ARTICLE IN PRESS

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Lexicographical polytopes

Michele Barbato, Roland Grappe*, Mathieu Lacroix, Clément Pira

Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, (UMR 7030), F-93430, Villetaneuse, France

ARTICLE INFO

Article history: Received 30 March 2015 Received in revised form 4 April 2017 Accepted 19 April 2017 Available online xxxx

Keywords: Lexicographical polytopes Polyhedral description Superdecreasing knapsacks

ABSTRACT

Within a fixed integer box of \mathbb{R}^n , lexicographical polytopes are the convex hulls of the integer points that are lexicographically between two given integer points. We provide their descriptions by means of linear inequalities.

© 2017 Elsevier B.V. All rights reserved.

Throughout, ℓ , u, r, s will denote integer points satisfying $\ell \le r \le u$ and $\ell \le s \le u$, that is r and s are within $[\ell, u]$. A point $x \in \mathbb{Z}^n$ is *lexicographically smaller than* $y \in \mathbb{Z}^n$, denoted by $x \le y$, if x = y or the first nonzero coordinate of y - x is positive. We write x < y if $x \le y$ and $x \ne y$. The *lexicographical polytope* $P_{\ell,u}^{r \le s}$ is the convex hull of the integer points within $[\ell, u]$ that are lexicographically between r and s:

$$P_{\ell,u}^{r \preccurlyeq s} = conv\{x \in \mathbb{Z}^n : \ell \le x \le u, r \preccurlyeq x \preccurlyeq s\}.$$

The top-lexicographical polytope $P_{\ell,u}^{\preccurlyeq s} = conv\{x \in \mathbb{Z}^n : \ell \leq x \leq u, x \preccurlyeq s\}$ is the special case when $r = \ell$. Similarly, the bottom-lexicographical polytope is $P_{\ell,u}^{r \preccurlyeq} = conv\{x \in \mathbb{Z}^n : \ell \leq x \leq u, r \preccurlyeq x\}$.

Given $a, u \in \mathbb{R}^n_+$ and $b \in \mathbb{R}_+$, the knapsack polytope defined by $K_u^{a,b} = conv\{x \in \mathbb{Z}^n : \mathbf{0} \le x \le u, ax \le b\}$ is superdecreasing if:

$$\sum_{i=1}^{n} a_i u_i \le a_k \quad \text{for } k = 1, \dots, n.$$

Close relations between top-lexicographical and superdecreasing knapsack polytopes appear in the literature. For the 0/1 case, that is when $\ell=\mathbf{0}$ and $u=\mathbf{1}$, Gillmann and Kaibel [2] first noticed that top-lexicographical polytopes are special cases of superdecreasing knapsack ones, and the converse has been later established by Muldoon et al. [5]. Recently, Gupte [3] generalized the latter result by showing that all superdecreasing knapsacks are top-lexicographical polytopes.

To prove this last statement, Gupte [3] observes that a superdecreasing knapsack $K_u^{a,b}$ is the top-lexicographical polytope $P_{\mathbf{0},u}^{\leqslant s}$, where s the lexicographically greatest integer point of $K_u^{a,b}$. The non trivial inclusion actually holds because every integer point x of $P_{\mathbf{0},u}^{\leqslant s}$ satisfies $ax \leq as$. Indeed, by definition, if $x \prec s$, there exists $k \in \{1, \ldots, n\}$ such that $x_k + 1 \leq s_k$ and $x_i = s_i$

E-mail addresses: Michele.Barbato@lipn.univ-paris13.fr (M. Barbato), Roland.Grappe@lipn.univ-paris13.fr (R. Grappe), Mathieu.Lacroix@lipn.univ-paris13.fr (M. Lacroix), Clement.Pira@lipn.univ-paris13.fr (C. Pira).

http://dx.doi.org/10.1016/j.dam.2017.04.022

0166-218X/© 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

Fig. 1. Path representation of the points of $X_{\ell,n}^{\leqslant s}$.

