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PARTITION CONSTRAINED COVERING OF A SYMMETRIC
CROSSING SUPERMODULAR FUNCTION BY A GRAPH∗

ATTILA BERNÁTH† , ROLAND GRAPPE‡ , AND ZOLTÁN SZIGETI§

Abstract. We are given a symmetric crossing supermodular set function p on V and a partition
P of V . We solve the problem of finding a graph with vertex set V having edges only between the
classes of P such that for every subset X of V the cut of the graph defined by X contains at least p(X)
edges. The objective is to minimize the number of edges of the graph. This problem is a common
generalization of the global edge-connectivity augmentation of a graph with partition constraints,
which was solved by Bang-Jensen et al. [SIAM J. Discrete Math., 12 (1999), pp. 160–207] and the
problem of covering a symmetric crossing supermodular set function solved by Benczúr and Frank
[Math. Program., 84 (1999), pp. 483–503]. Our problem can be considered as an abstract form of the
problem of global edge-connectivity augmentation of a hypergraph with partition constraints, which
was earlier solved by the authors [J. Graph Theory, 72 (2013), pp. 291–312].
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1. Introduction. This paper is concerned with edge-connectivity augmentation
problems in graphs, hypergraphs, and abstract forms of the problems for “connectiv-
ity” set functions. For a survey, we refer the reader to [10].

Our starting point is the problem of global edge-connectivity augmentation of a
graph, where we have to add a minimum number of new edges to a given graph
G = (V,E) in order to obtain a k-edge-connected graph for a given k ≥ 2. A natural
lower bound can be obtained as follows: for a set X of degree d(X) less than k, the
deficiency of X is k − d(X); that is, we must add at least k − d(X) edges between
X and V \X. The deficiency of a subpartition of V is the sum of the deficiencies of
its sets. By adding a new edge we may decrease the deficiency of at most two sets of
this subpartition, so we may decrease the deficiency of the subpartition by at most
two, and hence we obtain the so-called subpartition lower bound: αG := d half of the
maximum deficiency of a subpartition of V e. The minimax theorem due to Watanabe
and Nakamura [11] says that this lower bound αG can always be achieved.

The next step is a generalization of the above problem, namely the problem
of global edge-connectivity augmentation of a hypergraph, where we have to add a
minimum number of new graph edges to a given hypergraph G = (V, E) in order
to obtain a k-edge-connected hypergraph for a given k. Of course, the subpartition
lower bound holds also for hypergraphs. However, a new lower bound arises: after
deleting k − 1 hyperedges, the connected components must be connected by the new
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graph edges, and hence we obtain the component lower bound: ωG − 1, where ωG :=
maximum number of connected components after deleting k − 1 hyperedges. The
minimax theorem due to Bang-Jensen and Jackson [3] says that the lower bound
max{αG , ωG − 1} can always be achieved.

Benczúr and Frank [4] considered the abstract form of the previous problem,
namely covering of a symmetric crossing supermodular function by a graph: given a
symmetric, crossing supermodular set function p on V , what is the minimum number
of edges of a graph on vertex set V that covers p, that is, for all subsets X of V, the
cut defined by X contains at least p(X) edges? The subpartition and the component
lower bounds can be extended for this problem: αp := d half of the maximum of the
sum of the values of the sets in a subpartition of V e and dim(p)− 1 := maximum size
of a p-full partition −1, where a partition is p-full if each union of some of its sets has
value at least one. The minimax theorem due to Benczúr and Frank [4] says that the
lower bound max{αp,dim(p)− 1} can always be achieved.

Now we consider the partition constrained versions of the above problems.
Motivated by a problem from the theory of rigidity, Bang-Jensen et al. [2] intro-

duced the problem of partition constrained global edge-connectivity augmentation of a
graph: given a graph G = (V,E), an integer k ≥ 2, and a partition P = {P1, . . . , Pr}
of V , what is the minimum number of new edges, between different members of P,
whose addition results in a k-edge-connected graph? We have a new partition con-
strained lower bound because we cannot add a new edge in P ∈ P: βG := maximum
deficiency of a subpartition of P over all P ∈ P. The minimax theorem due to Bang-
Jensen et al. [2] says that the lower bound max{αG, βG} can be achieved, except if the
graph contains a C4- or a C6-configuration, in which case one more edge is needed.

Bernáth, Grappe, and Szigeti [6] considered a generalization of the above problem,
the problem of partition constrained global edge-connectivity augmentation of a hyper-
graph: given a hypergraph G = (V, E), an integer k, and a partition P = {P1, . . . , Pr}
of V , what is the minimum number of new graph edges, between different members of
P, whose addition results in a k-edge-connected hypergraph? The minimax theorem
due to [6] says that the lower bound max{αG , βG , ωG−1} can be achieved except if the
hypergraph contains a C4- or a C6-configuration, extension of the above configurations,
in which case one more edge is needed.

We emphasize that the above-mentioned papers contain polynomial algorithms
solving the corresponding problems.

In this paper we solve the abstract version of the previous problem, a common
generalization of all the above-mentioned problems, namely the partition constrained
covering of a symmetric crossing supermodular function by a graph: given a symmet-
ric crossing supermodular set function p on V and a partition P of V , what is the
minimum number of edges, between different members of P, resulting in a graph that
covers p? The partition constrained lower bound can be extended for this problem:
βp := maximum of the sum of the values of the sets in a subpartition of P over all
P ∈ P. We show that the lower bound max{αp, βp,dim(p) − 1} can be achieved
except if a C∗4 -, C∗5 -, or a C∗6 -configuration exists for (p,P), in which case one more
edge is needed. This result strictly generalizes the partition constrained problem for
hypergraphs. Indeed, a new configuration arises, and it extends an application of
Benczúr and Frank [4] that cannot be treated in the framework of hypergraphs; see
section 6.

We will follow the classical approach of Frank [7]. First we treat the so-called
degree-specified version of the above problem in section 4, which is the following:
given a symmetric crossing supermodular set function p on V , a partition P of V , and
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MULTIPARTITE COVERING OF CONNECTIVITY FUNCTIONS 337

a function m : V → Z+ (called degree specification), the task is to decide whether a
graph G covering p exists that has only edges connecting different members of P and
that satisfies dG(v) = m(v) for every v ∈ V . We show the natural necessary conditions
of the existence of such a graph, and we characterize the exceptional structures (called
obstacles). Obstacles are the only cases that satisfy these conditions, yet there does
not exist a solution. Then in section 5 we turn to the above minimization version of
our problem, and we solve it the following way. First, in section 5.2 we try to find
a degree specification m with m(V ) as small as possible, avoiding the obstacles and
satisfying the necessary conditions given earlier: these necessary conditions correspond
to natural lower bounds for m(V ). Second, in section 5.3 we exhibit the structures
(called configurations) where we can avoid creating obstacles only if we augmentm(V )
by 2. Third, we derive our main result in section 5.4. Finally, we provide applications
of our theorem in section 6. We show in section 7 that this approach provides a
polynomial algorithm.

2. Definitions.
Graphs and set functions. Let us be given a finite ground set V . By X ⊂ V we

mean a proper subset X of V , and X = V \X. Two subsets X and Y of V are crossing
if none of X \Y , Y \X, X ∩Y , and V \ (X ∪Y ) is empty. A family F of subsets of V
is laminar if for all X,Y ∈ F either X and Y are disjoint or one of them contains the
other one. For a family M = {M1, . . . ,M`} of subsets of V , let M?

0 =
⋂`
i=1Mi and

M?
i = Mi \

⋃
j 6=iMj .

Let G = (V,E(G)) be a graph. We will often denote E(G) by E. For X,Y ⊆ V ,
dG(X,Y ) denotes the number of edges betweenX\Y and Y \X, dG(X,Y )= dG(X,V \
Y ), and dG(X)= dG(X,V \X). Given a partition X of V , Eδ(X ) will denote the set of
edges connecting two members of X , and EX the set of edges contained in members
of X . It is well known that the following equalities hold for all X,Y ⊆ V :

dG(X) + dG(Y ) = dG(X ∩ Y ) + dG(X ∪ Y ) + 2dG(X,Y ),(1)
dG(X) + dG(Y ) = dG(X \ Y ) + dG(Y \X) + 2dG(X,Y ).(2)

All the functions in this paper are integer valued but not necessarily nonnegative,
and they have value 0 on the empty set. A set function p : 2V → Z is symmetric if
p(X) = p(V \ X) for all X ⊆ V , and is called crossing supermodular if it satisfies
(3) for all crossing sets X,Y ⊆ V with p(X), p(Y ) > 0. Note that if X \ Y = ∅ or
Y \X = ∅, then (3) is trivially satisfied with equality. A set X ⊆ V with p(X) > 0 is
called p-positive. A symmetric crossing supermodular set function p also satisfies (4)
for crossing p-positive set pairs X,Y . Note that if X ∩ Y = ∅ or X ∪ Y = V, then (4)
is trivially satisfied with equality.

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ),(3)
p(X) + p(Y ) ≤ p(X \ Y ) + p(Y \X).(4)

A nonnegative function m : V → Z+ is called a degree specification. The graph
G is said to cover the function p if (5) holds, and it is said to satisfy the degree
specification m if (6) holds. Moreover, m is called p-admissible if (7) holds, where
m(X)=

∑
x∈X m(x):

dG(X) ≥ p(X) for all ∅ 6= X ⊂ V,(5)
dG(v) = m(v) for all v ∈ V,(6)
m(X) ≥ p(X) for all ∅ 6= X ⊂ V.(7)
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The following theorem due to Frank is fundamental in every result on edge-
connectivity augmentation: it gives the connection between the minimization version
and the degree-specified version of these problems. The theorem is true under more
general circumstances; we only state what we need in this paper.

Theorem 1 (see [7], [1]). If p : 2V → Z is crossing supermodular, then

min{m(V ) : m is a p-admissible degree specification}(8)

= max

{
t∑
i=1

p(Vi) : {V1, . . . , Vt} is a subpartition of V

}
.

The maximum value in (8) is denoted by σp. A degree specification m that
achieves the minimum value in (8) will be calledminimal. Note that, for the parameter
αp defined in the introduction, we have

αp =

⌈
1

2
σp

⌉
.(9)

Given a partition X = {X1, . . . , Xt} of V , the index j of Xj is considered modulo
t; that is, for example, Xt+1 = X1. Let J ⊂ {1, . . . , t} be an index set. Let J :=
{1, . . . , t} \ J. We call J consecutive if J = {j, j + 1, . . . , k} modulo t for some j and
k. Let us say that J is p-positive if J 6= ∅ and p

(⋃
j∈J Xj

)
> 0.

Following [4], the partition X is called p-full if t ≥ 4, every nonempty index set
I ⊂ {1, . . . , t} is p-positive, and p(Xj) = 1 for some j ∈ {1, . . . , t}. The maximum
cardinality of a p-full partition is the dimension of p and is denoted by dim(p). If
no p-full partition exists, then dim(p) is defined to be 0. A degree specification m is
called p-legal if (10) is satisfied:

m(V ) ≥ 2(dim(p)− 1).(10)

The following lemma comes from Benczúr and Frank [4].

Lemma 2 (see Benczúr and Frank [4]). Let p : 2V → Z be a symmetric crossing
supermodular set function.

1. A graph that covers p has at least dim(p)− 1 edges.
2. If a partition X = {X1, . . . , Xt} of V satisfies t ≥ 4, p(X1) = 1, and p(X1 ∪
Xi) > 0 for i = 2, . . . , t, then X is p-full.

Let G = (V,E) be a graph, p0 a symmetric crossing supermodular set function
on V , and m0 a degree specification on V . Let us introduce the functions pG and mG,
which will play an important role in this paper, as follows:

pG(X) = p0(X)− dG(X) for all X ⊂ V,(11)
mG(v) = m0(v)− dG(v) for all v ∈ V.(12)

By (1), the function −dG is symmetric crossing supermodular; hence so is pG.
Moreover, by (3) and (1) (respectively, by (4) and (2)), for crossing p0-positive subsets
X and Y of V , the following hold:

pG(X) + pG(Y ) ≤ pG(X ∩ Y ) + pG(X ∪ Y )− 2dG(X,Y ),(13)
pG(X) + pG(Y ) ≤ pG(X \ Y ) + pG(Y \X)− 2dG(X,Y ).(14)

It is useful to define the following surplus function sG:

sG = mG − pG.(15)D
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Observation 3. Note that mG is pG-admissible if and only if

sG(X) ≥ 0 for all ∅ 6= X ⊂ V.(16)

By modularity ofmG and (13) (respectively, (14)), for crossing p0-positive subsets
X and Y of V , the following hold:

sG(X) + sG(Y ) ≥ sG(X ∩ Y ) + sG(X ∪ Y ) + 2dG(X,Y ),(17)
sG(X) + sG(Y ) ≥ sG(X \ Y ) + sG(Y \X) + 2(dG(X,Y ) +mG(X ∩ Y )).(18)

Operations. Let mG : V → Z+ be a pG-admissible degree specification. An
element v of V is called mG-positive if mG(v) > 0. The set of mG-positive elements
is denoted by V+(mG). For an element v ∈ V , χv denotes the incidence vector of the
set {v}. Let x, y be two different mG-positive elements, and uv ∈ E an edge of G
that is not incident to either x or y. We will need the following operations :

1. Splitting off at x, y means replacing mG by mGxy
and pG by pGxy

, where
Gxy= G+ xy.

2. Unsplitting uv is the reverse of splitting off: replace m by mGuv and pG by
pGuv , where Guv= G− uv. Note that mGuv is pGuv -admissible.

3. The (uv, ux)-flip is defined as unsplitting uv and splitting off at x, u, that is,
replacing mG by mG′ and pG by pG′ , where G′ = G− uv + xu. We will also
call it flipping uv for ux.

4. Improving uv to ux, vy is defined as unsplitting uv and splitting off at x, u
and at v, y, that is, replacing mG by mG′′ and pG by pG′′ , where G′′ =
G − uv + ux + vy. Improving uv by x and y means improving uv to either
xu, vy or xv, uy. The corresponding operation is an improvement.

Any of the above operations is called pG-admissible if the new degree specification
is admissible with the new set function. If the splitting off at x, y is pG-admissible,
then we say that the pair x, y is pG-admissible.

Observation 4. sG(X) − sGxy (X) = 2 if both x and y belong to X, and 0 oth-
erwise.

Special sets. The following special sets will be used frequently in the paper. A
set X ⊂ V is called

1. tight if mG(X) = pG(X), that is, if sG(X) = 0;
2. dangerous if mG(X) ≤ pG(X) + 1, that is, if sG(X) ≤ 1;
3. (uv, ux)-perilous if pG(X) = 0 = mG(X) − 1, x, u ∈ X, and v /∈ X. A

(uv, ux)- or (vu, vx)-perilous set is called (uv, x)-perilous.
A partition is called tight if its members are tight. For an mG-positive element u,

Xu and Tu denote the minimal and the maximal tight sets containing u. If u belongs
to no tight set, then Xu is defined to be equal to V .

Observation 5. Tight sets containing an mG-positive element, dangerous sets
containing two mG-positive elements, and perilous sets are p0-positive.

Partition constraint. Let P = {P1, . . . , Pr} be a partition of V with r ≥ 2. An
element v ∈ V that belongs to some Pi is said to be of color i. The notation c(v)= i
will also be used for v ∈ Pi. We say that the graph G = (V,E) is P-partite if every
edge of G goes between two different classes of P.

Observation 6. Note that there always exists a P-partite spanning tree on V.
Indeed, let u ∈ P1 and v ∈ P2. Then the edge set {ux : x ∈ V \P1}∪{vy : y ∈ P1\{u}}
forms a spanning tree on V that is clearly P-partite.
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A degree specification m is called P-feasible if (19) and (20) are satisfied. If m is
pG-admissible and P-feasible, then m is called (pG,P)-allowed.

m(V ) is even,(19)

m(Pi) ≤
m(V )

2
for all Pi ∈ P.(20)

We call Pi ∈ P dominating if m(Pi) = 1
2m(V ). A pair of m-positive elements is

called rainbow if they are of different colors and any dominating color class contains
one of them. A splitting off, a flip, or an improvement is called (pG,P)-allowed if it is
pG-admissible and uses only rainbow pairs. We will simply write allowed for (pG,P)-
allowed, and we will specify the function to be considered when it differs from pG.
A complete allowed splitting off is a sequence of allowed splitting off that decreases
m(V ) to zero. If the splitting off at x, y is allowed, then we say that the pair x, y is
allowed.

Let m be a degree specification and P ∈ P. A pair (X1, X2) of disjoint sets of V
is called a P -pair if there exists a subpartition Xi of Xi ∩P such that

∑
X∈Xi

p(X) =
p(Xi) for i = 1, 2, while it is called an (m,P )-pair if them-positive elements ofX1∪X2

are the m-positive elements of P . A subpartition X of V is called a P -subpartition if
there exists a set X ′ ⊆ X ∩P for every X ∈ X such that p(X ′) = 1, while it is called
an (m,P )-subpartition if each X ∈ X contains an m-positive element of P .

Constructions, obstructions, obstacles. Let p : 2V → Z be a symmetric crossing
supermodular function, m : V → Z+ a degree specification, and P = {P1, . . . , Pr} a
partition of V .

Definition 7. A partition A = {A1, . . . , A4} of V is called a C∗4 -obstacle for
(p,P,m) if the following hold:

1. (a) p(Ai) + p(Ai+1)− p(Ai ∪Ai+1) is odd for i = 1, . . . , 4;
(b) p(Ai−1 ∪Ai) + p(Ai ∪Ai+1) = p(Ai−1) + p(Ai+1) for i = 1, . . . , 4;
(c) if p(Ai) = 1 for i = 1, . . . , 4, then p(A1 ∪A3) = p(A2 ∪A4) ≤ 0;
(d) p(A1) + p(A3) = p(A2) + p(A4) = 1

2σp.
2. m is minimally p-admissible.
3. m is P-feasible and there exist ` ∈ {1, 2} and P ∈ P such that (A`, A`+2) is

an (m,P )-pair.
A partition A is called a C∗4 -construction for p (respectively, a C∗4 -obstruction for

(p,m)) if it satisfies 1 (respectively, 1 and 2). C∗4 -constructions, C∗4 -obstructions, and
C∗4 -obstacles satisfying p(Ai) = 1 for i = 1, . . . , 4 are called simple.

Definition 8. A partition A = {A1, A2, A3, A4, B1, . . . , Bt} of V (t ≥ 1) is called
a C∗5 -obstacle for (p,P,m) if the following hold:

1. (a) p(Ai) = 1 for i = 1, . . . , 4;
(b) p(Bj) = 2 for j = 1, . . . , t;
(c) p(Ai ∪Bj) = 1 for i = 1, . . . , 4 and j = 1, . . . , t;
(d) p(Ai ∪Ai+1) = 1 for i = 1, . . . , 4;
(e) p(Ai ∪Ai+2) ≤ 0 for i = 1, 2;
(f) σp =

∑
X∈A p(X) = 2t+ 4.

2. m is minimally p-admissible.
3. m is P-feasible and

(a) either there exist ` ∈ {1, 2} and P ∈ P such that {A`, A`+2, B1, . . . , Bt}
is an (m,P )-subpartition,

(b) or there exist j0 ∈ {1, . . . , t} and distinct Pk1
, Pk2

∈ P such that for
i = 1, 2, {Ai, Ai+2} ∪ {Bj : j 6= j0} is an (m,Pki)-subpartition.
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A partition A is called a C∗5 -construction for p (respectively, C∗5 -obstruction for (p,m))
if it satisfies 1 (respectively, 1 and 2). A C∗5 -obstacle is of type 1 (respectively, type
2) if 3a (respectively, 3b) is satisfied. For a C∗5 -construction A, consecutive elements
of A means sets Ai, Ai+1, where the index i is considered modulo 4.

Definition 9. A partition A = {A1, . . . , A6} of V is called a C∗6 -obstacle for
(p,P,m) if the following hold:

1. (a) p(Ai) = 1 for i = 1, . . . , 6;
(b) p(Ai ∪Ai+1) = 1 for i = 1, . . . , 6;
(c) p(Ai ∪Aj) ≤ 0 for all nonconsecutive sets Ai and Aj ;
(d) σp =

∑6
i=1 p(Ai) = 6.

2. m is minimally p-admissible.
3. m is P-feasible and there exist distinct Pki ∈ P such that (Ai, Ai+3) is a

(m,Pki)-pair for i = 1, 2, 3.
A partition A is called a C∗6 -construction for p (respectively, C∗6 -obstruction for (p,m))
if it satisfies 1 (respectively, 1 and 2).

A construction (respectively, obstruction, obstacle) is a C∗4 - or a C∗5 - or a C∗6 -
construction (respectively, obstruction, obstacle). Note that an obstruction is a special
type of construction, and an obstacle is a special type of obstruction.

Observation 10. If there exists a construction, then σp is even.

Observation 11. Two m-positive elements that belong to consecutive sets Ai and
Ai+1 of an obstacle have different colors.

3. Preliminaries. In this section, p0 : 2V → Z is a symmetric crossing super-
modular function, G = (V,E) is a graph, mG is a pG-admissible degree specification
with mG(V ) ≥ 4, and P = {P1, . . . , Pr} is a partition of V .

3.1. Positive sets.

Claim 12.
1. If a family {X1, . . . , Xk} of p0-positive subsets of V satisfies that Xj crosses⋃j−1

i=1 Xi and pG(Xj ∩ (
⋃j−1
i=1 Xi)) ≤ pG(Xj) for j = 2, . . . , k, then pG(X1) ≤

pG(
⋃j

1Xi) ≤ pG(
⋃k

1 Xi) for j = 1, . . . , k.
2. If a subpartition {W1, . . . ,Wk} of V satisfies

⋃k
1 Wi 6= V , and for every

j = 2, . . . , k there exists an ij such that 1 ≤ ij < j, pG(Wij ) = 1, and
pG(Wij ∪Wj) ≥ 1, then pG(

⋃k
1 Wi) ≥ 1.

Proof.
1. We prove this point by induction on k. For k = 1 the inequalities hold (with

equalities). Suppose that the inequalities hold for k − 1, that is, pG(X1) ≤
pG(
⋃j

1Xi) ≤ pG(
⋃k−1

1 Xi) for j = 1, . . . , k − 1. To finish the proof we have
to show that pG(

⋃k−1
1 Xi) ≤ pG(

⋃k
1 Xi). Applying (13) to Xk and

⋃k−1
i=1 Xi,

and using pG(Xk ∩ (
⋃k−1
i=1 Xi)) ≤ pG(Xk), gives the result.

