(u_{k}-s_{k}\right)+\left(u_{k}-s_{k}\right) \sum_{i=2, s_{i}>\ell_{i}}^{k-1} A_{i}(\bar{x})\right]$. Since $\lambda-1=\bar{x}_{1}-s_{1}=A_{1}(\bar{x})$ and $s_{1}=r_{1}+1>\ell_{1}$, we get by (17) that $A_{k}(y)=\frac{1}{\lambda} A_{k}(\bar{x})$, for $k=2, \ldots$, n. Since $A_{k}(\bar{x}) \leq 0$, we have $A_{k}(y) \leq 0$. Hence, $y \in \operatorname{conv}\left(X_{\ell, u}^{\prec s}\right)+\mathbb{R}_{-}^{n}$. Therefore, there exists y^{+}of $\operatorname{conv}\left(X_{\ell, u}^{\prec s}\right)$ with $y^{+} \geq y$. Clearly, $y^{+} \geq \ell$ hence $y^{+} \geq \max (y, \ell)$. Thus, $\max (y, \ell)$ belongs to $\operatorname{conv}\left(X_{\ell, u}^{\prec s}\right)+\mathbb{R}_{-}^{n}$ and, by Observation 4 , to $P_{\ell, u}^{\prec s}$. Moreover, as its first coordinate equals $s_{1}, \max (y, \ell)$ belongs to $P_{\ell, u}^{r \preccurlyeq s}$. Similarly, $\min (z, u)$ also belongs to $P_{\ell, u}^{r<s}$.

Finally, we have $(1-\lambda) \bar{z}_{1}+\lambda \bar{y}_{1}=(1-\lambda)\left(s_{1}-1\right)+\lambda s_{1}=s_{1}-1+\lambda=\bar{x}_{1}$. For $i \in\{2, \ldots, n\}$, we have $(1-\lambda) \bar{z}_{i}+\lambda \bar{y}_{i}=\min \left(\bar{x}_{i}-\lambda \ell_{i},(1-\lambda) u_{i}\right)+\max \left((\lambda-1) u_{i}+\bar{x}_{i}, \lambda \ell_{i}\right)=\bar{x}_{i}-\max \left(\lambda \ell_{i},(\lambda-1) u_{i}+\bar{x}_{i}\right)+\max \left((\lambda-1) u_{i}+\bar{x}_{i}, \lambda \ell_{i}\right)=\bar{x}_{i}$. Therefore, $\bar{x}=(1-\lambda) \bar{z}+\lambda \bar{y}$ and we are done.

Note that the above result implies that the family of lexicographical polytopes defined on a fixed box $[\ell, u]$ is closed by intersection. Beside, combined with Theorem 5 and Corollary 7, it provides the description of lexicographical polytopes.

Corollary 10. The lexicographical polytope $P_{\ell, u}^{r \preccurlyeq s}$ is described as follows:

$$
P_{\ell, u}^{r \preccurlyeq s}=\left\{\begin{array}{lll}
x \in \mathbb{R}^{n}: & A_{k}(x) \leq 0 \quad \text { for } k=1, \ldots, n \\
& B_{k}(x) \leq 0 \quad \text { for } k=1, \ldots, n \\
& \ell \leq x \leq u
\end{array}\right\}
$$

References

[1] G. Angulo, S. Ahmed, S.S. Dey, V. Kaibel, Forbidden vertices, Math. Oper. Res. 40 (2) (2015) 350-360.
[2] R. Gillmann, V. Kaibel, Revlex-initial 0/1-polytopes, J. Combin. Theory Ser. A 113 (5) (2006) 799-821.
[3] A. Gupte, Convex hulls of superincreasing knapsacks and lexicographic orderings, Discrete Appl. Math. 201 (2016) 150-163.
[4] M. Laurent, A. Sassano, A characterization of knapsacks with the max-flow-min-cut property, Oper. Res. Lett. 11 (2) (1992) 105-110.
[5] F.M. Muldoon, W.P. Adams, H.D. Sherali, Ideal representations of lexicographic orderings and base-2 expansion of integer variables, Oper. Res. Lett. 41 (2013) 32-39.
[6] A.M. Odlyzko, The rise and fall of knapsack cryptosystems, in: Cryptology and Computational Number Theory, A.M.S, 1990, pp. 75-88.
[7] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer-Verlag, Berlin, Heidelberg, New York, 2003.
[8] F. Vanderbeck, L.A. Wolsey, Reformulation and decomposition of integer programs, in: Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, Laurence A. Wolsey (Eds.), 50 Years of Integer Programming 1958-2008, Springer, Berlin, Heidelberg, 2010, pp. 431-502.

[^0]: * Corresponding author.

 E-mail addresses: Michele.Barbato@lipn.univ-paris13.fr (M. Barbato), Roland.Grappe@lipn.univ-paris13.fr (R. Grappe), Mathieu.Lacroix@lipn.univ-paris13.fr (M. Lacroix), Clement.Pira@lipn.univ-paris13.fr (C. Pira).
 http://dx.doi.org/10.1016/j.dam.2017.04.022
 0166-218X/© 2017 Elsevier B.V. All rights reserved.