for i < k. Hence, we have $b - ax \ge as - ax \ge \sum_{i > k} a_i(s_i - x_i) + a_k \ge \sum_{i > k} a_i(s_i - x_i + u_i) \ge 0$, because of (1), $s_i \ge 0$ and

It turns out that top-lexicographical polytopes are superdecreasing knapsack polytopes. Indeed, let $P_{\ell,u}^{\leqslant s}$ be a top-lexicographical polytope for some s within $[\ell,u]$. Possibly after translating, we may assume $\ell=\mathbf{0}$. Define a by $a_k=\sum_{i>k}a_iu_i+1$, for $k=1,\ldots,n$, and let b=as. Since the associated knapsack polytope $K_u^{a,b}$ is superdecreasing, if $x\leqslant s$ then $ax\le as=b$, for all x within $[\mathbf{0},u]$. Moreover, the converse holds because, inequalities (1) being all strict, $s\prec x$ implies b=as< ax. Therefore, $P_{\mathbf{0},u}^{\leqslant s}=K_u^{a,b}$. These observations are summarized in the following.

Observation 1. Superdecreasing knapsacks are top-lexicographical polytopes, and conversely (up to translations).

Motivated by a wide range of applications, such as knapsack cryptosystems [6] or binary expansion of bounded integer variables (e.g., [8, p. 477]), several papers are devoted to the polyhedral description of these families of polytopes. For the 0/1 case, the description appeared in [4] from the knapsack point of view. It was later rediscovered from the lexicographical point of view in [2,5]. Moreover, Muldoon et al. [5] and Angulo et al. [1] independently showed that intersecting a 0/1 topwith a 0/1 bottom-lexicographical polytope yields the description of the corresponding lexicographical polytope. Recently, these results were generalized for the bounded case by Gupte [3].

In this paper, we provide the description of the lexicographical polytopes using extended formulations. Our approach provides alternative proofs of the aforementioned results of Gupte [3].

The outline of the paper is as follows. In Section 1, we provide a flow based extended formulation of the convex hull of the componentwise maximal points of a top-lexicographical polytope. Projecting this formulation is surprisingly straightforward, and thus we get the description in the original space. In Section 2, using the fact that a top-lexicographical polytope is, up to translation, the submissive of the above convex hull, we derive the description of top-lexicographical polytopes. We then show that a lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

1. Convex hull of componentwise maximal points

From now on, $X_{\ell,u}^{\leqslant s}$ will denote the set of the points $p^i=(s_1,\ldots,s_{i-1},s_i-1,u_{i+1},\ldots,u_n)$, for $i=1,\ldots,n+1$ such that $s_i>\ell_i$, where $p^{n+1}=s$ by definition. Note that $X_{\ell,u}^{\leqslant s}$ consists of the componentwise maximal integer points of $P_{\ell,u}^{\leqslant s}$, to which we added, for later convenience, the point $p^n=(s_1,\ldots,s_{n-1},s_n-1)$ if $s_n>\ell_n$.

1.1. A flow model for $X_{\ell,n}^{\preccurlyeq s}$

We first model the points of $X_{\ell,u}^{\leqslant s}$ as paths from 1 to n+1 in the digraph given in Fig. 1. Our digraph is composed of n+1 layers, each containing two nodes except the first and the last ones. There are three arcs connecting the layer k to the layer k+1, an upper arc y_k , a diagonal arc t_k and a lower arc z_k . The only exception concerns the first level, which does not have the upper arc.