2. Apply point 1 to {Wij ∪Wj : j = 2, . . . , k}.

Claim 13. If a partition A = {A1, . . . , At} of V (t ≥ 4) satisfies pG(Ai) =
pG(Ai ∪Ai+1) = 1 for i = 1, . . . , t, then the following statements hold:

1. No edge of G connects nonconsecutive members of A.
2. pG(

⋃
j∈J Aj) = 1 for all nonempty consecutive J ⊂ {1, . . . , t}.

3. If pG(
⋃
j∈J Aj) ≥ 1 for some nonconsecutive index set J , pG(Ak ∪ A`) ≥ 1

for all nonconsecutive pair {k, `} such that k, ` /∈ J , then {k + 1, . . . , ` − 1}
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and {`+ 1, . . . , k − 1} both intersect J .
4. There exists a pG-positive nonconsecutive index set if and only if A is a pG-

full partition.

Proof. Let AJ :=
⋃
j∈J Aj for any index set J ⊂ {1, . . . , t}, and let J = {1, . . . , t}\

J .
1. Suppose that there exists an edge ofG between Ai and Aj , where j /∈ {i−1, i+

1}. By (14) applied to Ai−1∪Ai and Ai∪Ai+1, we have 1+1 = pG(Ai−1∪Ai)+
pG(Ai∪Ai+1) ≤ pG(Ai−1) +pG(Ai+1)−2d(Ai−1∪Ai, Ai∪Ai+1) ≤ 1 + 1−2,
a contradiction.

2. Without loss of generality, we may assume that J = {1, . . . , j} for some
j ≤ t − 1. Let Xi = Ai ∪ Ai+1 for i = 1, . . . , t − 2. Since A is a partition
of V , we have Xj ∩ (

⋃j−1
i=1 Xi) = Aj for j = 2, . . . , t − 1; hence Claim 12.1

applies to {X1, . . . , Xt−2}. It gives, since pG is symmetric, 1 = pG(X1) ≤
pG(
⋃
j∈J Aj) ≤ pG(

⋃t−1
j=1Aj) = pG(At) = 1, and we have equality.

3. By pG(Ai) = pG(Ai ∪Ai+1) = 1 for i = 1, . . . , t, there exist consecutive pairs
J2, . . . Jr such that with J1 := J the corresponding sets satisfy the conditions
of Claim 12.1 and

⋃r
j=1AJj = Ak ∪A`. Then, by Claim 12.1, pG(AJ) ≥ 1,

and by the symmetry of pG, the assertion follows.
4. We prove only the nontrivial direction. Suppose that pG(AK) ≥ 1 for some

nonconsecutive index set K. Then there exists a nonconsecutive pair {q, r} ⊆
K such that {q + 1, . . . , r − 1} and {r + 1, . . . , q − 1} both intersect K. By
point 3 applied to K, we have pG(Aq ∪ Ar) ≥ 1. Then by point 3 applied to
{q, r}, we have pG(Aq−1∪Aq+1) ≥ 1, and then point 3 applies to {q−1, q+1},
which gives pG(Aq ∪Aj) ≥ 1 for all j 6= q− 1, q+ 1. Moreover, by assumption
pG(Aq) = pG(Aq−1 ∪ Aq) = pG(Aq ∪ Aq+1) = 1; thus by Lemma 2.2, A is a
pG-full partition.

3.2. Tight sets. The following properties of tight sets are well known. In this
section, we will often implicitly use Observation 5.

Claim 14. Let X and Y be p0-positive tight sets. Then the following statements
hold:

1. If X ∩ Y 6= ∅ and X ∪ Y 6= V , then X ∩ Y is tight and X ∪ Y is p0-positive
tight.

2. If X \ Y 6= ∅ and Y \X 6= ∅, then X \ Y and Y \X are p0-positive tight and
mG(X ∩ Y ) = 0.

3. If an mG-positive element v belongs to X and Y , then one of them contains
the other one. Consequently, if an mG-positive element v belongs to a tight
set, then v belongs to a unique minimal and a unique maximal tight set.

Proof.
1. By the tightness of X and Y , (17) and (16), we get 0 + 0 = sG(X) + sG(Y ) ≥
sG(X∩Y )+sG(X∪Y ) ≥ 0+0, so equality holds everywhere and the assertion
follows.

2. By the tightness of X and Y , (18) and (16), and the nonnegativity of mG, we
get 0+0 = sG(X)+sG(Y ) ≥ sG(X \Y )+sG(Y \X)+2mG(X∩Y ) ≥ 0+0+0,
so equality holds everywhere and the assertion follows.

3. Suppose indirectly that X \ Y 6= ∅ and Y \X 6= ∅. Then, by point 2 and v ∈
(X ∩Y )∩V+(mG), we have 0 = mG(X ∩Y ) ≥ mG(v) > 0, a contradiction.
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For an mG-positive element u, the definitions of Xu and Tu—the minimal and
the maximal tight sets containing u—are correct by Claim 14.3.

Claim 15. Let D be a subset of the mG-positive elements such that each element
of D belongs to a tight set. Then we have the following:

1. The family {Xu : u ∈ D} is laminar.
2. There exists a partition X of

⋃
u∈DXu such that

∑
X∈X pG(X) ≥ mG(D).

Proof.
1. Suppose that, for some u, v ∈ D, none of Xu −Xv, Xv −Xu, and Xu ∩Xv is

empty. Then, by Claim 14.2, Xu \Xv ⊂ Xu is a tight set containing u, which
contradicts the minimality of Xu.

2. Let X be the maximal sets of {Xu : u ∈ D}. Then, by point 1, X is a partition
of
⋃
u∈DXu, and, by mG being nonnegative and each element of X being

tight, we have mG(D) ≤ mG(
⋃
u∈DXu) =

∑
X∈X mG(X) =

∑
X∈X pG(X).

It is important to mention that a degree specification m can be modified without
destroying p-admissibility, as follows.

Claim 16. Let u be an m-positive element and u′ ∈ Xu. If m is p-admissible,
then so is m′ := m− χu + χu′ .

Proof. Suppose that m′ is not p-admissible; that is, there exists a set Y ⊂ V
such that m′(Y ) + 1 ≤ p(Y ). Then, by m being p-admissible and the definition of m′,
we have p(Y ) ≤ m(Y ) ≤ m′(Y ) + 1 ≤ p(Y ). Thus equality holds everywhere; that
is, Y contains u but not u′ and it was tight. Then u ∈ Xu ∩ Y , so, by assumption,
m(Xu ∩ Y ) > 0, and then, by u′ ∈ Xu \ Y , Claim 14.2 implies Y \Xu = ∅, that is,
Y ⊂ Xu, which contradicts the minimality of Xu.

Claim 17. Suppose that mG is minimally pG-admissible. If the pair u, v is pG-
admissible, then mGuv is minimally pGuv -admissible.

Proof. The pair u, v being pG-admissible, mGuv
is pGuv

-admissible. Moreover, the
splitting off decreases by 1 the pG-value of at most two sets of any partition achieving
σpG . Then, by the minimality ofmG, we havemGuv (V ) ≥ σpGuv

≥ σpG−2 = mG(V )−
2 = mGuv (V ). Hence we have equality everywhere, in particular mGuv (V ) = σpGuv

;
that is, mGuv

is minimally pGuv
-admissible.

Claim 18. If pG ≤ 1 and X ⊂ V crosses a pG-positive tight set, then pG(X) ≤ 0.

Proof. Assume that X and a tight set Y are pG-positive and crossing. Then,
by (13) for X and Y and pG ≤ 1, we have 1 + 1 ≤ pG(X) + pG(Y ) ≤ pG(X ∩
Y ) + pG(X ∪ Y ) ≤ 1 + 1, and so pG(Y ) = 1 = pG(X ∩ Y ). By Y being tight,
mG(Y ) = pG(Y ) = 1. Hence, by possibly complementing X, we may assume that
mG(X ∩ Y ) = 0. Then, by pG being symmetric and mG being pG-admissible, we get
1 = pG(X ∩ Y ) ≤ mG(X ∩ Y ) = 0, a contradiction.

3.3. Dangerous sets. We start this subsection by the characterization of ad-
missible pairs; see [4]. In light of Lemma 19 below, it is natural to study the properties
of dangerous sets.

Lemma 19 (see [4]). A pair of mG-positive elements u, v is pG-admissible if and
only if no dangerous set contains both u and v.

The following technical claims will be applied throughout the paper. From now
on we suppose that mG(V ) is even.

Claim 20. For a dangerous set Y , the following statements hold:
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1. mG(Y ) ≤ 1
2mG(V ).

2. If Y contains an mG-positive element of a dangerous set X, then mG(V \Y \
X) ≥ 1.

3. If Y intersects a tight set X, X and Y are p0-positive, and X ∪ Y 6= V , then
Y ∪X is dangerous.

Proof.
1. By Y being dangerous, pG being symmetric, andmG being pG-admissible and

modular, we have mG(Y ) ≤ pG(Y ) + 1 = pG(V \ Y ) + 1 ≤ mG(V \ Y ) + 1 =
mG(V )−mG(Y )+1, and then, bymG(V ) being even, the assertion is satisfied.

2. BymG being modular, point 1, andmG(Y ∩X) ≥ 1, we havemG(V \Y \X) =
mG(V )−mG(Y )−mG(X)+mG(Y ∩X) ≥ mG(V )− 1

2mG(V )− 1
2mG(V )+1 =

1, so the assertion is satisfied.
3. By X being tight, Y being dangerous, (17) and (16), we have 0+1 ≥ sG(X)+
sG(Y ) ≥ sG(X ∩ Y ) + sG(Y ∪ X) ≥ 0 + sG(Y ∪ X), and the assertion is
satisfied.

Claim 21. Let M = max{pG(X) : X ⊆ V }. If W is an inclusionwise minimal set
satisfying pG(W ) = M , X is a dangerous set, w, x is a pair of mG-positive elements,
w ∈W ∩X, and x ∈ X \W , then the following hold:

1. W ⊆ X,
2. pG(X) = M , and mG(X \W ) = 1.

Proof.
1. Suppose that W \X 6= ∅. Then, by X being dangerous, pG(W ) = M , (14),

(7), the minimality ofW , and w ∈W∩X, we havemG(X)−1+M ≤ pG(X)+
pG(W ) ≤ pG(X \W ) + pG(W \X) < mG(X \W ) +M ≤ mG(X)− 1 +M , a
contradiction, and the assertion follows.

2. By the definition of M , X being dangerous, point 1, the modularity of mG,
(7), x ∈ (X \W )∩V+(mG), and pG(W ) = M , we have M + 1 ≥ pG(X) + 1 ≥
mG(X) = mG(W ) + mG(X \W ) ≥ pG(W ) + 1 = M + 1, so equality holds
everywhere, and the assertion follows.

Lemma 22. If mG is P-feasible and no (pG,P)-allowed splitting off exists, then
pG(X) ≤ 1 for all X ⊆ V .

Proof. Suppose that M = max{pG(X) : X ⊆ V } ≥ 2. Let Y be an inclusionwise
minimal set satisfying pG(Y ) = M . By the symmetry of pG, we have pG(V \Y ) = M ,
and let Z ⊆ V \ Y be a minimal set satisfying pG(Z) = M . By mG being pG-
admissible, Y and Z contain mG-positive elements.

Let y ∈ Y and z ∈ Z be mG-positive elements. No dangerous set X contains
y and z, since otherwise Claim 21 would imply Y ∪ Z ⊆ X and 1 = mG(X \ Y ),
and then, by mG being modular and nonnegative and by (7), we would have 1 =
mG(X \ Y ) ≥ mG(Z) ≥ pG(Z) = M ≥ 2, a contradiction. It follows, by Lemma 19,
that the pair y, z is pG-admissible. Since there exists no allowed splitting off, the pair
y, z is not rainbow.

Then, the set of the mG-positive elements of Y ∪ Z is either a subset of some
P ∈ P or is disjoint from a dominating color class P ′ ∈ P. Since mG is P-feasible,
there exists an mG-positive element x of V \ (Y ∪ Z) that belongs to a dominating
color class (if there exists one). Then, in the second case, x ∈ P ′. For y ∈ V+(mG)∩Y
and z ∈ V+(mG) ∩ Z, x, y and x, z are rainbow pairs; hence there exist a dangerous
set X containing x, y and a dangerous set X ′ containing x, z. Claim 21 applies to X
and Y and also to X ′ and Z; hence pG(X) = pG(X ′) = M and mG(X ∩X ′) = 1. By
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Claim 20.2, X and X ′ are crossing, and now (13) implies that pG(X ∩ X ′) = M ≥
2 > mG(X ∩X ′), which contradicts the pG-admissibility of mG.

Claim 23. Let M := {M1,M2} be a family of maximal dangerous sets. If
mG(M?

i ) ≥ 1 for i = 0, 1, 2, then the following hold:
1. sG(M1) = sG(M2) = 1, M1 ∩M2 is tight, and sG(M1 ∪M2) = 2;
2. M1 \M2 and M2 \M1 are tight and mG(M?

0 ) = 1;
3. M?

i is a maximal tight set for i = 0, 1, 2.

Proof. By Claim 20.2, mG(M?
i ) ≥ 1 for i = 0, 1, 2, and by Observation 5, M1 and

M2 are crossing p0-positive sets. Thus (17) and (18) apply to M1 and M2.
1. ByM1 andM2 being dangerous, (17), (16), andM1∪M2 not being dangerous,

we have 1 + 1 ≥ sG(M1) + sG(M2) ≥ sG(M1 ∩M2) + sG(M1 ∪M2) ≥ 0 + 2,
so equality holds everywhere and the assertion follows.

2. By M1 and M2 being dangerous, M?
i 6= ∅, (18), (16), and mG(M?

0 ) ≥ 1, we
get 1+1 ≥ sG(M1)+sG(M2) ≥ sG(M1\M2)+sG(M2\M1)+2mG(M1∩M2) ≥
0 + 0 + 2, so equality holds everywhere and the assertion follows.

3. By parts 1 and 2 of this claim, M1 and M2 being dangerous, and Claim 20.3,
we have the assertion.

Claim 24. Let M = {M1, . . . ,M`} be a family of maximal dangerous sets with
` ≥ 3. If mG(M?

i ) ≥ 1 for i = 0, . . . , `, then the following hold:
1. M?

i is a maximal tight set and Mi = M?
i ∪M?

0 ;
2. mG(M?

i ) = 1;
3. sG(M?

j ∪M?
k ) = 1 for 1 ≤ j < k ≤ `.

Proof.
1. By mG(M?

i ) ≥ 1, there exists an mG-positive element ui in M?
i for i =

0, . . . , `. By applying Claim 23.3 to Mj ,Mk (1 ≤ j < k ≤ `), we get that
Mj ∩Mk = Tu0

, Mj \Mk = Tuj
, and Mk \Mj = Tuk

. Then it follows that
M?
i = Tui and Mi = M?

i ∪M?
0 for i = 0, . . . , `, so the assertion is satisfied.

2. Let i, j and k be three different indices between 1 and `. By Claim 23.1, (18)
applied to Mi ∪Mj and Mi ∪Mk, point 1 of the current claim, modularity
of mG, (16), Claim 23.2, and mG(M?

i ) ≥ 1, we have 2 + 2 = sG(Mi ∪Mj) +
sG(Mi ∪Mk) ≥ sG(M?

j ) + sG(M?
k ) + 2mG(M?

0 ) + 2mG(M?
i ) ≥ 0 + 0 + 2 + 2,

so equality holds everywhere and the assertion is satisfied.
3. ByMi being dangerous, Claim 23.1, (18) applied toMi andMj ∪Mk, point 1

of the current claim, (16), and Claim 23.2, we have 1+2 ≥ sG(Mi)+sG(Mj∪
Mk) ≥ sG(M?

i ) + sG(M?
j ∪M?

k ) + 2mG(M?
0 ) ≥ 0 + 1 + 2, so equality holds

everywhere and the assertion is satisfied.

Using the above claims, we generalize a theorem of [6] on admissible edges. It will
help us to find an allowed pair when no simple C∗4 -obstacle exists but an admissible
pair exists.

For an m-positive element t, let St be the set of m-positive elements admissible
with t.

Lemma 25. Let p : 2V → Z be a symmetric crossing supermodular set function,
and m : V → Z+ a p-admissible degree specification with m(V ) ≥ 4 even. Suppose
that an admissible pair exists. Then
(i) either there is an m-positive element t such that m(St) ≥ 1

2m(V ),
(ii) or there is a simple C∗4 -obstruction.
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Proof. By Lemma 19, let Mt = {M1, . . . ,M`} be a minimal family of maximal
dangerous sets such that t ∈ M?

0 and V+(m) \ St = V+(m) ∩
⋃`
i=1Mi. Suppose that

(i) is violated, that is,

(∗) m(St) ≤
1

2
m(V )− 1 for all t ∈ V+(m).

Claim 26. For all t ∈ V+(m), we have |Mt| = 2, m(M?
0 ) = 1, M?

i a maximal
tight set, and Mi = M?

i ∪M?
0 for all Mi ∈Mt.

Proof. If for some t ∈ V+(m), |Mt| ≤ 1, then, by Claim 20.1, m(St) ≥ m(V ) −
m(M1) ≥ m(V ) − 1

2m(V ) = 1
2m(V ), which contradicts (∗). Thus |Mt| ≥ 2 for all

t ∈ V+(m). Suppose that, for some t0 ∈ V+(m), ` = |Mt0 | ≥ 3. By Claim 24 and
Lemma 19, Sti = St0 for all ti ∈ V+(m) \ St0 . The existence of an admissible pair
implies that there exists u ∈ St0 . Since t0 ∈ Su, {t0, t1, . . . , t`} ⊆ Su. Then (∗) applied
to u, Claim 24.2, and (∗) applied to t0 imply that 1

2m(V ) − 1 ≥ m(Su) ≥ ` + 1 =
m(V \ St0) = m(V ) − m(St0) ≥ 1

2m(V ) + 1, contradiction. Thus |Mt| = 2 for all
t ∈ V+(m), and, by Claim 23 applied to M1 and M2, the claim follows.

By Claim 26, for all t ∈ V+(m) there exist t1, t2 ∈ V+(m) such that Mt =
{Tt ∪ Tt1 , Tt ∪ Tt2} and m(Tt) = 1. Then, by (∗) and m(V ) ≥ 4, for all t ∈ V+(m),
3 = m(Tt) + m(Tt1) + m(Tt2) = m(

⋃
Mt) ≥ 1

2m(V ) + 1 ≥ 3, and hence m(V ) =
|V+(m)| = 4. Let V+(m) = {a1, a2, a3, a4} so thatMa1

= {Ta1
∪ Ta2

, Ta1
∪ Ta4

}.
Claim 27. A = {Ta1

, Ta2
, Ta3

, Ta4
} is a simple C∗4 -obstruction.

Proof. By Claim 26 andMa1 = {Ta1 ∪ Ta2 , Ta1 ∪ Ta4},Ma3 = {Ta2 ∪ Ta3 , Ta3 ∪
Ta4
}. Since Ta1

∪Ta2
is dangerous, so is V \ (Ta1

∪Ta2
) by m(V ) = 4. By maximality,

V \ (Ta1
∪ Ta2

) = Ta3
∪ Ta4

, so {Ta1
, Ta2

, Ta3
, Ta4
} is a partition of V . By m(V ) = 4,

m being p-admissible, the definition of σp, and Claim 26, we have 4 = m(V ) ≥ σp ≥∑4
i=1 p(Tai) = 4, which implies Definitions 7.2 and 7.1d for A. Claim 23.1 implies

that p(Tai) = 1 = p(Tai ∪Tai+1), so Definitions 7.1a and 7.1b hold for A. Since there
exists an admissible pair, Definition 7.1c also holds for A.

By Claim 27, (ii) of Lemma 25 is satisfied, and thus Lemma 25 is proved.

Corollary 28. There exists no pG-admissible pair if and only if there exists a
partition {V1, . . . , V`} of V such that the following hold:

1. ` ≥ 4;
2. for 1 ≤ i < j ≤ `, mG(Vi) = pG(Vi) = pG(Vi ∪ Vj) = 1 and Vi is a maximal

tight set; that is, {V1, . . . , V`} = {Tw : w ∈ V+(mG)};
3. for all e = uv ∈ E there exists 1 ≤ ie ≤ ` such that u, v ⊆ Vie ;
4. pG(

⋃
j∈J Vj) = 1 for all nonempty J ⊂ {1, . . . , `}.

Proof. The sufficiency follows from point 2 and Lemma 19. Let us see the ne-
cessity. For an mG-positive element t, by Lemma 19, let Mt = {M1, . . . ,M`−1} be
a minimal family of maximal dangerous sets containing t and covering all the mG-
positive elements.

1. By Claim 20.2, `− 1 ≥ 3.
2. By Claim 24 applied toMt, {Vi+1 := M?

i : i = 0, . . . , `− 1} is a subpartition
of V satisfying part 2. It is in fact a partition of V because if Z := V \

⋃
i Vi 6=

∅, then by the fact that Mt covers all the mG-positive elements, mG is pG-
admissible, pG is symmetric, and Mi is pG-positive for i = 1, . . . , `− 1, so by
Claim 12.1 applied to Mt, we have 0 = mG(Z) ≥ pG(Z) = pG(

⋃`
i=1 Vi) =

pG(
⋃`−1
i=1 Mi) ≥ pG(M1) ≥ 1, a contradiction.
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3.–4. Note that, by point 2, Claim 13 can be used for any order of the sets in
V1, . . . , V`, and then, by Claims 13.1–2, the assertions in 3 and 4 follow.

Corollary 29. If there exists no pG-admissible pair, mG(V ) ≥ 6, and G′ is
obtained from G by a pG-admissible improvement, then no pG′-admissible pair exists.

Proof. Suppose that G′ is obtained from G by the pG-admissible improvement of
uv to ux, vy. Let V1, . . . , V` be the partition of V provided by Corollary 28 applied
for pG. Then there exist 1 ≤ i, j, k ≤ ` such that x ∈ Vi, y ∈ Vj , and u, v ⊆ Vk. Let
X = Vi ∪ Vj ∪ Vk. By Corollary 28.2, modularity of mG, the improvement being pG-
admissible, and Corollary 28.4, we have 1 = 1+1+1−2 = mG(Vi)+mG(Vj)+mG(Vk)−
2 = mG(X)− 2 = mG′(X) ≥ pG′(X) = pG(X) = 1, and then, by Corollary 28 for pG
and mG(V ) ≥ 6, it follows that {V1, . . . , V`} \ {Vi, Vj , Vk} ∪ {X} satisfies Corollary
28.1–4 for pG′ , and hence, by Corollary 28, no pG′ -admissible pair exists.

3.4. Perilous sets. In the previous section, the study of admissible pairs led to
dangerous sets. Here, we are interested in admissible flips and improvements. This is
where perilous sets come into play; see Lemma 31. We will often implicitly use the
fact that a perilous set is p0-positive; see Observation 5.

Lemma 30. Let x and y be two distinct mG-positive elements and uv an edge of
G. Then we have the following:
(i) Flipping uv for ux is pG-admissible if and only if no dangerous set contains x

and u but not v.
(ii) Improving uv to ux, vy is pG-admissible if and only if both flipping uv for ux

and flipping vu for vy are pG-admissible and no dangerous set contains x, u, v
and y.

Proof.
(i) Recall that flipping uv for ux consists of first unsplitting uv and afterwards split-

ting off at x, u. Since unsplitting uv is pG-admissible, mGuv is pGuv -admissible.
Then, flipping uv for ux is not pG-admissible if and only if splitting off at u, x
is not pGuv -admissible, which is equivalent, by Lemma 19, to the fact that there
exists a dangerous set X with respect to pGuv and mGuv (that is, sGuv (X) ≤ 1)
containing x and u. Then, Observation 4 and sG(X) ≥ 0 imply v /∈ X and
sG(X) = sGuv (X) ≤ 1; that is, X is dangerous with respect to pG and mG and
contains x and u but not v.

(ii) Note that improving uv to ux, vy can be considered as flipping uv for ux and
then splitting off at v, y. Let H (respectively, K) be the graph obtained from G
after flipping uv for ux (respectively, improving uv to ux, vy).
(a) To prove the necessity, suppose that improving uv to ux, vy is pG-admissible;

that is, mK is pK-admissible. Since unsplitting vy is pK-admissible, mH

is pH -admissible; that is, flipping uv for ux is pG-admissible. Similarly,
flipping vu for vy is pG-admissible. If a dangerous set X of G contained
x, u, v, and y, then, by Observation 4 and since mK is pK-admissible, we
would have 1 ≥ sG(X) = sK(X) + 2 ≥ 2, a contradiction.

(b) To prove the sufficiency, suppose that improving uv to ux, vy is not pG-
admissible. If the (uv, ux)-flip or the (vu, vy)-flip is not pG-admissible,
then we are done; hence suppose they are both pG-admissible. Since the
splitting off at v, y is not pH -admissible, there exists, by Lemma 19, a set
X containing y and v which is dangerous with respect to pH and mH .
Note that, since flipping vu for vy is pG-admissible, X is not dangerous
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with respect to pGuv and mGuv . Hence we have sGuv (X) ≥ 2 > 1 ≥
sH(X). Since Guv = Hux, Observation 4 implies that X contains u and
x. Therefore sG(X) = sH(X); thus X is also dangerous with respect to pG
and mG and contains x, u, v and y.

As suggested by Lemma 22, it is reasonable to study the admissibility of flips
and improvements when pG ≤ 1. The following lemma reveals how perilous sets
arise in the process. In fact, perilous sets will always be studied when pG ≤ 1 and
{Tw, w ∈ V+(mG)} is a partition of V . We derive some of their properties in this
situation. Note that, then, Tx ∩ Ty = ∅ whenever x and y are distinct mG-positive
elements.

Lemma 31. Suppose that pG ≤ 1, {Tw, w ∈ V+(mG)} is a partition of V , x, y, z ∈
V+(mG), uv ∈ E, and u, v ∈ Tz.
(i) Flipping uv for ux is pG-admissible if and only if there exists no (uv, ux)-perilous

set.
(ii) Improving uv to ux, vy is pG-admissible if and only if neither a (uv, ux)- nor a

(vu, vy)-perilous set exists.

Proof.
(i) The necessity comes from Lemma 30(i) and the definition of perilous sets. To

see the sufficiency, by Lemma 30(i), we just have to show that a dangerous set
X containing u and x but not v is a perilous set. Indeed, by x ∈ V+(mG) ∩X,
mG being modular and nonnegative, X being dangerous, and pG ≤ 1, we have
0 ≤ mG(x) − 1 ≤ mG(X) − 1 ≤ pG(X) ≤ 1. Then, by mG(V ) ≥ 4, X crosses
Tz; therefore, by Claim 18, we have pG(X) = 0, and assertion (i) is proved.

(ii) We apply Lemma 30(ii). First, no dangerous set contains x, u, v, y: if X was
such a set, since pG ≤ 1, we would have 2 ≤ mG(X) ≤ pG(X) + 1 ≤ 2. That
would imply pG(X) = 1 and z /∈ X, and hence X and Tz would be crossing
because mG(V ) ≥ 4, contradicting Claim 18. Then, applying point (i) to the
(uv, ux)- or the (vu, vy)-flip gives the assertion.

The following results will be applied when either no admissible splitting off exists
or a simple C∗4 -obstacle exists.

Claim 32. Suppose that pG ≤ 1, {Tw, w ∈ V+(mG)} is a partition of V , x, z ∈
V+(mG), x 6= z, uv ∈ E, and u ∈ Tz. If X is a (uv, ux)-perilous set, then the
following hold:

1. mG(Tw) = 1 for all w ∈ V+(mG);
2. mG(X ∩ Tz) = 0, pG(X ∩ Tz) = 0, pG(X ∪ Tz) = 1, and d(X,Tz) = 0;
3. pG(X \ Tz) ≥ 0, pG(Tz \X) ≥ 0, and d(X,Tz) = 0;
4. X ∪ Tz = Tx ∪ Tz; that is, X \ Tz = Tx.

Proof. By u ∈ X ∩ Tz, x ∈ V+(mG) ∩ (X \ Tz), mG(X) = 1, and mG(V ) ≥ 4,
inequalities (13) and (14) apply to X and Tz.

1. By w ∈ V+(mG) ∩ Tw, Tw being tight, and pG ≤ 1, we have 1 ≤ mG(Tw) =
pG(Tw) ≤ 1, and the assertion follows.

2. By (7), mG(X) = 1, and x ∈ V+(mG) ∩ (X \ Tz), we have pG(X ∩ Tz) ≤
mG(X ∩ Tz) = 0. Then, by X being perilous, Observation 5, (13) applied
to X, and Tz and pG ≤ 1, we get 0 + 1 ≤ pG(X) + pG(Tz) ≤ pG(X ∩ Tz) +
pG(X ∪ Tz)− 2d(X,Tz) ≤ 0 + 1− 0, and the assertion follows.

3. By X being perilous, Observation 5, (14), and pG ≤ 1, we get 0 + 1 ≤
pG(X) + pG(Tz) ≤ pG(X \ Tz) + pG(Tz \X)− 2d(X,Tz) ≤ 1 + 1− 2d(X,Tz),
and the assertion follows.
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4. Since {Tw, w ∈ V+(mG)} partitions V , mG(V ) ≥ 4 and, by mG being
modular, X being perilous, and by parts 1 and 2 of this claim, we have
mG(X ∪ Tz) = mG(X) + mG(Tz) −mG(X ∩ Tz) = 1 + 1 − 0 = 2. Since, by
part 2, pG(X ∪ Tz) = 1 and Tw is tight for w ∈ V+(mG), Claim 18 implies
that X ∪ Tz does not cross Tw. Then, by mG(X ∪ Tz) = 2, X ∪ Tz contains
Tx and Tz and no other Tw; that is, X ∪ Tz = Tx ∪ Tz. Then, Tx ∩ Tz = ∅
implies X \ Tz = Tx.

Corollary 33. Suppose that pG ≤ 1, {Tw, w ∈ V+(mG)} is a partition of V ,
z ∈ V+(mG), uv ∈ E, and u ∈ Tz. If x ∈ V+(mG) \ {z} and v /∈ Tz, then no
(uv, ux)-perilous set exists.

Proof. Indeed, if X is (uv, ux)-perilous for some x ∈ V+(mG) \ {z}, then, by
Claim 32.4, we have X \ Tz = Tx. Moreover, by Claim 32.3, we have d(X,Tz) = 0,
and hence v ∈ X ∪ Tz. Since, by definition, v /∈ X, we get v ∈ Tz. However, by
assumption, v /∈ Tz. This contradiction proves the corollary.

For uv ∈ E and z ∈ V+(mG) such that u, v ∈ Tz, let Ruv= {x ∈ V+(mG) \ {z} :
there exists a (uv, ux)-perilous set} and Ruv be the family of (uv, ux)-perilous sets
for x ∈ Ruv. Note that Ruv 6= Rvu and Ruv 6= Rvu.

Claim 34. Suppose that pG ≤ 1 and {Tw, w ∈ V+(mG)} is a partition of V,
uv ∈ E, z ∈ V+(mG), u, v ∈ Tz. Then the following hold:

1. If X and X ′ are respectively (uv, ux)- and (uv, ux′)-perilous sets for distinct
x, x′ ∈ Ruv, then d(X,X ′) = 1, X ∩X ′ = X ∩Tz = X ′∩Tz, pG(X ∩X ′) = 0,
and pG(X ∪X ′) = 0.

2. If X and X ′ are respectively (uv, ux)- and (vu, vx′)-perilous sets for x, x′ ∈
Ruv, then X ∩X ′ = ∅, x 6= x′, pG(Tz \X) = pG(Tz \X ′) = 0, and pG(Tz \
(X ∪X ′)) = 1.

3. If |Ruv| ≥ 2, then there exists a unique Xuv ⊂ Tz such that Ruv = {Xuv∪Tx :
x ∈ Ruv}.

4. If |Ruv| ≥ 2 and all the edges of G are contained in members of the partition
{Tw, w ∈ V+(mG)} of V , then dG(Xuv) = 1 and p0(Xuv) = 1.

5. If u′v′ ∈ E, u′, v′ ∈ Tz, |Ruv| ≥ 2, |Ru′v′ | ≥ 2, and Ruv ∩ Ru′v′ 6= ∅, then
{Xuv, Xu′v′} is laminar.

Proof.
1. Since uv connects X ∩X ′ and V \ (X ∪X ′) and pG ≤ 1, applying (14) to the

perilous sets X and X ′ gives pG(X \X ′) = pG(X ′ \X) = 1 and d(X,X ′) = 1.
By Claim 32.4, we have Tx = X \ Tz and Tx ∩X ′ = ∅; hence Tx ⊆ X \X ′.
Since mG(X \X ′) = 1, the maximality of Tx implies X \X ′ = Tx. Similarly,
we have X ′ \X = Tx′ . Thus X ∩X ′ = X ∩ Tz = X ′ ∩ Tz.
Then, by Claim 32.2, pG(X ∩ X ′) = 0. By (13) applied to X and X ′ and
Claim 18, we get 0+0 = pG(X)+pG(X ′) ≤ pG(X∩X ′)+pG(X∪X ′) ≤ 0+0,
and the assertion follows.

2. By Claim 32.1 and x ∈ Ruv, we have x ∈ X \Tz. Note that u ∈ (X \X ′)∩Tz,
v ∈ (X ′\X)∩Tz, and, by Claim 32.2, z ∈ Tz\(X∪X ′). If X∩X ′ 6= ∅, then X
and X ′ are crossing, and, bymG(V ) ≥ 4 and Claim 32.1–4, X∪X ′ and Tz are
also crossing. Then, by X and X ′ being perilous, (13) applied to X and X ′,
uv connecting X\X ′ and X ′\X, pG ≤ 1, and Claim 18 applied for X∪X ′ and
Tz, we have 0+0 = pG(X)+pG(X ′) ≤ pG(X∩X ′)+pG(X∪X ′)−2d(X,X ′) ≤
1 + 0− 2, a contradiction.
By X ∩X ′ = ∅, x ∈ X, and x′ ∈ X ′, we have x 6= x′.
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Let Y = Tz \X and Y ′ = Tz \X ′. Claim 32.3 applied to Tz and X (and X ′)
gives that pG(Y ), pG(Y ′) ≥ 0. Hence, since uv enters Y and Y ′, they are
p0-positive. Moreover they cross; thus, by (13) applied to Y and Y ′, pG ≤ 1,
and uv connecting Y \ Y ′ and Y ′ \ Y , we have 0 = pG(Y ) = pG(Y ′) and
1 = pG(Y ∩ Y ′), and the assertion follows.

3. By |Ruv| ≥ 2, there exist (uv, ux)- and (uv, ux′)-perilous sets X and X ′ for
distinct x, x′ ∈ Ruv. Defining Xuv = X ∩X ′, point 1 gives the assertion.

4. By point 3, Xuv exists. By point 1 and the fact that all the edges of G are
contained in members of the partition {Tw, w ∈ V+(mG)} of V , dG(Xuv) = 1
and pG(Xuv) = 0. Then, by p0 = pG + dG, the assertion follows.

5. Suppose indirectly that {Xuv, Xu′v′} is not laminar. Then Xuv and Xu′v′ are
crossing. Note that it is possible that u′v′ = vu. By |Ruv| ≥ 2, Ruv∩Ru′v′ 6= ∅,
and point 3 of this claim, there exist two distinct x, y ∈ V+(m) \ {z} such
that X = Xuv ∪ Tx is a (uv, ux)-perilous set, X ′ = Xuv ∪ Ty is a (uv, uy)-
perilous set, and Y = Xu′v′ ∪ Ty is a (u′v′, u′y)-perilous set. Note that X
and Y are crossing. By X ∩ Y 6= ∅ and part 2 of this claim, u′v′ 6= vu.
Since pG ≤ 1, applying (14) to X and Y , and then Claim 18, gives that
pG(X \ Y ) = pG(Y \X) = 0. We have three cases, as follows:

i. If u /∈ Xu′v′ , then X \ Y is a (uv, ux)-perilous set, so by point 3 of this
claim, we have Xuv ∪ Tx = X \ Y ⊂ Xuv ∪ Tx, a contradiction.

ii. If u ∈ Xu′v′ and v /∈ Xu′v′ , then Y is a (uv, uy)-perilous set, so by point
3 of this claim, we have Xuv ∪ Ty = Y = Xu′v′ ∪ Ty, a contradiction.

iii. If u, v ∈ Xu′v′ , then the (vu, vy)-perilous set Y \ X and the (uv, uy)-
perilous set X ′ contradict point 2 of this claim.

We reformulate an important part of Claim 34.2 as follows.

Lemma 35. Suppose that pG ≤ 1, {Tw, w ∈ V+(mG)} is a partition of V , x, z ∈
V+(mG), x 6= z, uv ∈ E, and u, v ∈ Tz. If there exists a (uv, ux)-perilous set, then
no (vu, vx)-perilous set exists.

Proof. Suppose that X and X ′ are (uv, ux)- and (vu, vx)-perilous sets. Then, by
definition and by Claim 34.2, we have x ∈ X ∩X ′ = ∅, a contradiction.

From now on, for e = uv ∈ E, we say that Xe exists whenever one of Xuv and
Xvu exists; that is, one of |Ruv| and |Rvu| is greater than or equal to 2.

The following claim will be applied when no admissible splitting off exists.

Claim 36. Suppose thatmG is allowed, no pG-admissible pair exists, z ∈ V+(mG),
e = uv ∈ E, u, v ∈ Tz, and no allowed improvement exists for e. Then the following
statements hold:

1. There exists a (uv,w)-perilous set for some w ∈ V+(mG) \ {z}.
2. If X is a (uv, ux)-perilous set for some x ∈ V+(mG)\{z}, then Tw∪ (X ∩Tz)

is a (uv, uw)-perilous set for all w ∈ V+(mG) \ {z}.
3. Xe is well defined, and p0(Xe ∪ Tw) = 1 for all w ∈ V+(mG) \ {z}.

Proof. By Lemma 22, we have pG ≤ 1. Moreover, by Corollary 28, we have
mG(V ) ≥ 4, that {Tw, w ∈ V+(mG)} is a partition of V , and p(Tx ∪ Ty) = 1 for all
x, y ∈ V+(mG). Suppose that mG(P1) = max{mG(P ) : P ∈ P}.

1. Without loss of generality there exist x ∈ V+(mG)∩P1 and y ∈ V+(mG) \P1

such that x 6= z 6= y. By possibly exchanging u and v, we can assume that
c(u) 6= c(x) and c(v) 6= c(y). Then, since improving uv to ux, vy is not
allowed, it is not pG-admissible, and, by Lemma 31(ii), the assertion follows
for w = x or w = y.

D
ow

nl
oa

de
d 

03
/0

1/
17

 to
 1

34
.1

48
.1

0.
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTIPARTITE COVERING OF CONNECTIVITY FUNCTIONS 351

2. Let w ∈ V+(mG) \ {x, z}. Since mG(V ) ≥ 4, there exists y ∈ V+(mG) \
{x,w, z}. Apply (3) to X and W = Tx ∪ Tw to get that pG(X ∪W ) ≥ 0.
Now apply (4) to X ∪W and Tx ∪ Ty to obtain pG(Tw ∪ (X ∩ Tz)) ≥ 0, and
then, since this set crosses the pG-positive tight set Tz, we get, by Claim 18,
that pG(Tw ∪ (X ∩ Tz)) = 0. Therefore, by Claim 32.1–2, Tw ∪ (X ∩ Tz) is a
(uv, uw)-perilous set and the assertion follows.

3. By points 1 and 2 of this claim, mG(V ) ≥ 4, and Claim 34.3, Xuv or Xvu

exists, so by Lemma 35, exactly one of them exists; thus Xe is well-defined.
By point 2 of this claim, Xe ∪ Tw is perilous, so pG(Xe ∪ Tw) = 0. Then, by
Corollary 28.3, we have dG(Tw) = 0; by Claim 34.4, we have dG(Xe) = 1;
and hence, by p0(Xe ∪ Tw) = pG(Xe ∪ Tw) + dG(Xe ∪ Tw) = 0 + 1 = 1, the
assertion follows.

3.5. A special full partition. Let us introduce the following sets and families:

U = {Tw : w ∈ V+(mG)}
⋃
{Xe : e ∈ E},

U∗ = U \
⋃
{U ′ : U ′ ∈ U , U ′ ⊂ U} for all U ∈ U ,

U∗ = {U∗ : U ∈ U}.

Lemma 37. Suppose that mG is allowed, mG(V ) ≥ 4, and that neither a pG-
admissible splitting off nor an allowed improvement exists. Then the following state-
ments hold:

1. {Tw, w ∈ V+(mG)} is a tight partition of V and, for all e = uv ∈ E, there
exists ze ∈ V+(mG) such that u, v ⊆ Tze and Xe ⊂ Tze exists.

2. U∗ is a partition of V .
3. U∗ 6= ∅ for all U ∈ U .
4. p0(Tw ∪ U) = 1 for all w ∈ V+(mG) and U ∈ U .
5. p0(Tw ∪ U∗) ≥ 1 for all w ∈ V+(mG) and U ∈ U .
6. p0(U∗ ∪W ∗) ≥ 1 for all U,W ∈ U .
7. U∗ is a p0-full partition of V .
8. |U∗| = mG(V ) + |E|.
9. m0 is not p0-legal.
10. There exists a P-partite graph F on V that covers p0 with |E(F )| ≤ dim(p0)−

1.

Proof. By Lemma 22, we have pG ≤ 1.
1. By Corollary 28.2–3, {Tw, w ∈ V+(mG)} is a tight partition of V and, for

all e ∈ E, there exists ze ∈ V+(mG) such that e ⊆ Tze . Let e = uv ∈ E.
By Claim 36, we may assume that there exists a (uv, uw)-perilous set for all
w ∈ V+(mG) \ {ze}. Now, by mG(V ) ≥ 4 and Claim 34.3, there exists a
unique Xe ⊆ Tze \ {ze} such that Xe ∪ Tw is the (uv, uw)-perilous set for all
e ∈ E and w ∈ V+(mG) \ {ze}.

2. By point 1 and Claims 36 and 34.5, the family U is laminar, and hence the
assertion follows.

3. If U ∈ U , then either U = Tw for w ∈ V+(mG) or U = Xuv for uv ∈ E. In the
former case, by Claim 32.2, w ∈ U∗, and in the latter case, by Claim 34.4, f
is the only edge entering Xf for all f ∈ E, and hence u ∈ U∗.

4. By Corollary 28.2–3, this point is satisfied for all U ∈ {Tw, w ∈ V+(mG)}.
By Claim 36.3, this point is satisfied for all U ∈ {Xe : e ∈ E}.

5. We may assume, by point 4, that U 6= U∗ and U ⊆ Tx, where x 6= w.
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By mG(V ) ≥ 4, there exists y ∈ V+(mG) \ {w, x}. Apply Claim 12.1 for
{Ty ∪W : W maximal set of U strictly contained in U} and point 4 to deduce
that p0(Ty ∪ X) ≥ 1, where X =

⋃
W∈U,W(U W = U \ U∗ 6= ∅. Now,

(4) applied to Tw ∪ U and Ty ∪ X gives, by point 4, that p0(Tw ∪ U∗) ≥
p0(Tw ∪ U) + p0(Ty ∪X)− p0(Ty) ≥ 1 + 1− 1 ≥ 1, as claimed.

6. By mG(V ) ≥ 4, let x ∈ V+(mG) be such that U ∩ Tx = ∅ and W ∩ Tx = ∅.
Claim 12.1 applies to the family {Tx ∪X∗ : X∗ ∈ U∗ \ {U∗,W ∗}} and gives,
by points 5 and 2 of this lemma, that p0(U∗ ∪W ∗) = p0(V \ (U∗ ∪W ∗)) ≥ 1,
as claimed.

7. If there are no edges, then this assertion comes from Corollary 28.4. Other-
wise, a minimal Xe ∈ U belongs to U∗ and satisfies p0(Xe) = 1 by point 1
and Claim 34.4. Then, by points 2 and 6 of this lemma, Lemma 2.2 implies
that U∗ is a p0-full partition.

8. By point 3, definition of U , Corollary 28.2–3, Lemma 35, mG being modular,
and point 1, we have |U∗| = |U| = |{Tw : w ∈ V+(mG)}|+ |{Xe : e ∈ E}| =∑
w∈V+(mG)mG(Tw) + |E| = mG(V ) + |E|.

9. By point 7, U∗ is a p0-full partition of V , and hence, by point 8, dim(p0) ≥
|U∗| = mG(V ) + |E|. Then, by mG(V ) ≥ 4, we have 1

2m0(V ) = 1
2mG(V ) +

|E| ≤ mG(V ) + |E| − 2 ≤ dim(p0)− 2; that is, m0 is not p0-legal.
10. By Corollary 28.2, |V+(mG)| = mG(V ). By Observation 6, there exists a
P-partite spanning tree T on V+(mG). Since T is a tree, we have |E(T )| =
mG(V )− 1. We claim that T covers pG. Otherwise, by pG ≤ 1, there exists a
set X such that 0 ≤ dT (X) < pG(X) ≤ 1; that is, 0 = dT (X) and pG(X) = 1.
Since T is connected and pG is symmetric, we may suppose that X does
not contain any vertex of V+(mG). Then, by mG being pG-admissible, we
have 0 = mG(X) ≥ pG(X) = 1, a contradiction. Let F := (V,E(T ) ∪ E).
Since T and G are both P-partite, so is F . Since T covers pG, we have
dT (X) ≥ pG(X) = p0(X) − dG(X) for all X ⊂ V , so dF (X) ≥ p0(X) for all
X ⊂ V , that is F covers p0. Finally, by points 8 and 7, we have |E(F )| =
|E(T )|+ |E| = mG(V )− 1 + |E| = |U∗| − 1 ≤ dim(p0)− 1.