The arcs connecting two successive layers correspond to a coordinate of $x \in X_{t,u}^{\leq s}$. More precisely, given a directed path Pfrom 1 to n + 1, we define the point x by setting, for k = 1, ..., n,

$$x_k = \begin{cases} u_k & \text{if } y_k \in P, \\ s_k - 1 & \text{if } t_k \in P, \\ s_k & \text{if } z_k \in P. \end{cases}$$

As shown in Observation 2, the set of (x, y, z, t) satisfying the following set of inequalities is an extended formulation of $conv(X_{\ell,\mu}^{\leq s})$:

$$x_i = u_i y_i + (s_i - 1)t_i + s_i z_i$$
 for $i = 1, ..., n$, (2)
 $y_1 = 0$ (3)
 $y_i = y_{i-1} + t_{i-1}$ for $i = 2, ..., n$, (4)
 $z_i = z_{i+1} + t_{i+1}$ for $i = 1, ..., n - 1$, (5)
 $t_i = 0$ whenever $s_i = \ell_i$, (6)

$$y_n + t_n + z_n = 1 \tag{7}$$

$$y_i, t_i, z_i \ge 0 \qquad \qquad \text{for } i = 1, \dots, n. \tag{8}$$

M. Barbato et al. / Discrete Applied Mathematics ■ (■■■) ■■■-■■

Observation 2. $conv(X_{\ell,\mu}^{\leqslant s}) = proj_x\{(x, y, z, t) \text{ satisfying (2)-(8)}\}.$

Proof. First, note that there is a one-to-one correspondence between the points of $X_{\ell,u}^{\leqslant s}$ and the paths from layer 1 to layer n+1 of the digraph. This implies that $X_{\ell,u}^{\leqslant s}$ is the projection onto the x variables of the integer points of $Q=\{(x,y,z,t) \text{ satisfying } (2)-(8)\}$. The digraph being acyclic, the set of (y,z,t) satisfying (3)-(8) is a path polytope and thus is an integral polytope [7, Theorem 13.10]. The integrality of u and s implies that Q is integer, hence so is its projection onto the x variables, which concludes the proof. \square

1.2. Description of $conv(X_{\ell,n}^{\leqslant s})$

In the following result, we use Observation 2 to provide a linear description of $conv(X_{\ell,n}^{\leqslant s})$.

Lemma 3. $conv(X_{\ell,u}^{\preccurlyeq s})$ is described by the inequalities:

$$\sum_{i=1,s_i>\ell_i}^n A_i(x) \ge -1 \tag{9}$$

$$A_k(x) \le 0 \qquad \text{for } k = 1, \dots, n, \tag{10}$$

$$A_k(x) \ge 0$$
 when $s_k = \ell_k$, (11)

where, for $k = 1, \ldots, n$,

$$A_k(x) := (x_k - s_k) + (u_k - s_k) \sum_{i=1, s_i > \ell_i}^{k-1} \left(\prod_{j=i+1, s_j > \ell_j}^{k-1} (u_j - s_j + 1) \right) (x_i - s_i).$$

Proof. By Observation 2, it suffices to project onto the x variables of the set of x, y, t, z satisfying (2)–(8).

For k = 1, ..., n, we get $y_k = \sum_{i=1}^{k-1} t_i$ by (3) and (4). This, combined with (5) and (7), yields $z_k = 1 - \sum_{i=1}^k t_i$. Using those two equations in (2), and $t_k = 0$ whenever $s_k = \ell_k$, we obtain

$$t_k = s_k - x_k + (u_k - s_k) \sum_{i=1}^{k-1} t_i, \quad \text{for } k = 1, \dots, n.$$
 (12)

We now show by induction on k that, for all k = 1, ..., n,

$$\sum_{i=1,s_i>\ell_i}^k t_i = \sum_{i=1,s_i>\ell_i}^k (s_i - x_i) \prod_{j=i+1,s_i>\ell_i}^k (u_j - s_j + 1).$$
(13)

By definition of t_k , (13) holds for k = 1. Let us suppose that (13) holds for k < n and show that it holds for k + 1. The result is immediate if $s_{k+1} = \ell_{k+1}$, hence assume that $s_{k+1} > \ell_{k+1}$. We have

$$\sum_{i=1,s_i>\ell_i}^{k+1} t_i = (s_{k+1} - x_{k+1}) + (u_{k+1} - s_{k+1}) \sum_{i=1,s_i>\ell_i}^k t_i + \sum_{i=1,s_i>\ell_i}^k t_i$$
(14)

$$= (s_{k+1} - x_{k+1}) + (u_{k+1} - s_{k+1} + 1) \sum_{i=1, s_i > \ell_i}^k (s_i - x_i) \prod_{j=i+1, s_j > \ell_j}^k (u_j - s_j + 1)$$
(15)

$$=\sum_{i=1,s_i>\ell_i}^{k+1}(s_i-x_i)\prod_{j=i+1,s_j>\ell_j}^{k+1}(u_j-s_j+1).$$