4. Degree specified version. In this section we solve the degree specified ver-
sion of our problem: given a symmetric crossing supermodular function p0 : 2V → Z,
a degree specification m0 : V → Z+, and a partition P of V , find a P-partite graph
on V covering p0 and satisfying m0. Note that finding such a graph is equivalent to
finding a complete allowed splitting off.

4.1. Necessary conditions. Here, we provide necessary conditions for the ex-
istence of a complete allowed splitting off.

Lemma 38. Let p0 : 2V → Z be a symmetric crossing supermodular function,
m0 : V → Z+ a degree specification, and P a partition of V . If there exists a complete
allowed splitting off, then m0 is P-feasible, p0-admissible, and p0-legal.

Proof. Let G = (V,E) be a graph obtained by a complete allowed splitting off.
Then G covers p0 and satisfiesm0. Note thatm0(V ) =

∑
v∈V m0(v) =

∑
v∈V dG(v) =

2|E|; hence (19) holds. Since every splitting off is rainbow, we get (20). Hence m0

is P-feasible. By (6) and (5), we have m0(X) =
∑
x∈X m0(x) =

∑
x∈X dG(x) ≥

dG(X) ≥ p0(X); hence we obtain (7), that is, m0 is p0-admissible. Since G covers p0,
G has, by Lemma 2.1, at least dim(p0)−1 edges. By m0(V ) = 2|E|, we get (10); that
is, m0 is p0-legal.
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4.2. Obstacles. It turns out that the conditions that appeared in section 4.1 are
not sufficient to have a complete allowed splitting off. Exceptional structures must be
forbidden in order to get the sufficiency. The description of these structures is given
in section 2. An obstacle is a partition A of V satisfying two types of conditions.
On the one hand, the p- and m-values of the sets in the partition A fulfill rigorous
conditions. On the other hand, the partition A is closely related to the partition P.
We mention that the C∗5 -obstacle arises only for our abstract form of the problem; it
does not exist in the framework of graphs or hypergraphs.

4.2.1. Properties of constructions. In this section we provide some basic
properties of constructions.

Claim 39. Let A = {A1, . . . , A4} be a C∗4 -construction for pG. Then, for i =
1, . . . , 4, the following hold:

1. pG(Ai) + pG(Ai+1)− 1 ≥ pG(Ai ∪Ai+1),
2. pG(Ai) ≥ 1,
3. pG(Ai ∪Ai+1) ≥ 1,
4. A is a simple C∗4 -construction if and only if pG(Ai∪Ai+1) = 1 for i = 1, . . . , 4.

Proof.
1. By Definition 7.1d and the definition of σpG , we have pG(Ai) + pG(Ai+1) ≥
pG(Ai ∪Ai+1), and then, by Definition 7.1a, the assertion follows.

2. By Definition 7.1b and point 1, we have pG(Ai−1) + pG(Ai+1) = pG(Ai−1 ∪
Ai) + pG(Ai ∪Ai+1) ≤ pG(Ai−1) + pG(Ai+1) + 2pG(Ai)− 2, and the assertion
follows.

3. By Definitions 7.1b and 7.1d, point 1, and the symmetry of pG, we have
pG(Ai ∪ Ai+1) = 1

2σpG − pG(Ai−1 ∪ Ai) ≥ 1
2σpG −

1
2 ((pG(Ai−1) + pG(Ai) −

1) + (pG(Ai+1) + pG(Ai+2)− 1)) = 1, and the assertion follows.
4. By Definition 7.1b and points 2 and 3 of this claim, pG(Ai) = 1 for i = 1, . . . , 4

if and only if pG(Ai ∪Ai+1) = 1 for i = 1, . . . , 4, and the assertion follows.

Claim 40. If A = {A1, A2, A3, A4, B1, . . . , Bt} is a C∗5 -construction for pG, then
for J ⊆ {1, . . . , t} and i = 1, . . . , 4 the following hold:

1. pG(Ai ∪Ai+1 ∪
⋃
j∈J Bj) = 1,

2. pG(Ai ∪
⋃
j∈J Bj) = 1,

3. pG(
⋃
j∈J Bj) = 2 if J 6= ∅,

4. pG(Ai ∪Ai+2 ∪
⋃
j∈J Bj) ≤ 0.

Proof. We denote, for I ⊆ {1, . . . , 4} and J ⊆ {1, . . . , t}, I := {1, . . . , 4} \ I and
J := {1, . . . , t} \ J , AI :=

⋃
i∈I Ai, BJ :=

⋃
j∈J Bj , A :=

⋃4
1Ai, and B :=

⋃t
1Bj . Let

i ∈ {1, . . . , 4} and J ⊆ {1, . . . , t}.
1. By Definitions 8.1d, 8.1a, and 8.1c, Claim 12.1 applies to {Ai∪Ai+1}∪{Ai∪
Bj : j ∈ J}∪ {Ai ∪Bj : j ∈ J}. Let I = {i, i+ 1}. Then, using the symmetry
of pG and Definition 8.1d, we get 1 = pG(AI) ≤ pG(AI ∪BJ) ≤ pG(AI ∪B) =
pG(AI) = pG(Ai+2 ∪Ai+3) = 1, and the assertion follows.

2. By Definitions 8.1d, 8.1a and (13) applied to Ai+1∪Ai+2, and Ai+2∪Ai+3, we
have pG(A{i}) ≥ 1. Hence, by Definition 8.1c, Claim 12.1 applies to {A{i}} ∪
{Ai+1 ∪Bj : j ∈ J} ∪ {Ai+1 ∪Bj : j ∈ J}. Then, using the symmetry of pG,
we get 1 ≤ pG(A{i}) ≤ pG(A{i} ∪ BJ) ≤ pG(A{i} ∪ B) = pG(Ai) = 1, and
we have equality everywhere. In particular, by the symmetry of pG, we have
pG(Ai ∪BJ) = pG(A{i} ∪BJ) = 1.

3. Point 2 and the symmetry of pG imply pG(A{4}) = pG(A{2}) = 1. Therefore,
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(13) applied to these two sets and Definition 8.1e give pG(A) ≥ pG(A{4}) +

pG(A{2}) − pG(A1 ∪ A3) ≥ 1 + 1 − 0 = 2. Since J 6= ∅, there exists k ∈
J . By Definitions 8.1a and 8.1c, Claim 12.1 applies to {A} ∪ {A1 ∪ Bj :
j ∈ J} ∪ {A1 ∪ Bj : j ∈ J \ {k}}. Then, by the symmetry of pG, we
have 2 ≤ pG(A) ≤ pG(A ∪ BJ) ≤ pG(A ∪ B{k}) = pG(Bk) = 2, and we
have equality everywhere. In particular, by the symmetry of pG, we have
pG(BJ) = pG(A ∪BJ) = 2.

4. Let I = {i, i + 2}. If pG(AI ∪ BJ) > 0, then, by Definitions 8.1a and 8.1c,
Claim 12.1 applies to {AI∪BJ}∪{Ai∪Bj : j ∈ J}. Then, by the symmetry of
pG and Definition 8.1e, we have 0 < pG(AI ∪BJ) ≤ pG(AI ∪B) = pG(AI) =
pG(Ai+1 ∪Ai+3) ≤ 0, a contradiction.

4.2.2. Properties of obstructions. We show now that obstructions are unique
up to cyclically reordering their elements.

Claim 41. Every set of an obstruction is tight.

Proof. Let A be an obstruction for (p,m). Using that A is a partition of V , that
m is p-admissible by Definitions 7.2, 8.2, and 9.2, then Definitions 7.1d, 8.1f, 9.1d,
and finally Theorem 1, we have m(V ) =

∑
X∈Am(X) ≥

∑
X∈A p(X) = σp = m(V ).

Thus, there is equality everywhere, and every set of A is tight.

Recall that for a C∗5 -construction A = {A1, A2, A3, A4, B1, . . . , Bt}, two elements
of A are distinct nonconsecutive if they are of the form Ai, Ai+2 or Ai, Bj or Bi, Bj
for i 6= j.

Lemma 42. If A is an obstruction for (p,m) and the m-positive elements x and
y belong to distinct nonconsecutive elements of A, then splitting off at x, y is p-
admissible.

Proof. By Claim 41, every set of A is tight. Suppose that the splitting off at x, y
is not p-admissible. Then, by Lemma 19, there exists a maximal dangerous set Y
containing x and y. By Observation 5, p(Y ) ≥ 1. By Claim 20.1, Y ∪ A 6= V for all
A ∈ A. Therefore, by Claim 20.3, Y is the union of elements of A. We address three
cases:

(a) A is a C∗4 -obstruction. Then, by nonconsecutiveness, x ∈ Ai and y ∈ Ai+2 for
some i ∈ {1, . . . , 4}, and hence Ai∪Ai+2 ⊆ Y . By Claim 20.1, the modularity
and nonnegativity of m, Claim 41, and Definitions 7.1d and 7.2, we have
1
2m(V ) ≥ m(Y ) ≥ m(Ai) + m(Ai+2) = p(Ai) + p(Ai+2) = 1

2σp = 1
2m(V );

thus m(Y ) = 1
2σp, and, by Claims 41 and 39.2, Ai∪Ai+2 = Y. By Claim 39.3,

p(Ai ∪ Ai+1) ≥ 1; therefore, (3) and (4) apply to Y and Ai ∪ Ai+1. By
Claim 39.3, (3) and (4), the symmetry of p, Definition 7.1d, and since Y is
dangerous, we get p(Y ) + 1 ≤ p(Y ) + p(Ai ∪ Ai+1) ≤ 1

2 ((p(Ai) + p(Ai+3)) +
(p(Ai+1) + p(Ai+2))) = 1

2σp = m(Y ) ≤ p(Y ) + 1. Thus p(Ai ∪ Ai+1) = 1.
Similarly, p(Ai+1 ∪ Ai+2) = 1. Then, by Claim 39.4, A is a simple C∗4 -
obstruction. Then, by Definition 7.1c, we have 0 ≥ p(Y ) ≥ 1, a contradiction.

(b) A is a C∗5 -obstruction. Let a and b be the number of Ai and Bj contained in Y.
Note that a+ b ≥ 2. By Y being dangerous, m being modular, Claim 41, and
Definitions 8.1a and 8.1b, we have p(Y ) ≥ m(Y )−1 = a+2b−1. By Claim 40
and the symmetry of p, we get 2 ≥ p(Y ). Thus b ≤ 1 and a ≤ 3. Then, by
a+b ≥ 2, we have 1 ≤ a ≤ 3. In this case, Claim 40 gives 1 ≥ p(Y ). It follows
that b = 0 and a = 2. Then, by Definition 8.1e and the nonconsecutiveness of
the two Ai’s contained in Y , and since Y is dangerous, we get 0 ≥ p(Y ) ≥ 1,
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a contradiction.
(c) A is a C∗6 -obstruction. By Definition 9.1c, A is not p-full so, by Claim 13.4

and p(Y ) ≥ 1, Y is consecutive. Then, Claim 13.2 gives p(Y ) = 1. Since Y
is dangerous, 1 = p(Y ) ≥ m(Y )− 1 ≥ 1, and hence m(Y ) = 2; that is, x and
y belong to consecutive sets, a contradiction.

Lemma 43. If A is an obstruction for (pG,mG), then A is the unique partition
of V into maximal p0-positive tight sets.

Proof. Let X be an element of A. By Claim 39.2, Definitions 8.1a–1b and 9.1a,
and Claim 41, X is p0-positive and tight. Let Y be a maximal tight set containing
X, and suppose indirectly that X 6= Y ; that is, since A is a partition of V , Y
intersects some other X ′ ∈ A. Since X is p0-positive, so is Y . By Claim 14.1, we
have X ′ ⊂ Y . By Y being tight and Lemmas 42 and 19, there exists an index i
such that Y = Ai ∪ Ai+1. Then, by mG being modular and Claim 41, we have that
0 = mG(Ai) +mG(Ai+1)−mG(Ai ∪ Ai+1) = pG(Ai) + pG(Ai+1)− pG(Ai ∪ Ai+1) is
even, which contradicts Definitions 7.1a or 8.1a–1d or 9.1a–1b.

To see the uniqueness, let A′ be a partition of V into maximal p0-positive tight
sets. Since the elements of A and A′ are maximal p0-positive tight sets, by Claim 14.1,
the two partitions coincide.

Corollary 44. If there exists a simple C∗4 -, C∗5 -, or C∗6 -obstruction for (pG,mG),
then it is the unique obstruction for (pG,mG), up to cyclically reordering its members.

Proof. By Lemma 43, an obstruction is the unique partition of V into maximal
p0-positive tight sets. Since, by Definition 7.1, 8.1, or 9.1, in a simple C∗4 -, C∗5 -, or
C∗6 -obstruction for (pG,mG), the union of any two sets of the obstruction has pG-
value 1 if they are consecutive and nonpositive pG-value otherwise, we get the desired
result.

4.2.3. Inherited obstructions. In the next three claims we prove that splitting
off a special admissible pair in an obstruction gives rise to another obstruction. These
results will be used in three different ways. First, they will help us to show that the
existence of an obstruction implies the existence of a complete p-admissible splitting
off. Second, we use the result about C∗5 -obstructions to show that if a C∗5 -obstruction
exists that is not a C∗5 -obstacle, then a complete allowed splitting off exists. Finally,
these results will be applied in the next section about inherited obstacles.

We consider the three different obstructions separately.

Claim 45. A C∗4 -obstruction A = {A1, . . . , A4} for (pG,mG) is a C∗4 -obstruction
for (pḠ,mḠ), where Ḡ is obtained from G by a pG-admissible splitting off at u ∈ Aj
and v ∈ Aj+1 for some j ∈ {1, . . . , 4}.

Proof. By definition, mḠ(X) = mG(X) − χX(χu + χv) and pḠ(X) = pG(X) −
duv(X). We verify the conditions of Definition 7 one by one.

7.1a Since, by (1) applied to Ai and Ai+1, duv(Ai)+duv(Ai+1)−duv(Ai∪Ai+1) =
2duv(Ai, Ai+1) is even, Definition 7.1a for pG implies that Definition 7.1a
holds for pḠ.

7.1b Since duv(Ai−1 ∪Ai) + duv(Ai ∪Ai+1) = 1 = duv(Ai−1) + duv(Ai+1), Defini-
tion 7.1b for pG implies that Definition 7.1b holds for pḠ.

7.1c If Definition 7.1c did not hold for pḠ and mḠ, then pḠ(Ai) = 1 for i =
1, . . . , 4 and pḠ(Aj ∪ Aj+2) ≥ 1. Then, pG(Aj ∪ Aj+2) ≥ 2, pG(Aj+2) =
pG(Aj+3) = 1, and pG(Aj) = pG(Aj+1) = 2. Since the splitting off is pG-
admissible, by Lemma 19, Aj ∪Aj+1 is not dangerous for mG and pG. Then,
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by Claim 41 and the modularity of mG, 4 = 2 + 2 = pG(Aj) + pG(Aj+1) =
mG(Aj) +mG(Aj+1) = mG(Aj ∪Aj+1) ≥ pG(Aj ∪Aj+1) + 2, and hence, by
Definition 7.1b, pG(Aj ∪Aj+3) ≥ 1. Then, by (14), 1 + 2 ≤ pG(Aj ∪Aj+3) +
pG(Aj ∪Aj+2) ≤ pG(Aj+2) + pG(Aj+3) = 1 + 1, a contradiction.

7.1d BymḠ being pḠ-admissible and the definition of σp, we have σpḠ ≤ mḠ(V ) =

mG(V )− 2 =
∑4

1 pḠ(Aj) ≤ σpḠ , and Definition 7.1d follows.
7.2 By Claim 17, mḠ is minimally pḠ-admissible.

Claim 46. Let A = {A1, A2, A3, A4, B1, . . . , Bt} be a C∗5 -obstruction for (pG,mG),
Ḡ obtained from G by a pG-admissible splitting off at a vertex of Ai (respectively, Bi)
and a vertex of Bj (respectively, Bj 6= Bi), and A′ obtained from A by deleting Bj
and replacing Ai (respectively, Bi) by Ai ∪Bj (respectively, Bi ∪Bj).

1. If t = 1, then A′ is a simple C∗4 -obstruction for (pḠ,mḠ).
2. If t ≥ 2, then A′ is a C∗5 -obstruction for (pḠ,mḠ).

Proof. Since the splitting off is pG-admissible, mḠ is pḠ-admissible. The min-
imality of mḠ follows from Claim 17. Hence Definition 7.2 if t = 1 (respectively,
Definition 8.2 if t ≥ 2) holds for mḠ and pḠ.

1. Definition 7.1a–1d for A′ and pḠ follows from Definition 8.1a–1f for A and
pG and Claim 40. Note that p(A′i) = 1 for all A′i ∈ A′ also follows.

2. Definition 8.1a–1e for A′ and pḠ follows from Definition 8.1a–1e and Claim 40
for A and pG. By Claim 17, Theorem 1, and Definition 8.1f for A and pG,
we have σpḠ = mḠ(V ) = mG(V )− 2 = σpG − 2 = 2t+ 4− 2 = 2(t− 1) + 4;
hence Definition 8.1f holds for A′ and pḠ.

Claim 47. If A is a C∗6 -obstruction for (pG,mG) and Ḡ is obtained from G by
splitting off at u ∈ Ai−1, v ∈ Ai+1 for some i ∈ {1, . . . , 4}, then A′ = {A′1, A′2, A′3, A′4}
= {Ai−1 ∪Ai ∪Ai+1, Ai+2, Ai+3, Ai+4} is a simple C∗4 -obstruction for (pḠ,mḠ).

Proof. By Definition 9.1a and Claim 13.2 for A, we have pḠ(A′j∪A′j+1) = pG(A′j∪
A′j+1) = 1 = pG(A′j) = pḠ(A′j+1) for j = 1, . . . , 4. Thus A′ satisfies Definitions 7.1a
and 7.1b. By Definition 9.1c applied to Ai+2 ∪ Ai+4 and the symmetry of pG, A′
satisfies Definition 7.1c. Since, by Lemma 42, the splitting off is pG-admissible, mḠ

is pḠ-admissible. Then σpḠ ≤ mḠ(V ) = mG(V )− 2 = 6− 2 = 4 =
∑4

1 pḠ(A′j) ≤ σpḠ ,
and Definitions 7.1d and 7.2 follow.

Lemma 48. If A is an obstruction for (p,m), then there exists a complete p-
admissible splitting off.

Proof. Let us consider the following cases:
(a) If A is a simple C∗4 -obstruction, then, by Lemma 42, we are done.
(b) If A is a C∗4 -obstruction that is not simple, then, by Corollary 44, no simple C∗4 -

obstruction exists. Moreover, by Claim 41 and Definitions 7.1d and 7.2, we have
m(Ai∪Ai+1) = 1

2m(V ). Therefore, by Lemma 25, there exists an admissible pair
u, v such that u ∈ Aj and v ∈ Aj+1 for some j ∈ {1, . . . , 4}. By Claim 45, after
splitting off this pair, A remains a C∗4 -obstruction. By repeating this, we arrive
at the first case, and then we are done.

(c) If A is a C∗5 -obstruction, then, by the repeated application of Lemma 42 and
Claim 46, we arrive at the first case, and then we are done.

(d) If A is a simple C∗6 -obstruction, then, by Lemma 42 and Claim 47, we arrive at
the first case, and then we are done.

Lemma 49. Suppose that mG is P-feasible. If there exists a simple C∗4 -obstruction
(respectively, C∗5 -obstruction) for (pG,mG) but no C∗4 -obstacle (respectively, C∗5 -obstacle)
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for (pG,P,mG), then there exists a complete (pG,P)-allowed splitting off.

Proof. We prove the two cases separately.
1. First, suppose that A = {A1, . . . , A4} is a simple C∗4 -obstruction for (pG,mG)

but not an obstacle for (pG,P,mG). Let {ai} = Ai∩V +(mG) for i = 1, . . . , 4.
Then, by Lemma 42, splitting off at a1, a3 is pG-admissible. Since Defini-
tion 7.3 does not hold, it is P-feasible, hence (pG,P)-allowed, and we are
done.

2. Now, suppose that A = {A1, A2, A3, A4, B1, . . . , Bt} is a C∗5 -obstruction for
(pG,mG) but not an obstacle for (pG,P,mG). We proceed by induction
on t. Let {ai} = Ai ∩ V + for i = 1, . . . , 4 and {bj , b′j} = Bj ∩ V + for
j = 1, . . . , t. Without loss of generality, we may assume that a1, b1 is rainbow;
thus splitting off at a1, b1 is (pG,P)-allowed by Lemma 42. Let p′ := pGa1b1

and m′ := mGa1b1
.

Our approach is the following. First, split off at a1, b1 and let A′ = {A1 ∪
B1, A2, A3, A4, B2, . . . , Bt} be the obstruction for (p′,m′) given by Claim 46.
By Corollary 44, if an obstacle exists for (p′,P,m′), then it is A′. If none
exists, then we are done by the previous case or by induction. Otherwise,
we will provide a (p′,P)-allowed flip to get rid of the obstacle. We will
perform either a (b1a1, b1a2)- or a (a1b1, a1b

′
1)-flip; note that both are p′-

admissible because they consist of an unsplitting and a splitting off which is
pG-admissible by Lemma 42.
Distinguish the following cases, where we assume that m′(P1) ≥ m′(P2) ≥
· · · ≥ m′(Pr), and say that the color of P1 and P2 are red and blue:
(a) A′ is a simple C∗4 -obstacle or a C∗5 -obstacle of type 1 for (p′,P,m′). By

Definition 8.1a, we may assume that the color of bj is red for j = 2, . . . , t
and either i. a2, a4 or ii. b′1, a3 are both red.
i. Since A is neither a C∗5 -obstacle of type 1 nor a C∗5 -obstacle of

type 2 for (pG,P,mG), none of b1, b′1 is red, and a1, a3, b
′
2, . . . , b

′
t are

not all of the same color. Therefore, b1, a2 is a rainbow pair. As
noted before, the (b1a1, b1a2)-flip is p′-admissible; thus it is (p′,P)-
allowed. Let m′′ = mGa2b1 and p′′ = pGa2b1

. By Claim 46, A′′ =
{A1, A2∪B1, A3, A4, B2, . . . , Bt} is an obstruction for (p′′,m′′), and
it is not an obstacle of type 2 for (p′′,P,m′′) because c(b′1) 6= c(a4),
nor of type 1 because a1, a3, b

′
2, . . . , b

′
t are not all of the same color.

ii. Then, the red m′-positive elements are a3, b
′
1, b2 . . . , bt. Moreover,

since A is not a C∗5 -obstacle of type 1 for (pG,P,mG), a1 is not red.
We may assume that m′(P2) < m′(V )/2; that is, a2, a4, b

′
2, . . . , b

′
t

are not all of the same color, as we dealt with in the case above.
A. If b1 is red, then b1, a2 is a rainbow pair; hence the (b1a1, b1a2)-

flip is (p′,P)-allowed. Letm′′ = mGa2b1 and p′′ = pGa2b1
. Then,

by Claim 46, A′′ = {A1, A2 ∪ B1, A3, A4, B2, . . . , Bt} is an ob-
struction for (p′′,m′′), and it is not an obstacle for (p′′,P,m′′)
because b′1 and a3 are m′′-positive elements with the same color
that belong to distinct consecutive sets.

B. If b1 is not red, then, since m′(P2) < m′(V )/2 and b′1 is red,
a1, b

′
1 is a rainbow pair; hence the (a1b1, a1b

′
1)-flip is (p′,P)-

allowed. Since b1 is not red but a3 is red, and a2, a4, b
′
2, . . . , b

′
t

are not all of the same color, the obstruction A′ for (p′′,m′′) is
not an obstacle for (p′′,P,m′′).
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(b) A′ is a C∗5 -obstacle of type 2 (but not of type 1) for (p′,P,m′). Note
that mG(Pi) ≤ m′(Pi) + 1 = m′(V )/2 = mG(V )/2− 1 for i = 1, 2, so we
may assume that b′1 and a3 are red and a2 and a4 are blue.
i. If b1 is not blue, then b1, a2 is a rainbow pair; hence the (b1a1, b1a2)-

flip is (p′,P)-allowed. A′′ = {A1, A2 ∪ B1, A3, A4, B2, . . . , Bt} is an
obstruction for (p′′,m′′), yet not an obstacle for (p′′,P,m′′) since a3

and b′1 are red m′′-positive elements and belong to distinct consec-
utive sets of A′′.

ii. If b1 is blue, then, since A is not a C∗5 -obstacle of type 2 for (pG,P,
mG), a1 is not red. Then a1, b

′
1 is a rainbow pair, and hence the

(a1b1, a1b
′
1)-flip is (p′,P)-allowed. Let m′′ = mGa2b1

and p′′ =
pGa2b1

, and note that A′ is also an obstruction for (p′′,m′′) but not
an obstacle for (p′′,P,m′′) because b1 and a2 are blue m′′-positive
elements that belong to distinct consecutive sets of A′.

4.2.4. Inherited obstacles. In this section, we will see that splitting off an
allowed pair in an obstacle gives rise to another obstacle. This implies a link between
obstacles and complete allowed splitting off; see Lemma 54. In this section, p0 : 2V →
Z is a symmetric crossing supermodular function, G = (V,E) is a graph, and mG is
a pG-admissible degree specification with mG(V ) ≥ 4.

First let us see a result about an inherited simple C∗4 -obstacle after an allowed
flipping.

Claim 50. Let A be a simple C∗4 -obstacle for (pG,P,mG), {aj} = Aj ∩ V +(mG)
for j = 1, . . . , 4, uv ∈ E, u ∈ Ai, v ∈ Ai+1, c(ai+1) = c(ai−1), and G′ be obtained
from G by the allowed (vu, vai)-flip. Then A is a simple C∗4 -obstacle for (pG′ ,P,mG′).

Proof. Note that pG(Ai ∪Aj) = pG′(Ai ∪Aj) for 1 ≤ i ≤ j ≤ 4. By Definition 7.2
for pG, the fact that the flipping is allowed, the definition of σpG′ and Definition 7.1d
for pG, we have σpG = mG(V ) = mG′(V ) ≥ σpG′ ≥

∑4
i=1 pG′(Ai) =

∑4
i=1 pG(Ai) =

σpG . Then Definitions 7.1–2 for pG imply that Definitions 7.1–2 are satisfied for pG′ .
Since c(ai+1) = c(ai−1), Definition 7.3 is also satisfied for pG′ .

Now we show that an obstacle is inherited after an allowed splitting off. Let us
see the three different obstacles separately.

Claim 51. A C∗4 -obstacle A for (pG,P,mG) is a C∗4 -obstacle for (pḠ,P,mḠ),
where Ḡ is obtained from G by an allowed splitting off.

Proof. By Definition 7.3, there exist ` ∈ {1, 2} and P ∈ P such that the mG-
positive elements of A` ∪ A`+2 are the mG-positive elements of P . Therefore, by
Definitions 7.1d and 7.2, P is dominating; hence we may assume that the two mG-
positive elements u and v of V involved in the allowed splitting off satisfy u ∈ Aj and
v ∈ Aj+1 for some j. By Claim 45, A is a C∗4 -obstruction for (pḠ,mḠ). Definition 7.3
for mG and the fact that splitting off is allowed immediately imply that Definition 7.3
holds for mḠ.

Claim 52. Let A = {A1, A2, A3, A4, B1, . . . , Bt} be a C∗5 -obstacle for (pG,P,mG),
and let Ḡ be obtained from G by an allowed splitting off. Then there exists for
(pḠ,P,mḠ) a C∗5 -obstacle if t ≥ 2 and a simple C∗4 -obstacle if t = 1.

Proof. By Lemmas 19 and 42 and Definition 8.1d, the pair {u, v} of elements that
we split off is either (a) {ai, bj} for some ai ∈ Ai (1 ≤ i ≤ 4) and bj ∈ Bj (1 ≤ j ≤ t),
or (b) {bj , bk} for some bj ∈ Bj , bk ∈ Bk (1 ≤ j < k ≤ t). In case (a), let A′ be
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obtained from A by replacing Ai by Ai ∪ Bj and deleting Bj , and in case (b), let
A′ be obtained from A by replacing Bj and Bk by Bj ∪ Bk. By Claim 46, A′ is
a simple C∗4 -obstruction or a C∗5 -obstruction for (pḠ,P,mḠ). We show below that
Definition 8.3 also holds for A′ and (pḠ,P,mḠ). There are two possible cases:

1. If A is a C∗5 -obstacle of type 1 for (pG,P,mG), then there exists ` ∈ {1, 2}
and a color P , say red, such that A`, A`+2 and every Bj contains a red
mG-positive element. By Definitions 8.1f, 8.2, (20), and then 8.3a, we have
t + 2 =

σp

2 = mG(V )
2 ≥ mG(P ) ≥ t + 2, and thus mG(P ) = mG(V )

2 ; that is,
red is dominating. Therefore, the splitting off being allowed, exactly one of
u and v is red.
(a) If i ∈ {`, ` + 2}, then Ai ∪ Bj contains one red mḠ-positive element,

namely the redmG-positive element contained inBj . Otherwise, A`, A`+2

and every Bj′ (j′ 6= j) contains a red mḠ-positive element; that is, Def-
inition 8.3a holds for A′ and (pḠ,P,mḠ).

(b) We may assume without loss of generality that bj is red. Then Bj ∪Bk
contains one red mḠ-positive element, namely the red mG-positive ele-
ment contained in Bk; hence A`, A`+2 and every Bj′ (j′ 6= j, k) contains
a red mḠ-positive element; that is, Definition 8.3a holds for A′ and
(pḠ,P,mḠ).

2. If A is a C∗5 -obstacle of type 2 but not of type 1 for (pG,P,mG), then there
exist i′ ∈ {1, 2}, j0 ∈ {1, . . . , t} and two colors, say red and blue, such
that Ai′ , Ai′+2 and every Bj′ (j′ 6= j0) contains a red mG-positive element,
Ai′+1, Ai′+3 and every Bj′ (j′ 6= j0) contains a blue mG-positive element, and
Bj0 contains no red and no blue mG-positive element. Note that the situation
is symmetric for red and blue.
(a) Without loss of generality we may assume that ai is red. If bj is blue

(that is, j 6= j0), then Ai ∪ Bj contains one red mḠ-positive element,
namely the red mG-positive element contained in Bj . Then Defini-
tion 8.3b holds for A′ and (pḠ,P,mḠ). If bj is not blue (that is, j = j0),
then Ai′+1, Ai′+3 and every Bj′ (j′ 6= j) contains a blue mḠ-positive
element; that is, Definition 8.3a holds also for A′ and (pḠ,P,mḠ).

(b) Without loss of generality we may assume that bj is red. If bk is blue
(that is k 6= j0), then Bj∪Bk contains one red and one blue mḠ-positive
element, namely the red (respectively, blue) mG-positive element con-
tained in Bk (respectively, in Bj). Then, Definition 8.3b holds for A′
and (pḠ,P,mḠ). If bk is not blue (that is, k = j0), then Ai′+1, Ai′+3 and
every Bj′ (j′ 6= j, k) and Bj ∪ Bk contain a blue mḠ-positive element;
that is, Definition 8.3a holds for A′ and (pḠ,P,mḠ).

In the cases 1(a) and 2(a), if t ≥ 2, then A′ is a C∗5 -obstacle, and if t = 1, then,
by Definition 8.1e, Definition 7.1c holds for A′ and (pḠ,P,mḠ), so A′ is a simple
C∗4 -obstacle for (pḠ,P,mḠ).

Claim 53. If A is a C∗6 -obstacle for (pG,P,mG) and Ḡ is obtained from G by an
allowed splitting off, then there exist i ∈ {1, . . . , 4} and ai−1 ∈ Ai−1, ai+1 ∈ Ai+1 such
that Ḡ = Gai−1ai+1 and {Ai−1 ∪Ai ∪Ai+1, Ai+2, Ai+3, Ai+4} is a simple C∗4 -obstacle
for (pḠ,P,mḠ).

Proof. By Lemmas 19 and 42, and by Definitions 9.1b and 9.3, the only allowed
pairs are ai−1, ai+1 for all i. By Claim 47, A′ = {A′1, A′2, A′3, A′4} = {Ai−1 ∪ Ai ∪
Ai+1, Ai+2, Ai+3, Ai+4} is a simple C∗4 -obstruction for (pḠ,P,mḠ). By mḠ(V ) = 4
and Definition 9.3 for A, A′ satisfies Definition 7.3.
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The main result of this section, Lemma 54, motivates the definitions of obstacles
by revealing the close link between them and the existence of a complete allowed
splitting off.

Lemma 54. If there is an obstacle for (p,P,m), then there exists no complete
(p,P)-allowed splitting off.

Proof. Suppose that there exists an obstacle for (p,P,m). By Claims 51, 52,
and 53, after any sequence of allowed splitting off there exists an obstacle, and then,
by Claim 39.2, Definitions 8.1a and 9.1a, and Claim 41, the new degree specification
satisfies m′(V ) > 0; that is, no complete allowed splitting off exists.

4.2.5. Obstacles and split edges. An important subcase will occur when there
is a simple C∗4 -obstacle A = {A1, . . . , A4} for (pG,P,mG). Let us show some prop-
erties of such obstacles when G is not the edgeless graph. Let {ai} := V+(mG) ∩ Ai
for i = 1, . . . , 4. For an edge e = uv, where u, v are contained in a member Ai of the
C∗4 -obstacle, a consecutive improvement for e is an admissible improvement of e by
ai−1 and ai+1.

We start with some technical properties.

Corollary 55. If A is a simple C∗4 -obstacle for (pG,P,mG), then pG ≤ 1.

Proof. Since A is simple, Lemma 54 implies that there exists no allowed splitting
off, and then, by Lemma 22, we have pG ≤ 1.

Claim 56. Let A = {A1, . . . , A4} be a simple C∗4 -obstacle for (pG,P,mG), e =
uv ∈ E, i ∈ {1, . . . , 4}, u, v ∈ Ai. Suppose that no allowed improvement exists. Then
the following hold:

1. No (uv, ai+2)-perilous set exists.
2. There exists a (uv, aj)-perilous set Xj for j ∈ {i− 1, i+ 1}.
3. If Xi−1 ∩ {u, v} = Xi+1 ∩ {u, v}, then no edge connects distinct consecutive

members of A.
4. If Xi−1 ∩ {u, v} = {u} and Xi+1 ∩ {u, v} = {v}, then c(u) = c(ai+1), c(v) =
c(ai−1), and c(ai) = c(ai+2).

Proof. By Corollary 55 and Lemma 43, we have pG ≤ 1 and Ta` = A` for all
` ∈ {1, . . . , 4}. We may assume that i = 1.

1. By Claim 32.2–4 and Definition 7.1c, there is no (uv, a3)-perilous set.
2. Suppose that, for some j ∈ {2, 4}, there is no (uv, aj)-perilous set. Then, by

point 1 and Lemma 31(ii), the improvement of uv to uaj , va3 and that of uv to
ua3, vaj are pG-admissible. Since c(u) 6= c(v) and, by Observation 11, c(aj) 6=
c(a3), one of these improvements is allowed, contradicting our assumption.

3. By Claim 34.3, Xj = Xe ∪ Aj for j = 2, 4. By Claim 34.1, we have pG(X2 ∪
X4) = 0, and since e enters X2 ∪X4, it is p0-positive. Applying for A1, X2,
and X4 Claims 34.1 and 32.2–3, we get that no edge connects A1 and A2∪A4.
By Claim 39.4, (13) applied for X2 ∪X4 and A3 ∪A4 (and A3 ∪A2), pG ≤ 1,
and pG(X2 ∪X4) = 0, we get that no edge connects A3 and A2 ∪A4, and the
assertion follows.

4. By point 1 and Lemma 35, no (uv, a3)-, (uv, ua2)-, or (vu, va4)-perilous sets
exist. Then, by Lemma 31(ii), improving uv to ux, vy is pG-admissible for
(x, y) = (a2, a3), (a2, a4), (a3, a4). If c(a2) 6= c(u), then, since the improve-
ments of uv to ua2, va3 and that of uv to ua2, va4 are not (pG,P)-allowed,
and by Observation 11, we have c(a3) = c(v) = c(a4) 6= c(a3), a contradiction.
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Hence c(a2) = c(u), and similarly c(v) = c(a4). Therefore, c(a2) 6= c(a4), and
then, by Definition 7.3 for A, we have c(a1) = c(a3).

The following lemma will handle the case of C∗4 -obstacles.

Lemma 57. Let A = {A1, . . . , A4} be a simple C∗4 -obstacle for (pG,P,mG), e =
uv ∈ E, i ∈ {1, . . . , 4}, u ∈ Ai, and v ∈ Ai+1.

1. Suppose that no allowed improvement exists for uv. Then either c(u) =
c(ai) = c(ai+2) or c(v) = c(ai−1) = c(ai+1).

2. Suppose that no allowed improvement exists. If all the edges of G connect
distinct members of A and there exists no C∗4 -obstacle for (p0,P,m0), then
there exist two edges f and g such that there exists a complete (pGf,g ,P)-
allowed splitting off.

Proof. By Corollary 55 and Lemma 43, we have pG ≤ 1 and Tah = Ah for all
h ∈ {1, . . . , 4}. We may assume that i = 1.

1. By Definition 7.3 for A, we may assume c(a1) = c(a3). Assume that c(u) 6=
c(a1). Then, u 6= a1. By Corollary 33, no (uv, ua3)-, (vu, va4)-, or (vu, va1)-
perilous sets exist. Therefore, by Lemma 31(ii), the improvement of uv to
ua3, va1 and that of uv to ua3, va4 are pG-admissible. Since these improve-
ments are not allowed, we have, by Observation 11, c(v) = c(a1) 6= c(a4) =
c(v), a contradiction.

2. We will unsplit two edges and find a complete allowed splitting off by per-
forming first an allowed flip and then an improvement that is allowed for the
resulting functions.
Since no allowed improvement exists, point 1 implies that for every edge u′v′
either c(u′) = c(a1) = c(a3) or c(v′) = c(a2) = c(a4). Then, since no C∗4 -
obstacle exists for (p0,P,m0), there exist edges f = u1v1 and g = u2v2 such
that u1, u2 ∈ A1 ∪ A3, c(u1) 6= c(a1) = c(a3) = c(u2), and c(v2) 6= c(a2) =
c(a4) = c(v1).
Assume without loss of generality that u1 ∈ A1 and v1 ∈ A2. By Lemma 31(i)
and Corollary 33, flipping v1u1 for v1a1 is pG-admissible, and, by Observa-
tion 11, c(a1) 6= c(a2) = c(v1); thus the flipping is allowed. Let G′ be the
resulting graph. By Claim 50, A is a simple C∗4 -obstacle for (pG′ ,P,mG′), and
u1 = V+(mG′)∩A1 is the newmG′ -positive element of A1. Since c(a2) 6= c(v2)
and c(u1) 6= c(a3), point 1 implies that there exists a (pG′ ,P)-allowed im-
provement using the edge u′v′, which means that there exists a complete
(pGf,g ,P)-allowed splitting off.

The following lemma considers the case of C∗5 -obstacles.

Lemma 58. Let A = {A1, . . . , A4} be a simple C∗4 -obstacle for (pG,P,mG), e =
uv ∈ E, i ∈ {1, . . . , 4}, u, v ∈ Ai. Suppose that no allowed improvement exists.

1. If e′ = u′v′ ∈ E, u′, v′ ∈ Ai, e′ 6= e, and no consecutive improvement exists
for e and for e′, then Xe and Xe′ exist and one of them contains the other
one.

2. If all the edges of G are contained in members of A and no edge belongs to a
consecutive improvement, then there exists a C∗5 -obstruction for (p0,P,m0).

Proof. By Corollary 55 and Lemma 43, we have pG ≤ 1 and Tah = Ah for all
h ∈ {1, . . . , 4}. We may assume that i = 1.

1. By Claim 56.2, let Xj
ê be an (ê, aj)-perilous set for ûv̂ = ê = e, e′ and j = 2, 4.

Without loss of generality we may assume that X2
ê ∩ {û, v̂} = û, that is, that

X2
ê is a (ûv̂, ûa2)-perilous set. Then, by Lemma 35, no (v̂û, v̂a2)-perilous set
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exists, so, since no consecutive improvement exists for v̂û, by Lemma 31(ii),
there exists a (ûv̂, ûa4)-perilous set, and hence, by Lemma 35, no (v̂û, v̂a4)-
perilous set exists, and then we have X2

ê ∩ ê = û = X4
ê ∩ ê. Therefore,

Claim 34.3 applies and defines a unique Xê ⊂ A1 such that Xê ∪ Aj is the
(ê, aj)-perilous set Xj

ê for j = 2, 4. By Claim 34.1, pG(Yê) = 0, where Yê =
Xê ∪ A2 ∪ A4. Note that, since the edge ê enters the set Yê, the latter
implies that Yê is p0-positive for ê = e, e′. Note also that, since e′ enters Xe′ ,
Claim 34.1 implies that e does not enter Xe′ .
Suppose that Xe ∩ Xe′ = ∅. Then applying (13) to Ye and Ye′ and Defini-
tion 7.1c implies 0 + 0 = pG(Ye) + pG(Ye′) ≤ pG(Ye ∩ Ye′) + pG(Ye ∪ Ye′) =
pG(A2 ∪ A4) + pG(Ye ∪ Ye′) ≤ pG(Ye ∪ Ye′). In particular, Ye ∪ Ye′ is p0-
positive. Since pG ≤ 1, we have pG(Xe∪Xe′∪A2) ≤ −1 because, by Claim 18,
Xe∪Xe′ ∪A2 is not tight, and, by e enters Xe∪Xe′ ∪A2 and Claim 34.1, it is
not (e, a2)-perilous. Then, by A being a simple C∗4 -obstacle, Claim 39.4, (14)
applied to Ye∪Ye′ , and A3∪A4, we have 0+1 ≤ pG(Ye∪Ye′)+pG(A3∪A4) ≤
pG(Xe ∪Xe′ ∪A2) + pG(A3) ≤ −1 + 1 = 0, a contradiction.
Thus, Xe∩Xe′ 6= ∅, and since, by Claims 56.2 and 34.5, {Xe, Xe′} is laminar,
the assertion follows.

2. Let j ∈ {1, . . . , 4}. It follows, by point 1, that the edges contained in Aj can
be ordered as e1, . . . , e` such that 1 ≤ k < k′ ≤ ` implies Xek ⊂ Xek′ . Let
Xe`+1

= Aj , Bek = Xek+1
\ Xek for k = 1, . . . , ` and A′j = Aj \

⋃`
k=1Bek .

Note that A′j = Aj if Aj contains no edge, and A′j = Xe1 otherwise. Thus,
{A′j , Bf : f ⊆ Aj} partitions Aj , and, since A partitions V , we get that
A′ = {A′1, A′2, A′3, A′4} ∪ {Bf : f ∈ E} is a partition of V .
We show that A′ is a C∗5 -obstruction for (p0,P,m0). First, let us make a few
observations. Recall that p0 = pG + dG, Eδ(A) is empty, and, by Claim 34.4,
f is the only edge entering Xf for all f ∈ E. In particular, no member of
A′ contains an edge, and m0(Bf ) = mG(Bf ) + dG(Bf ) = 2 and dG(Aj) = 0,
dG(A′j) = 1.
Let f ∈ Aj , say f = ek and h ∈ {j − 1, j + 1}. By Claims 34.4, 39.4, 56.2,
and 34.3, we get p0(Xf ) = p0(Aj) = p0(Aj ∪ Ah) = p0(Xf ∪ Ah) = 1. It
follows that

(21) p0(A′j) = p0(A′j ∪Ah) = 1.

Then, by applying (4) to Ah ∪Xek+1
and Ah+2 ∪Xek , we get

(22) p0(Ah ∪Bf ) ≥ 1.

We next verify the conditions of Definition 8.
8.1a By (21), we have p0(A′j) = 1 for j ∈ {1, . . . , 4}; hence Definition 8.1a

follows.
8.1d By (21), we may suppose that A′j = Xf and A′j+1 = Xg for f, g ∈ E.

By (22), we may apply Claim 12.1 to {Aj+2 ∪ Aj+3}
⋃
{Aj+3 ∪ Bf ′ :

f ′ ∈ Aj , f
′ 6= f}

⋃
{Aj+2 ∪ Bg′ : g′ ∈ Aj+1, g

′ 6= g}
⋃
{Aj+2 ∪ Xg},

and then, by Claim 39.4, the symmetry of p0, and (21), we have 1 =
p0(Aj+2 ∪Aj+3) ≤ p0(V \ (A′j ∪A′j+1)) ≤ p0(V \A′j) = p0(A′j) = 1; that
is, equality holds everywhere and, by the symmetry of p0, Definition
8.1d follows.