Above, equality (14) follows from (12) applied to t_{k+1} and equality (15) follows using (13). Injecting (13) in (12) yields

$$t_k = s_k - x_k + (u_k - s_k) \sum_{i=1, s_i > \ell_i}^{k-1} (s_i - x_i) \prod_{j=i+1, s_j > \ell_j}^{k-1} (u_j - s_j + 1) \quad \text{for } k = 1, \dots, n.$$
 (16)

Up to now, we only used linear transformations, thus projecting out the variables y, z gives us (16), $\sum_{i=1,s_i>\ell_i}^n t_i \le 1$, $t_k=0$ whenever $s_k=\ell_k$ and $t_k\ge 0$ otherwise. Then, projecting onto the x variable gives the desired result. \square

4

Note that the following derives from the above proof by combining (12) and the fact that, by (16), we have $t_k = -A_k$:

$$A_k(x) = (x_k - s_k) + (u_k - s_k) \sum_{i=1, s_i > \ell_i}^{k-1} A_i(x), \quad \text{for } k = 1, \dots, n.$$
(17)

2. Lexicographical polytopes

In this section, we first provide the description of top-lexicographical polytopes. We then show that a lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

2.1. Description of top-lexicographical polytopes

The following observation unveils the polyhedral relation between a top-lexicographical polytope and the convex hull of its componentwise maximal points.

Observation 4.
$$P_{\ell,u}^{\preccurlyeq s} = (conv(X_{\ell,u}^{\preccurlyeq s}) + \mathbb{R}_{-}^{n}) \cap \{x \geq \ell\}.$$

Proof. Since $conv(X_{\ell,u}^{\leqslant s})$ is integer and contained in $\{x \ge \ell\}$, the polyhedron on the right is integer. Seen the definitions, the observation follows. \Box

Remark that, when $\ell = \mathbf{0}$, $P_{\ell,u}^{ss}$ is precisely the submissive of $conv(X_{\ell,u}^{ss})$. Now, we derive from Lemma 3 and Observation 4 the linear description of top-lexicographical polytopes.

Theorem 5.
$$P_{\ell,u}^{\ll s} = \{x \in \mathbb{R}^n : \ell \le x \le u, A_k(x) \le 0, \text{ for } k = 1, ..., n\}.$$

Proof. Theorem 5 immediately follows from Observation 4 and the following description of $conv(X_{\ell,n}^{\leqslant s}) + \mathbb{R}_{-}^n$,

$$conv(X_{\ell,u}^{\leq s}) + \mathbb{R}_{-}^{n} = \{x \in \mathbb{R}^{n} : x \leq u \text{ and } A_{k}(x) \leq 0, \text{ for } k = 1, \dots, n\}.$$
 (18)

To prove (18), denote by Q its right hand side. By Lemma 3, the above inequalities are valid for $conv(X_{\ell,u}^{\preccurlyeq s})$. Since their coefficients for x are nonnegative, they also hold for $conv(X_{\ell,u}^{\preccurlyeq s}) + \mathbb{R}_-^n$. Note that the latter and Q have the same recession cone, thus it remains to show that the vertices of Q are vertices of $conv(X_{\ell,u}^{\preccurlyeq s})$. Let us prove it by induction on the dimension, the base case being immediate. We may assume that $u_n > s_n$, as otherwise $A_n(x) = x_n - s_n$ and the induction concludes. Let \bar{x} be a vertex of Q.

Claim 6.
$$\sum_{i=1,s_i>\ell_i}^n A_i(\bar{x}) \ge -1$$
.