8.1c Note that the previous proof works for A′j and Bg if g ∈ Aj−1 ∪ Aj+1.
Suppose now that g ∈ Aj . By (22), we may apply Claim 12.1 to {V \
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Aj}
⋃
{Aj+1 ∪ Bg′ : g′ ∈ Aj , g

′ 6= g}
⋃
{Aj+1 ∪ Bg}, and then, by the

symmetry of p0 and (21), we have 1 = p0(Aj) = p0(V \ Aj) ≤ p0(V \
(A′j ∪Bg)) ≤ p0(A′j) = 1; that is, equality holds everywhere and, by the
symmetry of p0, Definition 8.1c follows.
Finally, suppose that g ∈ Aj+2. By (22), we may apply Claim 12.1
to {Aj+3 ∪ Bf ′ : f ′ ∈ Aj}

⋃
{Aj+3 ∪ Bg′ : g′ ∈ Aj+1, g

′ 6= g}
⋃
{Aj+1 ∪

A′j+2}
⋃
{Aj+3∪Bg}, and then, by (22) and (21), we have 1 ≤ p0(Aj+3∪

Bf ′) ≤ p0(V \(A′j∪Bg)) ≤ p0(A′j) = 1; that is, equality holds everywhere
and, by the symmetry of p0, Definition 8.1c follows.

8.1b Let f ∈ Aj . By (21) and (3) applied to A′j ∪ Aj−1 and A′j ∪ Aj+1, we
have p0(Y ) ≥ 1, where Y = A′j ∪ Aj−1 ∪ Aj+1. Then, by (3) applied to
Y and V \ Aj , the symmetry of p0, and Definition 7.1c for A, we get
p0(Z) ≥ 2, where Z = A′j ∪ (V \Aj). By (22), we may apply Claim 12.1
to {Z}

⋃
{Aj+1 ∪ Bf ′ : f ′ ∈ Aj , f

′ 6= f}, and then, by the symmetry
of p0 and m0 being p0-admissible, we have 2 ≤ p0(Z) ≤ p0(V \ Bf ) =
p0(Bf ) ≤ m0(Bf ) = 2; that is, equality holds everywhere and Definition
8.1b follows.

8.1e If p0(A′j ∪ A′j+2) ≥ 1, then Claim 12.1 applies to {Aj}
⋃
{A′j ∪ A′i+2}

⋃
{Aj+2}, and we get, by Definition 7.1c, 1 ≤ p0(Aj ∪ Aj+2) = pG(Aj ∪
Aj+2) ≤ 0, a contradiction.

8.1f and 8.2 Recall thatm0 is (p0,P)-allowed. Moreover, no A ∈ A′ contains
an edge; thus the above results on dG and p0 imply p0(A) = m0(A)
for all A ∈ A′. Therefore, we have m0(V ) ≥ σp0

≥
∑
A∈A′ p0(A) =∑

A∈A′ m0(A) = m0(V ).

Finally, C∗6 -obstacles are treated by the following lemmas.

Lemma 59. Let A = {A1, . . . , A4} be a simple C∗4 -obstacle for (pG,P,mG), e =
uv ∈ E, i ∈ {1, . . . , 4}, u, v ∈ Ai. Suppose that no allowed improvement exists.

1. If an edge connects distinct consecutive members of A, then a consecutive
improvement exists for e.

2. If a consecutive improvement exists for e, then there exists a C∗6 -obstacle for
(pGe ,P,mGe).

Proof. By Corollary 55 and Lemma 43, we have pG ≤ 1 and Tah = Ah for all
h ∈ {1, . . . , 4}. We may assume that i = 1. By Claim 56.2, there exists a (uv, aj)-
perilous set Xj for j ∈ {2, 4}. Without loss of generality, X2 is (uv, ua2)-perilous.
Note that, for both parts of the lemma, we have X2 ∩ {u, v} 6= X4 ∩ {u, v}; thus X4

is (vu, va4)-perilous. Indeed, for point 1 of the lemma, this relationship comes from
Claim 56.3, and for point 2, it follows from Lemmas 35 and 31(ii) and the fact that e
belongs to a consecutive improvement.

1. By Lemma 35, no (vu, va2)- and no (uv, ua4)-perilous sets exist. Thus, by
Lemma 31(ii), improving uv to ua4, va2 is pG-admissible, and the assertion
follows.

2. By Claim 32.4, Xj \ A1 = Aj for j = 2, 4. By A being a partition of V and
Claim 34.2, A′ = {A′1, . . . , A′6} = {X2∩A1, A2, A3, A4, X4∩A1, A1\(X4∪X2)}
is a partition of V . To show that A′ is a C∗6 -obstacle for (pGe ,P,mGe), we
verify the conditions of Definition 9.
9.1a–1b By Claim 34.2, we have 0 = pG(A′5 ∪ A′6) = pG(A′6 ∪ A′1) and 1 =

pG(A′6). By Claim 32.2, 0 = pG(A′1) = pG(A′5). By A being a simple
C∗4 -obstacle, Claim 39.4, and X2 and X4 being perilous, 1 = pG(A′2) =
pG(A′3) = pG(A′4) = pG(A′2∪A′3) = pG(A′3∪A′4) and 0 = pG(A′1∪A′2) =
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pG(A′4 ∪A′5). Then, by pG = pGe − de, 9.1a–1b follow.
9.1c By u ∈ A′1, v ∈ A′5,mG being pG-admissible and modular, and Claim 32.2,

we have pGe(A′1 ∪A′5) = pG(A′1 ∪A′5) ≤ mG(A′1 ∪A′5) = mG(X2 ∩A1) +
mG(X4 ∩ A1) = 0; by Claim 18 for i = 2, 3, 4, we have pGe(A′6 ∪ A′i) =
pG(A′6 ∪ A′i) ≤ 0; by Definition 7.1c, we have pGe(A′2 ∪ A′4) = pG(A2 ∪
A4) ≤ 0; by Claims 18 and 56.1, no (uv, a3)-perilous set exists, we have
pGe(A′i ∪A′3) = pG(A′i ∪A3) + 1 ≤ −1 + 1 for i = 1, 5; and, by Claim 18
and since no (uv, ua4)- and no (vu, va2)-perilous sets exist by Lemma 35,
we have pGe(A′i ∪A′i+3) = pG(Ai ∪A′i+3) + 1 ≤ −1 + 1 for i = 2, 4.

9.1d–2 Since e was obtained by an allowed splitting off, mGe is pGe-admissible
and P-feasible. By Definition 7.1d for A, the fact that mGe is pGe -
admissible, the definition of σpGe , and Definition 9.1a for A′, we have
6 = 4 + 2 = mG(V ) + 2 = mGe(V ) ≥ σpGe ≥

∑
X∈A′ pGe(X) = 6 and

Definitions 9.1d and 9.2 follow.
9.3 This is true by Claim 56.4.

Lemma 60. If A is a C∗6 -obstacle for (pG,P,mG) and e is an edge of G, then
there exists a complete (pGe ,P)-allowed splitting off.

Proof. In each of the following cases, we will first perform a (pG,P)-allowed split-
ting off and hence find, by Claim 53, a simple C∗4 -obstacle. If p′ denotes the resulting
function, then, by Corollary 55, we have p′ ≤ 1. We will then find, by Lemma 31(ii), a
(p′,P)-allowed improvement involving e. This is equivalent to unsplitting e and then
finding a complete (pGe ,P)-allowed splitting off.

Let A = {A1, . . . , A6} and {ai} = Ai ∩ V+(mG) for every i = 1, . . . , 6. Denote
e = uv. We may assume, by Definitions 9.1a–1b and Claim 13.1, that u ∈ A1 and
either v ∈ A1 or v ∈ A2.

Let Gi = Gaiai+2 and Ai = {Ai ∪ Ai+1 ∪ Ai+2, Ai+3, Ai+4, Ai+5} for i = 2, 3, 5.
By Definition 9.3 for A, c(a1) 6= c(a5) 6= c(a3) and c(a6) 6= c(a2) 6= c(a4). Then, by
Lemma 42, the pair ai, ai+2 is (pG,P)-allowed, so mGi

is (pGi
,P)-allowed, and, by

Claim 53, Ai is a simple C∗4 -obstacle for (pGi
,P,mGi

) for i = 2, 3, 5. By Corollary 55,
we have pGi ≤ 1 for i = 2, 3, 5. We consider two cases:

1. If v ∈ A1, by Claim 56.1 for A2 (respectively, A3),

no (uv, a5)- (respectively, (uv, a4))-perilous set exists
with respect to pG2

and mG2
(respectively, pG3

and mG3
).(23)

By Claim 56.2 for A3, there exists for j = 2, 6 a (uv, aj)-perilous set Xj with
respect to pG3

and mG3
and, by Claim 32.4, with respect to pG and mG. We

may assume that X2 is (uv, ua2)-perilous.
We show that X ′ = X2 ∪ A3 ∪ A4 is a (uv, ua3)-perilous set with respect to
pG2

and mG2
. By Claim 32.4, we have X2 \A1 = A2. By X2 being perilous;

by Claim 13.2 applied for J = {2, 3, 4}; by (13) applied for pG, X2, and
A2 ∪ A3 ∪ A4; by Definition 9.1a; and by Claim 18 applied for the crossing
sets X ′ and A1, we have pG(X ′) = 0. Note that pG(X ′) = pG2(X ′) and, by
mG being modular, X being perilous, Claim 41, and Definition 9.1a, we have
mG2

(X ′) = mG(X ′)−2 = mG(X2)+mG(A3)+mG(A4)−2 = 1+1+1−2 = 1,
so X ′ is (uv, ua3)-perilous for pG2

and mG2
.

Hence, by Lemma 35,

(24) no (vu, va3)-perilous set exists with respect to pG2 and mG2 .
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(a) If X6 is (vu, va6)-perilous, we may suppose, by Claim 56.4 for A3, that
c(u) = c(a6), c(v) = c(a2), and c(a1) = c(a4). Now, by (23), (24),
and Lemma 31(ii), improving uv to va3, ua5 is pG2

-admissible, hence
(pG2 ,P)-allowed, and we are done.

(b) If X6 is (uv, ua6)-perilous, then we have the following:
i. Suppose that c(u) 6= c(a4). Note that there exists j ∈ {2, 6} such

that c(v) 6= c(aj), and that, by Lemma 35, there is no (vu, vaj)-
perilous set with respect to pG3

and mG3
. Then, by (23) and

Lemma 31(ii), improving uv to ua4, vaj is pG3
-admissible, hence

(pG3 ,P)-allowed, and we are done.
ii. Otherwise, c(u) = c(a4), and if necessary reverse the order of the

sets A2, . . . , A6 to assume that c(a3) 6= c(v). Hence, by (23), (24),
and Lemma 31(ii), improving uv to ua5, va3 is (pG2

,P)-allowed, and
this finishes the proof of the lemma.

2. If v ∈ A2, note that uv connects consecutive sets of A5 and A3. Then,
for i = 5 or i = 3, depending on whether c(u) = c(a1) or c(u) 6= c(a1),
Lemma 57.1 applied for (pGi ,P,mGi), Ai, and uv implies that there exists a
(pGi

,P)-allowed improvement involving uv.

4.3. Splitting off theorem. We will now prove our new splitting off result.
First, we state a version that we will need for the algorithm, and then we state it as
a characterization of the existence of a complete (p0,P)-allowed splitting off.

Theorem 61. Let p0 : 2V → Z be a symmetric crossing supermodular set func-
tion, P a partition of V , and m0 : V → Z+ a (p0,P)-allowed degree specification.
Then one of the following exists:

(a) a complete (p0,P)-allowed splitting off,
(b) a p0-full partition that shows that m0 is not p0-legal and a P-partite graph F

on V that covers p0 with |E(F )| ≤ dim(p0)− 1,
(c) an obstacle for (p0,P,m0).

Proof. We outline an algorithm that outputs one of the above possibilities. First,
we perform allowed splitting off as long as possible; second, we perform allowed im-
provements as long as possible. When we get stuck, unsplitting edges is necessary.
Depending on the position of the edges, distinct cases occur. The description of the
complete algorithm can be found in Figure 1.

Now we show the correctness of the Splitting off algorithm.
Step 1. Perform arbitrary allowed splitting off as long as possible, and let G be the
resulting graph. If mG(V ) ≤ 2, then if necessary, perform a final allowed splitting off,
and then we are done.

From now on, we suppose thatmG(V ) ≥ 4 and that no allowed splitting off exists.
Step 2. Suppose that no pG-admissible splitting off exists. If no allowed improvement
exists, then, by Lemma 37.9–10, we have the required partition and graph. Other-
wise, there exists an allowed improvement, and by Corollary 29, after performing an
allowed improvement, we can repeat it. Thus let us perform an arbitrary sequence of
allowed improvements as long as there exists one, and let G′ be the resulting graph.
If mG′(V ) ≥ 4, then we can stop with the required partition and graph provided
by Lemma 37.9–10. Otherwise, mG′(V ) ≤ 2 and hence, performing a final allowed
splitting off if necessary, we are done.

From now on, we assume that a pG-admissible splitting off exists.
Step 3. By (20) for mG and Lemma 25, there exists a simple C∗4 -obstruction A =
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Splitting off algorithm.
Input : A symmetric crossing supermodular set function p0 : 2V → Z, a (p0,P)-allowed degree

specification m0 : V → Z+, and a partition P of V .
Output: Either a complete (p0,P)-allowed splitting off, or a p0-full partition that shows that m0

is not p0-legal and a P-partite graph F on V that covers p0 with |E(F )| ≤ dim(p0)

−1, or an obstacle for (p0,P,m0).

Step 1. Perform an arbitrary sequence of allowed splittings off as long as there exists one. Let
G, mG, and pG be the resulting graph, degree specification, and function.

Step 2. If there exists no pG-admissible splitting off, then perform an arbitrary sequence of al-
lowed improvements as long as there exists one, and let G′ be the resulting graph.

(a) If mG′ (V ) ≥ 4, then stop with the required partition and graph provided by Lemma
37.9–10.

(b) Otherwise, perform, if necessary, a final allowed splitting off and stop.

Step 3. Otherwise, by Lemmas 25 and 49, find a simple C∗4 -obstacle A for (pG,P,mG).

Step 4. If there exists an allowed improvement, then perform it, and then perform a final allowed
splitting off and stop.

Step 5. If all the edges of G connect distinct members of A, then, by Lemma 57.2, find
(a) either a C∗4 -obstacle for (p0,P,m0) and stop,
(b) or two edges such that after their unsplitting there exists a complete allowed splitting

off and stop.

Step 6. If all the edges of G are contained in members of A but no consecutive improvement
exists, then, by Lemma 58.2, there exists a C∗5 -obstruction for (p0,P,m0).

(a) If it is a C∗5 -obstacle for (p0,P,m0), then stop.
(b) Otherwise, Lemma 49 provides a complete (p0,P)-allowed splitting off and stop.

Step 7. Otherwise, by Lemma 59.1, there exists a consecutive improvement for an edge e, and
then, by Lemma 59.2, there exists a C∗6 -obstacle for (pGe ,P,mGe ).

(a) If Ge = G, then stop with the C∗6 -obstacle for (p0,P,m0).
(b) Otherwise, Ge contains an edge e′ and then, by Lemma 60 applied for e′, there exists

a complete (p
Ge,e′ ,P)-allowed splitting off and stop.

Fig. 1. Splitting off algorithm.

{A1, . . . , A4} for (pG,P,mG). Since no splitting off is allowed, Lemma 49 implies that
A satisfies Definition 7.3; hence A is a simple C∗4 -obstacle for (pG,P,mG).
Step 4. Suppose that there exists an allowed improvement. Then perform it and
then, since mG(V ) = 4, perform a final allowed splitting off, and we are done.

Thus we assume that no allowed improvement exists.
Step 5. Suppose that all the edges of G connect distinct members of A. Then, by
Lemma 57.2, we can find either a C∗4 -obstacle for (p0,P,m0), or two edges e and f
such that a complete (pGe,f ,P)-allowed splitting off exists, and we are done.
Step 6. Suppose that all the edges of G are contained in members of A but no
consecutive improvement exists. Then, by Lemma 58.2, there exists a C∗5 -obstruction
for (p0,P,m0). By Lemma 49, either it is a C∗5 -obstacle for (p0,P,m0), or we have a
complete (p0,P)-allowed splitting off and we are done.

We may assume, by Lemma 59.1, that a consecutive improvement exists for an
edge e.
Step 7. By Lemma 59.2, there exists a C∗6 -obstacle for (pGe ,P,mGe). If Ge = G,
then we have a C∗6 -obstacle for (p0,P,m0), and we are done. Otherwise, Ge contains
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an edge e′, so Lemma 60 applies for e′ and we are done.

The previous theorem gives at once the main result of the section.

Theorem 62. Let p0 : 2V → Z be a symmetric crossing supermodular set func-
tion, m0 : V → Z+ a degree specification, and P a partition of V . There exists a
complete (p0,P)-allowed splitting off if and only if m0 is (p0,P)-allowed and p0-legal,
and there exists no obstacle for (p0,P,m0).

Proof. The necessity of the conditions follows by Lemmas 38 and 54. To show the
sufficiency, let us suppose that m0 is (p0,P)-allowed and p0-legal, and there exists no
obstacle for (p0,P,m0). Then, by Theorem 61, there exists a complete (p0,P)-allowed
splitting off.

5. Minimization version. In this section, we are given a symmetric crossing
supermodular function p on V and a partition P = {P1, . . . , Pr} of V . We show how
to find algorithmically a P-partite graph covering p with a minimum number of edges.

First, we provide the lower bound. Second, we explain how to find a minimum
(p,P)-allowed degree specification. Then, we describe the instances for which the
lower bound may not be achieved. Finally, we prove our main result; see Theorem 71.

5.1. Lower bound. Let OPT (p,P) be the minimum number of edges of a P-
partite a graph that covers p.

Definition 63. Let Φ be the maximum of the following values:

αp = max

{⌈
1

2

∑
X∈X

p(X)

⌉
: X subpartition of V

}
,

βp = max

{∑
Y ∈Y

p(Y ) : Y subpartition of P, P ∈ P

}
,

dim(p)− 1 = max{|V| : V p-full partition of V } − 1.

Lemma 64. OPT (p,P) ≥ Φ.

Proof. Let G = (V,E) be a P-partite graph that covers p and that has OPT (p,P)
edges. First, let X be a subpartition of V such that αp = d 1

2

∑
X∈X p(X)e. Since an

edge of E connects at most two sets of X , applying (5) gives |E| ≥ d 1
2

∑
X∈X dG(X)e ≥

d 1
2

∑
X∈X p(X)e = αp. Second, let Y be a subpartition of some P ∈ P such that

βp =
∑
Y ∈Y p(Y ). Since G is P-partite, an edge of E enters at most one set of

Y; thus applying (5) gives |E| ≥
∑
Y ∈Y dG(Y ) ≥

∑
Y ∈Y p(Y ) = βp. By the above

inequalities and by Lemma 2.1, OPT (p,P) = |E| ≥ max{αp, βp,dim(p)− 1} = Φ.

5.2. Extension. We start this section with some algorithmic arguments. Since
we do not want to rely on the results of Benczúr and Frank [4], we do not know how
to calculate dim(p). On the other hand, we want to present an algorithmic proof of
the result, so we will not use Φ, which depends on dim(p), in the extension phase.

A degree specification m is called an extension for (p,P) if m is p-admissible,
P-feasible, and satisfies

1

2
m(V ) = max{αp, βp}.(25)

An extension always exists, and we describe how to find one in Figure 2. The algorithm
is formulated in a way such that any extension can be its output (with appropriate
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368 ATTILA BERNÁTH, ROLAND GRAPPE, AND ZOLTÁN SZIGETI

Extension Algorithm.
Input : A symmetric crossing supermodular function p : 2V → Z and a partition P of V .
Output: An extension m for (p,P).

Step 1. Pick a p-admissible degree specification m that minimizes m(V ).

Step 2. If m(V ) is odd, then let m = m+ χu for some u ∈ V .

Step 3. If some P ∈ P satisfies m(P ) > m(V )
2

, then

3a. If Xu * P for some u ∈ P ∩V+, then letm = m−χ{u}+χ{u′} for some u′ ∈ Xu\P ,
Repeat 3.

3b. Otherwise, let v ∈ V \ P and m = m+ (2m(P )−m(V ))χ{v}.

Step 4. Stop.

Fig. 2. Extension algorithm.

choices). Recall that, for u ∈ V , Xu is the minimal tight set containing u (if u is not
contained in a tight set, then Xu := V ).

Lemma 65. The Extension Algorithm outputs an extension; see Figure 2.

Proof. Let mi be the degree specification obtained after Step i in the above algo-
rithm.

- By Step 1, m1 (and then m2) is p-admissible. Hence, by Claim 16, m3a is
p-admissible, and then so is m4.

- By Step 2, m2(V ) is even. If m2 satisfies (20), then m4 = m2 is P-feasible.
Otherwise, there exists a P ∈ P such that m2(P ) > 1

2m2(V ). Then ei-
ther m2(P ) decreases to 1

2m2(V ) in Step 3a—that is, m4(P ) = m3a(P ) =
1
2m2(V ) = 1

2m4(V )—or m2(V ) increases to 2m3a(P ) in Step 3b—that is, by
v ∈ V \P , m4(P ) = m3b(P ) = m3a(P ) = 1

2m3b(V ) = 1
2m4(V ). In both cases,

m4 is P-feasible.
- It remains to show that (25) is satisfied. For some subpartition Y of some
P ∈ P, by m4 being p-admissible and P-feasible, we have βp =

∑
Y ∈Y p(Y ) ≤∑

Y ∈Y m4(Y ) ≤ m4(P ) ≤ 1
2m4(V ). By parity, Theorem 1, and (9), 1

2m2(V ) =

d 1
2m1(V )e = d 1

2σpe = αp. It follows that max{αp, βp} ≤ 1
2m4(V ).

If m4(V ) = m2(V ), then max{αp, βp} ≤ 1
2m4(V ) = 1

2m2(V ) = αp ≤
max{αp, βp}, and we are done.
Otherwise, for some P ′ ∈ P, m4(V ) = m3b(V ) = m3a(V ) + (2m3a(P ′) −
m3a(V )) = 2m3a(P ′). Note that the set D of the m3a-positive elements of P ′
is precisely the set of the m3b-positive elements of P ′. We have, by definition,
m3a(D) = m3a(P ′). Since the algorithm executed Step 3b, every element of
D belongs to a tight set. Hence, by Claim 15.2 applied to D, there exists
a subpartition Z of P ′ such that

∑
Z∈Z p(Z) ≥ m3a(D). By the definition

of βp, we have βp ≥
∑
Z∈Z p(Z). Then max{αp, βp} ≥ βp ≥

∑
Z∈Z p(Z) ≥

m3a(D) = m3a(P ′) = 1
2m4(V ) ≥ max{αp, βp}, and we are done.

Note that if at least one of the conditions of Step 2 or 3b holds, then m(V ) > σp;
therefore there is no obstacle for (p,P,m).

5.3. Configurations. In this section we describe the functions and the parti-
tions for which the lower bound may not be achieved. They may be classified into
three different types of structures, called configurations. Two of these are natural
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MULTIPARTITE COVERING OF CONNECTIVITY FUNCTIONS 369

generalizations of the configurations arising for graphs and hypergraphs. A new kind
of configuration arises, which exists only in the abstract form of the problem. A con-
figuration is a partition A of V satisfying two kinds of conditions. First, the p-values
of the sets in the partition A and the lower bound Φ satisfy strict conditions. Second,
the partition A is intimately related to the partition P.

Definition 66. A partition A = {A1, . . . , A4} of V is a C∗4 -configuration for
(p,P) if the following hold:

1. A is a C∗4 -construction for p,
2. αp = max{αp, βp},
3. there exist ` ∈ {1, 2} and P ∈ P such that (A`, A`+2) is a P -pair.

Definition 67. A partition A = {A1, A2, A3, A4, B1, . . . , Bt} of V (t ≥ 1) is a
C∗5 -configuration for (p,P) if the following hold:

1. A is a C∗5 -construction for p,
2. αp = max{αp, βp},
3. (a) either there exist ` ∈ {1, 2} and P ∈ P such that {A`, A`+2, B1, . . . , Bt}

is a P -subpartition,
(b) or there exist j0 ∈ {1, . . . , t} and distinct Pk1 , Pk2 ∈ P such that for

i = 1, 2, {Ai, Ai+2} ∪ {Bj : j 6= j0} is a Pki-subpartition.
A C∗5 -configuration is of type 1 (respectively, type 2) if point 3a (respectively, 3b) is
satisfied.

Definition 68. A partition A = {A1, . . . , A6} of V is a C∗6 -configuration for
(p,P) if the following hold:

1. A is a C∗6 -construction for p,
2. there exist distinct Pki ∈ P such that (Ai, Ai+3) is a Pki-pair for i = 1, 2, 3.

Definitions 66.3, 67.3, and 68.2 will also be called color conditions. A configuration
is a C∗4 - or a C∗5 - or a C∗6 -configuration.

The following lemma explains why the condition αp = max{αp, βp} does not exist
for C∗6 -configurations and why the third lower bound dim(p) − 1 does not appear in
the definition of configurations.

Lemma 69. If a configuration exists for (p,P), then we have the following:
1. αp = max{αp, βp},
2. αp = Φ.

Proof. Let A be a configuration for (p,P).
1. If A is a C∗4 - or a C∗5 -configuration, then Definition 66.2 or 67.2 implies the

assertion. Let A be a C∗6 -configuration. By (9) and Definitions 68.1 and 9.1d,
αp = d 1

2σpe = 3. By Definitions 68.2 and 9.1a, for i = 1, 2, 3, there exist
distinct Pki ∈ P and subpartitions Xj of Aj ∩ Pki for j = i, i + 3 such that∑
X∈Xi∪Xi+3

p(X) = p(Ai) + p(Ai+3) = 2. Let P ∈ P and Y subpartition of
P be such that βp =

∑
Y ∈Y p(Y ). Without loss of generality we may suppose

that Pk1
6= P 6= Pk2

. Then Z := X1 ∪X4 ∪X2 ∪X5 ∪Y is a subpartition of V ,
and hence 6 = σp ≥

∑
Z∈Z p(Z) =

∑
X∈X1∪X4

p(X) +
∑
X∈X2∪X5

p(X) +∑
Y ∈Y p(Y ) = 2 + 2 +βp, that is, αp = 3 > 2 ≥ βp, and the assertion follows.

2. By Theorem 1, letm be a minimal p-admissible degree specification. Then, by
Definition 66.1 or 67.1 or 68.1, A is an obstruction for (p,m). By Lemma 48,
there exists a complete p-admissible splitting off; let E be the resulting set
of edges. By Lemma 2.1 and Observation 10, we have dim(p) − 1 ≤ |E| =
1
2m(V ) = 1

2σp = αp. Then, by point 1, αp ≥ Φ = max{αp, βp,dim(p)− 1} ≥
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αp, as required.

There is a strong relation between configurations and obstacles, which is shown
in the following lemma.

Lemma 70. A partition A is an obstacle for (p,P,m) for every extension m
for (p,P) if and only if A is a configuration for (p,P).

Proof of sufficiency. Let A be a configuration and m an extension for (p,P). To
show that A is an obstacle, we verify the three conditions separately.

1. By Definitions 66.1, 67.1, and 68.1, A is a construction for p of the same type,
and hence Definitions 7.1, 8.1, and 9.1 are satisfied.

2. Sincem is an extension for (p,P),m is p-admissible and 1
2m(V ) = max{αp, βp}.

By Lemma 69.1, max{αp, βp} = αp. By Lemma 69.2, αp = Φ. By Lemma 2.1
and Observation 10, αp = 1

2σp. It follows that σp = m(V ), so m is minimal
and also m(V ) = 2Φ. Thus, Definitions 7.2, 8.2, and 9.2 are satisfied.

3. Since m is an extension for (p,P), m is P-feasible. We consider the three
different configurations separately.
(a) A is a C∗4 -configuration. Then, there exist ` ∈ {1, 2} and P ∈ P

such that (A`, A`+2) is a P -pair; that is, there exists a subpartition
Xi of Ai ∩ P such that

∑
X∈Xi

p(X) = p(Ai) for i = `, ` + 2. By
Lemma 69.2; Definitions 66.2, 7.1d, and 66.3; m being p-admissible,
nonnegative, and P-feasible; and m(V ) = 2Φ, we have Φ = 1

2σp =
p(A`) + p(A`+2) =

∑
X∈X`∪X`+2

p(X) ≤
∑
X∈X`∪X`+2

m(X) ≤ m(P ∩
(A` ∪ A`+2)) ≤ m(P ) ≤ 1

2m(V ) = Φ. It follows that the m-positive
elements of A`∪A`+2 are the m-positive elements of P , so Definition 7.3
is satisfied.

(b) A is a C∗5 -configuration.
i. If it is of type 1, that is, there exist ` ∈ {1, 2} and P ∈ P such

that X = {A`, A`+2, B1, . . . , Bt} is a P -subpartition, then, by Def-
initions 67.2, 8.1f, 67.3a, m being p-admissible and P-feasible, and
m(V ) = 2Φ, we have Φ = 1

2σp = t+ 2 =
∑
X∈X 1 =

∑
X∈X p(X

′) ≤∑
X∈X m(X ′) ≤ m(P ∩ (

⋃
X∈X X)) ≤ 1

2m(V ) = Φ. It follows that
each set of X contains anm-positive element of P , so Definition 8.3a
is satisfied.

ii. If it is of type 2, that is, there exist j0 ∈ {1, . . . , t} and distinct
Pk1

, Pk2
∈ P such X1 = {A1, A3} ∪ {Bj : j 6= j0} and X2 =

{A2, A4} ∪ {Bj : j 6= j0} are Pk1 - and Pk2 -subpartitions, then, by
Definitions 67.2, 8.1f, 67.3b, m being p-admissible, Definition 8.1b,
and m(V ) = 2Φ, we have 2Φ − 2 = σp − 2 = 2t + 2 =

∑
X∈X1

1 +∑
X∈X2

1 =
∑
X∈X1

p(X ′) +
∑
X∈X2

p(X ′) ≤
∑
X∈X1

m(X ′) +∑
X∈X2

m(X ′) ≤ m(Pk1
∩ (
⋃
X∈X1

X)) + m(Pk2
∩ (
⋃
X∈X2

X)) ≤
m(V − Bj0) = m(V ) − 2 = 2Φ − 2. It follows that Ai, Ai+2, Bj for
j ∈ {1, . . . , t} \ j0 contains an m-positive element of Pki for i = 1, 2,
so Definition 8.3b is satisfied.

(c) A is a C∗6 -configuration. Then there exist, for i = 1, 2, 3, distinct Pki ∈ P
such that (Ai, Ai+3) is a Pki-pair; that is, for j = i, i + 3 there ex-
ists a subpartition Xj of Aj ∩ Pki such that

∑
X∈Xj

p(X) = p(Aj).
By Lemma 69.2, Definitions 9.1d and 68.2, m being p-admissible, and
m(V ) = 2Φ, we now have 2Φ = σp =

∑3
i=1(p(Ai) + p(Ai+3)) =∑3

i=1

∑
X∈Xi∪Xi+3

p(X) ≤
∑3
i=1

∑
X∈Xi∪Xi+3

m(X) ≤
∑3
i=1m(Pki ∩

(Ai ∪ Ai+3)) ≤
∑3
i=1m(Ai ∪ Ai+3) = m(V ) = 2Φ. It follows that the
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m-positive elements of Ai ∪Ai+3 are the m-positive elements of Pki for
i = 1, 2, 3, so Definition 9.3 is satisfied.

Proof of necessity. Let us suppose that no configuration exists for (p,P). By
Lemma 65, there exists an extension m for (p,P). If no obstacle exists for (p,P,m),
then the lemma is proved. Suppose that there is an obstacle A for (p,P,m).

1. By Definitions 7.1, 8.1, and 9.1, A is a construction for p of the same type,
and hence Definitions 66.1, 67.1, and 68.1 are satisfied.

2. Since, by Definitions 7.2, 8.2, and 9.2, the extension m is minimally p-
admissible, we have, by Observation 10, max{αp, βp} = 1

2m(V ) = 1
2σp = αp,

so Definitions 66.2 and 67.2 are satisfied.
3. Since no configuration exists for (p,P), Definition 66.3 (respectively, 67.3

and 68.2) does not hold for A.
Throughout this proof, we will very often replace m by m′ = m−χ{u}+χ{u′}
for u ∈ A ∈ A and u′ ∈ Xu. We use that, by Claim 16, m′ is p-admissible
and, by Lemma 43 and Claim 14.3, Xu ⊆ A, so m′(Ai) = m(Ai) for every
Ai ∈ A, and hence A is an obstruction for (p,m′).
Below, we treat each obstacle separately. We will replace the extension m
by an extension m′ so that no obstacle exists for (p,P,m′), arguing as fol-
lows. Suppose that an obstruction exists for (p,m′). If A fits the hypothesis
of Corollary 44, that is, A is any obstacle but a nonsimple C∗4 -obstacle for
(p,P,m), then A is the unique obstruction for (p,m) and hence, by construc-
tion, the unique one for (p,m′). In this case we will choose m′ so that A does
not satisfy the color condition for (p,P,m′), ensuring that no obstacle exists
for (p,P,m′). Otherwise, A is a C∗4 -obstacle that is not simple for (p,P,m),
and if an obstruction exists for (p,m′), it is either A or A′ = {A1, A3, A2, A4}.
We will choose m′ so that A is not an obstacle for (p,P,m′), and show that
A′ is not an obstruction for (p,m′) (see case (a)). Again, no obstacle will
exist for (p,P,m′).
(a) If A is a C∗4 -obstacle, then Definition 66.3 does not hold. Note that, by

Definition 7, there exist at least one and at most two dominating colors.
We show that for every dominating P ∈ P, there exist an m-positive
element u ∈ P and an element u′ ∈ Xu \ P . Suppose indirectly that
for some dominating P ∈ P and for all m-positive elements u ∈ P we
have Xu ⊆ P . Then, by Definition 7.3, there exists ` ∈ {1, 2} such that
the m-positive elements of A` ∪ A`+2 are the m-positive elements of P .
Hence for i = `, ` + 2 and for the subpartition Xi of Ai defined by the
maximal elements of the laminar family {Xu : u ∈ V+(m)∩Ai} we have,
by Lemma 43,

∑
X∈Xi

p(X) =
∑
X∈Xi

m(X) = m(Ai) = p(Ai); that is,
A` ∪A`+2 is a P -pair, so Definition 66.3 holds for A, a contradiction.
For every dominating P ∈ P, let us do the following: choose an m-
positive element u ∈ P and an element u′ ∈ Xu \ P and replace m by
m′ = m− χ{u} + χ{u′}. Without loss of generality we may assume that
we made a replacement in A1 with u ∈ P ∩ A1 for some dominating
P ∈ P, u′ ∈ A1 \ P, and the m-positive elements of A1 ∪A3 are exactly
the m-positive elements of P .
We show that no obstacle exists for (p,P,m′). Suppose indirectly that
an obstacle A′ exists for (p,P,m′). Since Definition 7.3 does not hold
for A and m′, A′ 6= A.
By Lemma 43 and Claim 14.3, A is the unique partition of V into max-
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imal tight sets for (p,m) and also for (p,m′). Since A′ 6= A, we may
suppose that A′ = {A1, A3, A2, A4}.
We show that m(A1) = m(A4) = 1. By Claim 41 and Definitions 7.1d
and 7.2 for A,m and A′,m′, we have m(A1) + m(A3) = 1

2m(V ) =
1
2m
′(V ) = m′(A4) + m′(A3) = m(A4) + m(A3); thus m(A1) = m(A4).

Suppose that m(A1) = m(A4) ≥ 2. Since m(A1) ≥ 2, after the re-
placement in A1 there will be m′-positive elements of two different col-
ors in A1 ∪ A2. By assumption, no replacement occurred in A3; hence,
whether a replacement occurred in A4 or not, by m(A4) ≥ 2, Lemma 43,
Claim 39.2, and Observation 11, there will be m′-positive elements of
two different colors in A3 ∪ A4. This contradicts Definition 7.3 for A′
and m′.
Then, by Lemma 43 for (p,m), A1 ∪ A4 is not tight with respect to m,
and so, by Definition 7.1b form, Claim 41 form, and Lemmas 42 and 19,
we have 2 = m(A1 ∪A4) > p(A1 ∪A4) = p(A1) + p(A3)− p(A3 ∪A4) =
m(A1∪A3)−p(A3∪A4) = m(A3∪A4)−p(A3∪A4) ≥ 2, a contradiction.

(b) If A is a C∗5 -obstacle, then let R and B be two of the color classes
maximizing m(P ) over P ∈ P. We will say that u ∈ R (respectively,
B) is red (respectively, blue). We suppose in this case that m is chosen
in such a way that m(R) + m(B) is minimum. Then if u is a red or a
blue m-positive element, we have Xu ⊆ R ∪ B. There are four cases,
depending on m(R) and m(B):
i. m(R) = m(V )

2 − 1 = m(B). Then A is of type 2, and by Defini-
tion 8.3b for m, every Bj 6= Bj0 has exactly one red and one blue
m-positive element, and Bj0 has no red and no blue m-positive el-
ement. Note that the situation is exactly the same for red and for
blue. Since Definition 67.3b does not hold, we may assume that
there exists a red m-positive element u and a blue element u′ ∈ Xu.
Replace m by m′. Then none of Definitions 8.3a and 8.3b hold
for m′ because B became dominating and contains no m′-positive
element of Bj0 .

ii. m(R) = m(V )
2 > m(B) + 1. Then A is of type 1, and by Defini-

tion 8.3a for m, every Bj contains a red m-positive element. Since
Definition 67.3a does not hold, there exist a redm-positive element u
and a blue element u′ ∈ Xu. Replacem bym′. Thenm′(P ) < m′(V )

2
for all P ∈ P, so Definition 8.3a does not hold for m′. If Defini-
tion 8.3b holds for m′, then the two colors involved in it are red
and blue. However, each set Bj contains either a red or a blue
m′-positive element; thus Definition 8.3b does not hold for m′.

iii. m(R) = m(V )
2 = m(B) + 1. Then A is of type 1 with R. Since

Definition 67.3a does not hold, there exist a red m-positive element
u and a blue element u′ ∈ Xu. Replace m by m′. Then m′(R)+1 =
m(V )

2 = m′(B), and the only dominating set for m′ is B.
A. If u is in some Ai, then the m′-positive element u′ of Ai is blue,

and, by Definition 8.3a for m, the m′-positive element of Ai+2

is red. Therefore, since B is dominating, neither Definition 8.3a
nor Definition 8.3b holds for m′.

B. Otherwise, u is in some Bk. If Definition 8.3a or 8.3b holds
for m′, then by Definition 8.3a for m, both A` and A`+2 contain
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a red m′-positive element, both A`+1 and A`+3 contain a blue
m′-positive element, every Bj 6= Bk contains exactly one red
and one blue m′-positive element, and the m′-positive element
in Bk different from u′ is neither blue nor red. Note that the
situation is exactly the same for m′ and blue and for m and
red. Since Definition 67.3b does not hold, we may assume that
there exist a red m-positive element v /∈ Bk and a blue element
v′ ∈ Xv. Repeating case iii for m with v and v′ instead of
u and u′, we get an extension m′′ such that Bk has two blue
m′′-positive elements, and since B is dominating, we are done.

iv. m(R) = m(V )
2 = m(B). Then A is of type 1 both for B and R,

and by Definition 8.3a for m, both A` and A`+2 contain a red m-
positive element, both A`+1 and A`+3 contain a blue m-positive
element, and every Bi contains exactly one red and one blue m-
positive element. Since Definition 67.3a does not hold for R and for
B, there exist a red m-positive element u, a blue element u′ ∈ Xu, a
bluem-positive element v, and a red element v′ ∈ Xv. Replacem by
m′′ = m−χu+χu′−χv+χv′ . Note that m′′(R) = m′′(B) = m′′(V )

2 .
A. If u or v is in some Ai, then either Ai−1 and Ai or Ai and Ai+1

containm′′-positive elements of the same color, and thus neither
Definition 8.3a nor Definition 8.3b holds for m′′.

B. Otherwise, since Definition 67.3b does not hold, we may assume
that u ∈ Bi, v ∈ Bj with i 6= j. Then Bi contains two blue
m′′-positive elements and B is dominating; hence neither Defi-
nition 8.3a nor Definition 8.3b holds for m′′.

(c) If A is a C∗6 -obstacle, then Definition 68.2 does not hold. By Defini-
tion 9.3, there exist distinct Pki ∈ P such that the m-positive elements
of Ai ∪ Ai+3 are the m-positive elements of Pki for i = 1, 2, 3. If for
i = 1, 2, 3, for j = i, i + 3, and for all m-positive elements u ∈ Aj ,
we have Xu ⊆ Pki , then p(Xu) = m(Xu) = m(Aj) = p(Aj); that is,
Ai ∪ Ai+3 is a Pki-pair, so Definition 68.2 holds for A, a contradiction.
Thus there exist anm-positive element u ∈ P and an element u′ ∈ Xu\P
for some P ∈ P. Replace m by m′. Then Definition 9.3 does not hold
for m′.

After these modifications, Definition 7.3 (respectively, 8.3 and 9.3) does not hold;
hence A is not an obstacle for (p,P,m′). When A is any obstacle but a nonsimple
C∗4 -obstacle for (p,P,m), then A is the unique obstruction for (p,m); hence, by
construction, A is the unique obstruction for (p,m′), and thus no obstacle exists
for (p,P,m′). When A is a C∗4 -obstacle that is not simple for (p,P,m), we use ad hoc
arguments to show that no obstacle exists for (p,P,m′); see case (a). In conclusion,
m′ is the desired extension.

5.4. Main theorem. By exploiting the relations between configurations and
obstacles and by applying our splitting off result, we may now prove our main theorem.
It states that the lower bound Φ, defined in section 5.1, may always be achieved unless
there exists a configuration, in which case one more edge is needed.

Theorem 71. Let p : 2V → Z be a symmetric crossing supermodular set function
and P a partition of V . Then the minimum number of edges of a P-partite graph that
covers p is Φ unless a configuration exists, in which case it is Φ + 1.
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Proof. The following lemmas prove the theorem.

Lemma 72. OPT (p,P) ≥ Φ. If there exists a configuration for (p,P), then the
inequality is strict.

Proof. By Lemma 64, OPT (p,P) ≥ Φ.
Suppose there exists a configuration for (p,P) and that the inequality is not strict;

that is, OPT (p,P) = Φ. Let F be a minimum set of edges such that (V, F ) covers p
and satisfies the partition constraint, and let m be the degree specification obtained
from m := 0 by unsplitting every edge of F . Note that m is (p,P)-allowed and there
exists a complete (p,P)-allowed splitting off. By the construction ofm, the minimality
of F , OPT (p,P) = Φ, and Lemma 69.2–1, 1

2m(V ) = |F | = OPT (p,P) = Φ = αp =
max{αp, βp}, so m is an extension for (p,P). Since there is a configuration for (p,P),
by Lemma 70, there is an obstacle for (p,P,m). But now Lemma 54 contradicts the
existence of a complete (p,P)-allowed splitting off.

Lemma 73. OPT (p,P) ≤ Φ + 1. If there exists no configuration for (p,P), then
the inequality is strict.

Proof. If there exists no configuration for (p,P), then, by Lemma 70, there exists
an extension m for (p,P) such that no obstacle exists for (p,P,m). Hence 1

2m(V ) =
max{αp, βp}. By Theorem 61, there exists a P-partite graph (V, F ) that covers p0 with
either |F | ≤ 1

2m(V ) = max{αp, βp} or |F | ≤ dim(p0)− 1. In both cases OPT (p,P) ≤
|F | ≤ Φ, and the strict inequality follows.

If there exists a configuration for (p,P), then let m be an extension for (p,P). By
Lemma 69,m(V ) = 2Φ. This implies thatm is p-legal. Replacem bym′ := m+χu+χv

for some u, v without violatingm′(P ) ≤ m′(V )
2 for every P ∈ P. Thenm′(V ) = 2Φ+2,

m′ is p-legal, and no set containing u or v is tight. By Claim 41, there exists no obstacle
for (p,P,m′). Then, by Theorem 62, there exists a complete (p,P)-allowed splitting
off, and the inequality follows.

6. Applications.

6.1. Covering of a symmetric crossing supermodular function by a
graph. Our main result, Theorem 71, implies the theorem of Benczúr and Frank [4].
Indeed, let P be the partition of V consisting of the singletons. Then no configuration
exists and Φ = max{αp,dim(p)− 1}.

6.2. Partition constrained global edge-connectivity augmentation of a
hypergraph. We show in this section that our main result, Theorem 71, implies the
theorem of Bernáth, Grappe, and Szigeti [6] about partition constrained global edge-
connectivity augmentation of a hypergraph. We mention that the proof of Theorem 76
given in [6] is considerably shorter than that of the present paper.