Proof. The indices i of $A_i(x)$ involved in sums throughout this proof satisfy $s_i > \ell_i$, yet to ease the reading, we will omit the subscripts " $s_i > \ell_i$ ". By contradiction, assume that $\sum_{i=1}^n A_i(\bar{x}) < -1$. Since \bar{x} is a vertex, and x_n appears only in $x_n \leq u_n$ and $A_n(x) \leq 0$, at least one of them holds with equality. If the latter does, then by (17) and $u_n > s_n$, we get the contradiction $0 = A_n(\bar{x}) \leq (u_n - s_n)(1 + A_1(\bar{x}) + \cdots + A_{n-1}(\bar{x})) < (u_n - s_n)(1 - 1) = 0$. Therefore $A_n(\bar{x}) < 0$ and $\bar{x}_n = u_n$. For $x \in \mathbb{R}^n$, we denote $x' := (x_1, \ldots, x_{n-1})$. Necessarily, \bar{x}' satisfies to equality n-1 linearly independent of the remaining inequalities, and hence \bar{x}' is a vertex of $\{x \in \mathbb{R}^{n-1} : x_k \leq u_k, A_k(x) \leq 0, \text{ for } k = 1, \ldots, n-1\}$. By the induction hypothesis, \bar{x}' is a vertex of $conv(X_{\ell',u'}^{ss'}) + \mathbb{R}_{-}^{n-1}$, hence $\sum_{i=1}^{n-1} A_i(\bar{x}') \geq -1$. But now $A_n(\bar{x}) < 0$, $\bar{x}_n = u_n$ and (17) imply $A_1(\bar{x}') + \cdots + A_{n-1}(\bar{x}') < -1$, a contradiction.

Let us show that $A_k(\bar{x})=0$ whenever $s_k=\ell_k$. Indeed, in this case, \bar{x}_k only appears in $A_k(\bar{x})\leq 0$ and $\bar{x}_k\leq u_k$, and one is satisfied with equality since \bar{x} is a vertex. If $\bar{x}_k=u_k$, then by (17), Claim 6 and $A_i(\bar{x})\leq 0$, for $i=1\ldots,n$, we get $0\geq A_k(\bar{x})=(u_k-s_k)(1+\sum_{i=1,s_i>\ell_i}^{k-1}A_i(\bar{x}))\geq 0$. Consequently, \bar{x} belongs to $conv(X_{\ell,u}^{< s})$ and this proves (18). \square

Symmetrically, bottom-lexicographical polytopes are described as follows.

Corollary 7. $P_{\ell,u}^{r} = \{x \in \mathbb{R}^n : \ell \leq x \leq u, B_k(x) \leq 0, \text{ for } k = 1, \dots, n\}$, where, for $k = 1, \dots, n$,

$$B_k(x) = (r_k - x_k) + (r_k - \ell_k) \sum_{i=1, r_i < u_i}^{k-1} \left(\prod_{j=i+1, r_j < u_j}^{k-1} (r_j - \ell_j + 1) \right) (r_i - x_i).$$

Please cite this article in press as: M. Barbato, et al., Lexicographical polytopes, Discrete Applied Mathematics (2017) http://dx.doi.org/10.1016/j.dam.2017.04.022

2.2. Lexicographical polytopes

By definition, we have $P_{\ell,u}^{r \leqslant s} \subseteq P_{\ell,u}^{r \leqslant} \cap P_{\ell,u}^{\leqslant s}$. It turns out that the converse holds, see Theorem 8. In particular, $P_{\ell,u}^{r \leqslant} \cap P_{\ell,u}^{\leqslant s}$ is an integer polytope.

Theorem 8. A lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

Proof. It remains to prove that $P_{\ell,u}^{r \preccurlyeq s} \supseteq Q$, where $Q = P_{\ell,u}^{r \preccurlyeq} \cap P_{\ell,u}^{\preccurlyeq s}$. Let us prove it by induction on the dimension, the one-dimensional case being immediate.

If $r_1 = s_1$, then the problem reduces to the (n-1)-dimensional case, and using induction concludes.

If $r_1+1 \le \pi \le s_1-1$ for some integer π , then let ℓ' be obtained from ℓ by replacing ℓ_1 by π . By $s_1 > \ell'_1$ and the definition of $A_k(x)$, applying Theorem 5 gives $P_{\ell,u}^{\lessdot s} \cap \{x_1 \ge \pi\} = P_{\ell',u}^{\lessdot s}$. Moreover, since $\pi > r_1$, the latter is contained in $P_{\ell,u}^{r_{\preccurlyeq}}$. Therefore $Q \cap \{x_1 \ge \pi\} = P_{\ell',u}^{\lessdot s}$ is integer. Similarly, $Q \cap \{x_1 \le \pi\}$ is integer, hence so is Q, and we are done.

The remaining case is when $r_1 = s_1 - 1$. Let $\bar{x} \in P_{\ell,u}^{r \leqslant} \cap P_{\ell,u}^{\leqslant s}$. If $\bar{x}_1 = s_1$, when \bar{x} is written as a convex combination of integer points of $P_{\ell,u}^{\leqslant s}$, all of them have their first coordinate equal to s_1 , and hence belong to $P_{\ell,u}^{r \leqslant s}$. By convexity, so does \bar{x} and we are done. A similar argument may be applied if $\bar{x}_1 = r_1$. Therefore, we may assume that $r_1 < \bar{x}_1 < s_1$.

we are done. A similar argument may be applied if $\bar{x}_1 = r_1$. Therefore, we may assume that $r_1 < \bar{x}_1 < s_1$. Let $\lambda = \bar{x}_1 - r_1$, and define y by $y_1 = s_1$ and $y_k = u_k + \frac{\bar{x}_k - u_k}{\lambda}$ for $k = 2, \ldots, n$. Similarly, define z by $z_1 = r_1$ and $z_i = \ell_i + \frac{\bar{x}_i - \ell_i}{1 - \lambda}$, for $i = 2, \ldots, n$. The following claim finishes the proof, where, given two points v and w of \mathbb{R}^n , $\max(v, w)$ (resp. $\min(v, w)$) will denote the point of \mathbb{R}^n whose ith coordinate is $\max\{v_i, w_i\}$ (resp. $\min\{v_i, w_i\}$) for $i = 1, \ldots, n$.

Claim 9. \bar{x} is a convex combination of $\bar{y} = \max(y, \ell)$ and $\bar{z} = \min(z, u)$ which both belong to $P_{\ell,u}^{r \leqslant s}$.

Proof. First, let us show that $y \in conv(X_{\ell,u}^{\leqslant S}) + \mathbb{R}_{-}^{n}$. As $\bar{x} \leq u$, we have $y \leq u$. Moreover, $A_{1}(y) = y_{1} - s_{1} = 0$. Now, we prove by induction that $A_{k}(y) = \frac{1}{\lambda}A_{k}(\bar{x})$ for $k = 2, \ldots, n$. Using (17), $A_{1}(y) = 0$, the definition of y_{k} , and the induction hypothesis, we have $A_{k}(y) = \frac{1}{\lambda}[\bar{x}_{k} - s_{k} + (\lambda - 1)(u_{k} - s_{k}) + (u_{k} - s_{k})\sum_{i=2,s_{i}>\ell_{i}}^{k-1}A_{i}(\bar{x})]$. Since $\lambda - 1 = \bar{x}_{1} - s_{1} = A_{1}(\bar{x})$ and $s_{1} = r_{1} + 1 > \ell_{1}$, we get by (17) that $A_{k}(y) = \frac{1}{\lambda}A_{k}(\bar{x})$, for $k = 2, \ldots, n$. Since $A_{k}(\bar{x}) \leq 0$, we have $A_{k}(y) \leq 0$. Hence, $y \in conv(X_{\ell,u}^{\leqslant S}) + \mathbb{R}_{-}^{n}$. Therefore, there exists y^{+} of $conv(X_{\ell,u}^{\leqslant S})$ with $y^{+} \geq y$. Clearly, $y^{+} \geq \ell$ hence $y^{+} \geq max(y, \ell)$. Thus, $max(y, \ell)$ belongs to $conv(X_{\ell,u}^{\leqslant S}) + \mathbb{R}_{-}^{n}$ and, by Observation 4, to $P_{\ell,u}^{\leqslant S}$. Moreover, as its first coordinate equals s_{1} , $max(y, \ell)$ belongs to $P_{\ell,u}^{\leqslant S}$. Similarly, $P_{\ell,u}^{\leqslant S}$ is similarly, $P_{\ell,u}^{\leqslant S}$. Similarly, $P_{\ell,u}^{\leqslant S}$. Similarly, $P_{\ell,u}^{\leqslant S}$.

belongs to $P_{\ell,u}^{r \preccurlyeq s}$. Similarly, $\min(z,u)$ also belongs to $P_{\ell,u}^{r \preccurlyeq s}$. Finally, we have $(1-\lambda)\bar{z}_1+\lambda\bar{y}_1=(1-\lambda)(s_1-1)+\lambda s_1=s_1-1+\lambda=\bar{x}_1$. For $i\in\{2,\ldots,n\}$, we have $(1-\lambda)\bar{z}_i+\lambda\bar{y}_i=\min(\bar{x}_i-\lambda\ell_i,(1-\lambda)u_i)+\max((\lambda-1)u_i+\bar{x}_i,\lambda\ell_i)=\bar{x}_i-\max(\lambda\ell_i,(\lambda-1)u_i+\bar{x}_i)+\max((\lambda-1)u_i+\bar{x}_i,\lambda\ell_i)=\bar{x}_i$. Therefore, $\bar{x}=(1-\lambda)\bar{z}+\lambda\bar{y}$ and we are done. \blacksquare

Note that the above result implies that the family of lexicographical polytopes defined on a fixed box $[\ell, u]$ is closed by intersection. Beside, combined with Theorem 5 and Corollary 7, it provides the description of lexicographical polytopes.

Corollary 10. The lexicographical polytope $P_{\ell,\mu}^{r \ll s}$ is described as follows:

$$P_{\ell,u}^{r \preccurlyeq s} = \begin{cases} x \in \mathbb{R}^n : & A_k(x) \leq 0 & \text{for } k = 1, \dots, n \\ & B_k(x) \leq 0 & \text{for } k = 1, \dots, n \\ & \ell \leq x \leq u \end{cases}.$$

References

- [1] G. Angulo, S. Ahmed, S.S. Dey, V. Kaibel, Forbidden vertices, Math. Oper. Res. 40 (2) (2015) 350–360.
- [2] R. Gillmann, V. Kaibel, Revlex-initial 0/1-polytopes, J. Combin. Theory Ser. A 113 (5) (2006) 799–821.
- [3] A. Gupte, Convex hulls of superincreasing knapsacks and lexicographic orderings, Discrete Appl. Math. 201 (2016) 150–163.
- [4] M. Laurent, A. Sassano, A characterization of knapsacks with the max-flow-min-cut property, Oper. Res. Lett. 11 (2) (1992) 105–110.
 [5] F.M. Muldoon, W.P. Adams, H.D. Sherali, Ideal representations of lexicographic orderings and base-2 expansion of integer variables, Oper. Res. Lett. 41 (2013) 32–39.
- [6] A.M. Odlyzko, The rise and fall of knapsack cryptosystems, in: Cryptology and Computational Number Theory, A.M.S, 1990, pp. 75–88.
- [7] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer-Verlag, Berlin, Heidelberg, New York, 2003.
- [8] F. Vanderbeck, L.A. Wolsey, Reformulation and decomposition of integer programs, in: Michael J\u00fcnger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, Laurence A. Wolsey (Eds.), 50 Years of Integer Programming 1958-2008, Springer, Berlin, Heidelberg, 2010, pp. 431-502.