Let G = (V, E) be a hypergraph. For a vertex set X, we denote by δG(X) the set
of hyperedges intersecting both X and V \X and dG(X) = |δG(X)|. Let us denote by
d0(X,Y ) (respectively, d1(X,Y )) the number of hyperedges intersecting X \ Y and
Y \X and none of X ∩ Y and V \ (X ∪ Y ) (respectively, exactly one of X ∩ Y and
V \ (X ∪ Y )).

For an integer k, let p = k − dG . It is well known that dG satisfies (26) for all
subsets X and Y of V . By (26), for all crossing subsets X and Y of V , p satisfies
(27):

dG(X) + dG(Y ) = dG(X ∩ Y ) + dG(X ∪ Y ) + 2d0(X,Y ) + d1(X,Y ),(26)
p(X) + p(Y ) = p(X ∩ Y ) + p(X ∪ Y )− 2d0(X,Y )− d1(X,Y ).(27)
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Let us recall the following two lower bounds : Φ′ = max{αG , βG , ωG − 1}, where
αG , βG , and ωG are defined in the introduction, and Φ = max{αp, βp,dim(p) − 1},
where p = k − dG .

Definition 74. A partition A = {A1, . . . , A4} of V is called a C4-configuration
of G if the following hold:

1. Φ′ = k − dG(A1) + k − dG(A3) = k − dG(A2) + k − dG(A4);
2. there exists F ⊆ E such that

(a) F = δ(A1) ∩ δ(A3) = δ(A2) ∩ δ(A4),
(b) k − |F| is odd;

3. there exist P ∈ P and ` ∈ {1, 2} such that (A`, A`+2) is a P -pair.

Definition 75. A partition A = {A1, . . . , A6} of V is called a C6-configuration
of G if the following hold:

1. Φ′ = 3;
2. (a) k − dG(Ai) = 1 for i = 1, . . . , 6;

(b) k − dG(Ai ∪Ai+1) = 1 for i = 1, . . . , 6;
(c) there exists F ⊆ E such that

i. F = δ(Aj) ∩ δ(A`) for all distinct non consecutive Aj and A`,
ii. k − |F| is odd;

3. there exist distinct Pki ∈ P such that (Ai, Ai+3) is a Pki-pair for i = 1, 2, 3.

A C-configuration is a C4-configuration or a C6-configuration.

Theorem 76 (Bernáth, Grappe, and Szigeti [6]). Let G = (V, E) be a hypergraph,
P a partition of V , and k an integer. Then the minimum number of graph edges
between different members of P whose addition to G results in a k-edge-connected
hypergraph is Φ′ = max{αG , βG , ωG−1} unless G contains a C-configuration, in which
case it is Φ′ + 1.

Proof. We will apply Theorem 71 for p = k − dG . First we will observe that the
lower bound Φ is equal to Φ′. Then, we will show that C∗4 - and C∗6 -configurations
for p specialize to C4- and C6-configurations for G, and finally we will show that no
C∗5 -configuration exists for p.

Claim 77. Φ = Φ′.

Proof. Note that αG = αp and βG = βp.
First we show that Φ ≥ Φ′. If ωG − 1 < Φ′, then Φ′ = max{αG , βG} =

max{αp, βp} ≤ Φ. If ωG − 1 ≥ Φ′, then let F be a set of k− 1 hyperedges whose dele-
tion results in a hypergraph with ωG connected components. Let X = {X1, . . . , XωG}
be the vertex sets of these components. Then X is a p-full partition. Indeed, if Y is
the union of some of the Xi’s, then p(Y ) = k− dG(Y ) = k− dF (Y ) ≥ k− (k− 1) = 1,
and there is an index i such that p(Xi) = 1; otherwise, we have ωG − 1 ≥ Φ′ ≥
αG ≥ 1

2

∑ωG
i=1(k − dG(Xi)) = 1

2

∑ωG
i=1 p(Xi) ≥ 1

2

∑ωG
i=1 2 = ωG , a contradiction. Then

Φ ≥ dim(p)− 1 ≥ ωG − 1 ≥ Φ′.
Now we show that Φ ≤ Φ′. If dim(p) − 1 < Φ, then Φ = max{αp, βp} =

max{αG , βG} ≤ Φ′. If dim(p) − 1 ≥ Φ, then, by Lemma 6.3 of [4], ωG ≥ dim(p),
and hence Φ′ ≥ ωG − 1 ≥ dim(p)− 1 ≥ Φ.

By the above arguments, the claim follows.

Claim 78. A partition A = {A1, . . . , A4} of V is a C∗4 -configuration for p if and
only if it is a C4-configuration for G.

Proof. Definition 66.3 is the same as Definition 74.3.
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By (27) applied to Ai ∪ Ai−1 and Ai ∪ Ai+1, Definition 7.1b is equivalent to
d0(Ai ∪Ai−1, Ai ∪Ai+1) = d1(Ai ∪Ai−1, Ai ∪Ai+1) = 0, that is, to δ(A1) ∩ δ(A3) =
δ(A2) ∩ δ(A4), which is Definition 74.2a. Let F be this set of hyperedges. Then, by
(26) applied to Ai and Ai+1, Definition 7.1a is equivalent to saying that k − |F| =
k − dG(Ai) − dG(Ai+1) + dG(Ai ∪ Ai+1) + 2d0(Ai, Ai+1) = p(Ai) + p(Ai+1) − p(Ai ∪
Ai+1) + 2d0(Ai, Ai+1) is odd, that is, to Definition 74.2b.

Suppose that Definition 74.1 is satisfied. Then, by the definition of Φ, Claim 77,
Definition 74.1, and the definition of αG , we have max{αG , βG ,dim(p)−1} = Φ = Φ′ =
1
2 (k−dG(A1)+k−dG(A3)+k−dG(A2)+k−dG(A4)) ≤ αG . This implies that Definitions
7.1d and 66.2 hold. Suppose that 1 = p(Ai) = k − dG(Ai) for i = 1, . . . , 4. It also
follows that dim(p)− 1 ≤ 1

2 (k− dG(A1) + k− dG(A3) + k− dG(A2) + k− dG(A4)) = 2.
Then, by |A| = 4, A is not a p-full partition. Since 1 = p(Ai) for i = 1, . . . , 4 and, by
Claim 39.4, p(Ai ∪ Ai+1) = 1 for i = 1, . . . , 4, it follows, by the symmetry of p, that
p(A1 ∪A3) = p(A2 ∪A4) ≤ 0, and Definition 7.1c follows.

Now suppose that Definitions 7.1c, 7.1d, and 66.2 are satisfied. Then, by Defi-
nition 7.1d, Lemma 69.2, and Claim 77, we have p(A1) + p(A3) = p(A2) + p(A4) =
1
2σp = Φ = Φ′; so, by p(Ai) = k − dG(Ai), Definition 74.1 follows.

We note that in [6] there was a fourth condition for a C4-configuration, namely
k − dG(Ai) > 0 for i = 1, . . . , 4. However, by Claim 39.2, this condition is implied by
the others.

Claim 79. There exists no C∗5 -configuration for p.

Proof. Let us suppose for a contradiction that A = {A1, . . . , A4, B1, . . . , Bt} (t ≥
1) is a C∗5 -configuration for p. Let B =

⋃t
j=1Bj , Xi = Ai ∪ B, and Yi = Ai ∪

Ai+1. By Claim 40, p(B) = 2, p(Xi) = 1, p(Yi ∪ Xi+1) = p(Xi ∪ Xi+1) = 1, and
p(Xi ∪Xi+2) ≤ 0. By (27) applied to X1 and X2, we have 1 + 1 = p(X1) + p(X2) =
p(B) + p(X1 ∪X2)− 2d0(X1, X2)− d1(X1, X2) = 2 + 1− 2d0(X1, X2)− d1(X1, X2),
that is, d1(X1, X2) = 1; thus there exists a hyperedge e of G that enters A1, A2 and
exactly one of B and A3 ∪ A4. If e enters B, then d1(Y1, X2) ≥ 1, and hence, by
(27) applied to Y1 and X2, we have 1 + 1 = p(Y1) + p(X2) = p(A2) + p(Y1 ∪ X2) −
2d0(Y1, X2)− d1(Y1, X2) ≤ 1 + 1− 0− 1, a contradiction. Otherwise, e enters A3 or
A4, say A3. Then d1(X1, X3) ≥ 1, and hence, by (27) applied to X1 and X3, we have
1+1 = p(X1)+p(X3) = p(B)+p(X1∪X3)−2d0(X1, X3)−d1(X1, X3) ≤ 2+0−0−1,
a contradiction.

Claim 80. A partition A = {A1, . . . , A6} of V is a C∗6 -configuration for p if and
only if it is a C6-configuration for G.

Proof. First we show that Definition 75.2c is a corollary of Definitions 75.2a–2b.
Suppose indirectly that there exists a hyperedge F ∈ E that intersects noncon-

secutive sets Aj and A` but does not intersect Ai. Without loss of generality we may
suppose that there exists an index k such that 1 ≤ j < k < ` < i = 6. LetX =

⋃k
t=1At

and Y =
⋃5
t=k At. By Definitions 75.2a–2b, (27) applied to X and Y, and Claim 13.2,

1+1 = p(X)+p(Y ) = p(Ak)+p(
⋃5
t=1At)−2d0(X,Y )−d1(X,Y ) ≤ 1+1+0+0. It fol-

lows that d0(X,Y )+d1(X,Y ) = 0. Since Aj ⊆ X\Y,A` ⊆ Y \X and Ai = V \(X∪Y ),
F intersects X \Y and Y \X but not V \(X∪Y ), so d0(X,Y )+d1(X,Y ) ≥ 1. By this
contradiction Definition 75.2ci follows. Note that |F| = d1(Ai, Aj) for all i 6= j. Then,
by (26) applied to Ai and Ai+1, and by Definitions 75.2a–2b, we have that k− |F| =
k − dG(Ai) − dG(Ai+1) + dG(Ai ∪ Ai+1) + 2d0(Ai, Ai+1) = 1 + 1 − 1 + 2d0(Ai, Ai+1)
is odd; that is, Definition 75.2cii is satisfied.
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Definitions 9.1a–1b and 68.2 are the same as Definitions 75.2a–2b and 75.3.
Suppose that Definition 75.1 is satisfied. Then, by Claim 77, we have 3 = Φ′ =

Φ = max{αp, βp,dim(p)− 1}. This implies that αp ≤ 3 and then, 6 =
∑6
i=1 p(Ai) ≤

σp ≤ 2αp ≤ 6, and Definition 9.1d follows. It also implies dim(p) ≤ 4. Since |A| = 6,
A is not a p-full partition, and then, by Claim 13.3, Definition 9.1c follows.

Now suppose that A is a C∗6 -configuration. Then, by Definition 9.1d, Lemma 69.2,
and Claim 77, we have 3 = 1

2σp = Φ = Φ′, so Definition 75.1 follows.

By Claims 78, 79, and 80, Theorem 71 implies Theorem 76.

6.2.1. Global edge-connectivity augmentation of a hypergraph in a sub-
set of vertices. For an integer k and a subset T of V , a hypergraph H = (V, E) is
called k-edge-connected in T if dH(X) ≥ k for all X ⊂ V such that X ∩T and T −X
are nonempty. The problem of making a given hypergraph k-edge-connected in T by
adding a minimum set of edges was solved by Benczúr and Frank [4]. Theorem 71
solves the following partition constrained version of this problem: given a hypergraph
H = (V, E), a subset T of V , a partition P of T, and an integer k, find a graph
G = (T,E) with a minimum number of edges to be added to H between distinct
members of P such that the resulting hypergraph is k-edge-connected in T . Indeed,
if we define the function p : T → Z with p(X) = max{k − dH(X ∪ Y ) : Y ⊆ V − T}
for any nonempty X ⊂ T and p(∅) = p(T ) = 0, then it was shown in [4] that p is
symmetric and crossing supermodular, so Theorem 71 can be applied.

7. Algorithm and complexity. In this section, we describe an algorithm that,
given a symmetric crossing supermodular set function p : 2V → Z and a partition P
of V , finds a P-partite a graph that covers p having a minimum number of edges. We
then explain in which settings the subroutines needed for the algorithm are polyno-
mial. Finally, we sketch why the algorithm itself is polynomial in these settings.

Throughout, G will denote a graph, pG = p−dG, and mG a pG-admissible degree
specification.

7.1. Augmentation algorithm. Given a symmetric crossing supermodular set
function p : 2V → Z and a partition P of V , the augmentation algorithm finds a
P-partite a graph that covers p having a minimum number of edges. It consists of
three major steps: extension, then splitting off, and finally determining whether a
configuration exists. See Figure 3 for details of this algorithm.

7.2. Subroutines. In this section, we give the framework in which our algo-
rithms run in polynomial time, together with the basic bricks needed throughout.
These bricks mostly concern crossing supermodular functions, operations such as
splitting off, tight sets, and partition constraints.

Some of the arguments used below come from [4], adapted to the partition con-
strained version when necessary.

7.2.1. Crossing supermodular functions.
Minimization oracle. We assume that the function p is given with an evaluation

oracle and a polynomial minimization oracle. The last oracle outputs, in polynomial
time, a subset of V that is a solution of min∅6=X⊂V {m(X)− pG(X)} for any modular
function m and for any graph G. Note that checking whether a degree specification
m is pG-admissible can be done in polynomial time using these oracles.

When p is fully crossing supermodular, that is, when (3) is satisfied for all crossing
pairs (the positivity condition is dropped), then a polynomial minimization oracle can
be implemented from an evaluation oracle. Indeed, in this case, the minimization of
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Augmentation Algorithm.
Input : A symmetric crossing supermodular function p : 2V → Z and a partition P of V .
Output: A P-partite graph that covers p of minimum size.

Step 1. Find an extension m for (p,P) applying the Extension Algorithm described in
Figure 2 (section 5.2).

Step 2. Apply the Splitting off algorithm described in Figure 1 (section 4.3).

Step 3. If it stops with a complete (p,P)-allowed splitting off, then we have found a
P-partite graph that covers p having m(V )

2
= max{αp, βp} edges, and stop.

Step 4. If it stops with a P-partite graph that covers p having at most dim(p) − 1 edges,
then stop.

Step 5. Otherwise, it stops with an obstacle A for (p,P,m); then apply the proof of
Lemma 70 to A.

Step 6. If it finds another extension m′ for (p,P) such that no obstacle exists for (p,P,m′),
then go to Step 2.

Step 7. Otherwise, it finds a configuration for (p,P). The algorithmic proof of Lemma 73
provides the desired graph with m′(V )

2
= Φ + 1 edges, and stop.

Fig. 3. Augmentation algorithm.

m − pG can be reduced to the minimization of a fully submodular function (see
Theorem 10.3.11 in [8]), which can be solved in polynomial time. For example, [9]
provides a minimizer in O((|V |5γ + |V |6) log |V |), where γ is the time needed to call
the function evaluation oracle.

Note that, in our application for hypergraphs, evaluating the function can be done
in polynomial time. In fact, in this case the minimization problem can be solved with
network flow techniques [3].

Subpartition lower bound and minimal degree specification. Thanks to the mini-
mization oracle, a greedy algorithm computes σp and a minimal degree specification
m in Theorem 1; see [7]. As a consequence, the subpartition lower bound αp can be
computed in polynomial time.

7.2.2. Operations.
Splitting off. Deciding whether splitting off at x, y is pG-admissible is equivalent

to checking whether min∅6=X⊂V {mG′(X) − pG′(X)} ≥ 0, where G′ is obtained from
G by splitting off at x, y. Therefore, this can be done in polynomial time, calling the
minimization oracle once.

Flips and improvements. Since flips and improvements can also be described by
a fixed number of unsplittings and splittings off, checking their admissibility is also
polynomial.

7.2.3. Tight sets.
Minimal tight sets. Here, we explain how to find, in polynomial time, a minimal

tight set containing a given positive element, if one exists.
First, note that, given an mG-positive element x ∈ V and y ∈ V \x, one can find,

if it exists, a tight set containing x but not y by calling the minimization oracle for
m′ + mG − pG, where m′(x) = −M , m′(y) = M , m′(z) = 0 otherwise, and M is a
suitable big number. Indeed, due to the pG-admissibility of mG and the choice of m′
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and M , we have min∅6=X⊂V {m′(X) + mG(X)− pG(X)} ≥ −M , and any solution to
this minimization problem contains x but not y. Moreover, such a solution S is tight
if and only if m′(S) +mG(S)− pG(S) = −M .

Then, given anmG-positive element x, one can find a minimal tight set containing
x by applying the above remark to x and y, for all y ∈ V \ x, and then by taking
the intersection of the solutions which are tight sets. By Claim 14, this provides a
minimal tight set containing x.

Maximal tight sets. Arguments similar to those above allow one to find a maximal
tight set containing a given mG-positive element in polynomial time, if one exists.

First, given distinct x, y ∈ V , one can find a tight set containing both x and y,
if one exists, by calling the minimization oracle for m′′ + mG − pG, where m′′(x) =
m′′(y) = −M , and 0 otherwise. Then, given x ∈ V+(mG), one can find a maximal
tight set containing x by applying the above remark to x and y, for all y ∈ V \ x,
and then by taking the union of the solutions which are tight sets. By Claim 14, this
provides a maximal tight set containing x.

Obstructions. We explain how to find an obstruction for (pG,mG) in polynomial
time, if one exists.

Recall that, by Lemma 43, an obstruction for (pG,mG) is the unique partition
of V into maximal tight sets, in which, by Claim 39.2 and Definitions 8.1a and 9.1a,
every member contains an mG-positive element. Applying at most |V | times the
algorithm that finds the maximal tight set containing a given element, one can find
such a partition of V , if one exists. Then, since Definitions 7.1, 8.1, and 9.1 involve
single sets or pairs of sets of the partition, it is straightforward to check whether
one holds. Finally, by the remarks on the lower bounds of section 7.2.1, one can
check whether Definition 7.2, 8.2, or 9.2 holds. Therefore, if an obstruction exists for
(pG,mG), then it can be found in polynomial time.

7.2.4. Partition constraints.
Color condition. Note that it is immediate to check whether (20) holds.
Allowed operations. Since checking the pG-admissibility of any operation can be

done in polynomial time, the above remark implies that checking whether an operation
is allowed is polynomial.

Obstacles. If an obstacle exists for (p,P,m), then one can find it by, first, finding
the corresponding obstruction and, then, checking whether this obstruction is an
obstacle (that is, Definition 7.3, 8.3, or 9.3 holds). The first part is done in polynomial
time by results of section 7.2.3, and the second is immediate from the definitions.

Sequences of allowed splitting off. We show how to perform, in polynomial time,
arbitrary allowed splitting off until there are none of the allowed splittings left.
(a) Suppose there is a dominating color P . Then, every allowed splitting off involves

exactly one mG-positive element of P .
Let x be such an element. Given y ∈ V+(mG) \ P , the arguments of section 7.2.3
about minimal tight sets allows one to compute ωx,y = minx,y∈X⊂V {mG(X) −
pG(X)} in polynomial time. Note that the maximum number of pG-admissible
(hence allowed) splittings off at x, y is min{ 1

2ωx,y,mG(x),mG(y)}. Repeating this
for all y ∈ V+(mG) \P , one can perform in polynomial time allowed splittings off
involving x, until there are none left.
Repeating this for every mG-positive element of P , one can perform allowed split-
tings off until there are none left, in polynomial time.

(b) Suppose there is no dominating color. Let x ∈ V+(mG), and apply the argument
of (a) to perform arbitrary allowed splitting off involving x: it stops either because
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a dominating color appears, and then we can apply (a), or because x no longer
belongs to an allowed splitting off, in which case we repeat (b) with another
positive element.
Since (b) is repeated at most |V | times, and both (a) and (b) are done in polyno-

mial time, we performed allowed splitting off until there were none left, in polynomial
time.

7.3. Complexity. The aim of this section is to sketch why the augmentation
algorithm runs in polynomial time, provided the function p is given with an evaluation
oracle and a minimization oracle. Before doing so, we first sketch why the extension
and splitting off algorithms are polynomial.

7.3.1. Extension algorithm. We sketch why each step of the extension al-
gorithm can be done in polynomial time, provided the function p is given with a
minimization oracle.

Step 1 is polynomial; see the Subpartition lower bound paragraph of sec-
tion 7.2.1.
Step 2 is immediate.
If we execute Step 3 as it is given in Figure 2, then the algorithm is not
polynomial. Indeed, Step 3 can be repeated |V |pmax times, where pmax is the
maximum value of the function p. To turn Step 3 polynomial we have to use
the tricks explained in section 6.6 of [2]. One has to use the minimal degree
specification algorithm of [7] for different starting values; for details, see [2].
Step 3b is immediate.

Lower bounds. As we have already mentioned in section 5.2, we cannot calculate
dim(p). On the other hand, the extension algorithm, as it is described above, provides
in polynomial time max{αp, βp}.

7.3.2. Splitting off algorithm. We sketch why each step of the splitting off
algorithm can be done in polynomial time, provided the function p is given with a
minimization oracle.

Step 1 is polynomial by the remarks of section 7.2.4 about sequences of allowed
splitting off.
Step 2 is polynomial. Indeed, by Corollary 28, we have mG(V ) ≤ |V |. Then,
since performing an improvement decreases mG(V ) by 2, the number of im-
provements in the sequence is at most mG(V )/2 ≤ |V |/2. There are at most(|V |

4

)
possible improvements at each of the |V |/2 steps, and checking whether

an improvement is allowed is polynomial.
– If the algorithm stops at (a), then we apply Lemma 37. Let us see why it

provides the required partition and graph in polynomial time. By Corol-
lary 28.2, {Tw, w ∈ V+(mG)} is a partition of V into maximal tight sets
and hence can be found by applying at most |V | times the maximal tight
sets subroutine. The set Xe for each e ∈ E can be found in polynomial
time because it is defined as the intersection of two perilous sets. These
last sets can be found in polynomial time because we can decide if the
degree specification after a flip is admissible or not in polynomial time.
Finally, having U in hand, we get U∗ in polynomial time.

– Otherwise, the algorithm stops at (b), and the final step is clearly poly-
nomial.

Step 3 consists of finding a C∗4 -obstacle, which is polynomial by results about
obstacles of section 7.2.4.
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Step 4 is polynomial, by the same reasoning by which Step 2 is.
Step 5 finds in polynomial time, by the proof of Lemma 57.2, either a C∗4 -
obstacle for (p,P,m) or two edges e and f of G such that in Ge,f there exists
a complete (pGe,f ,P)-allowed splitting off. Since mGe,f (V ) = 8, this complete
splitting off can be found in polynomial time.
Step 6 first finds a C∗5 -obstruction for (p,m) (that exists by Lemma 58.2)
in polynomial time by subroutine obstructions. Then in (a) it is checked in
polynomial time whether this obstruction is a C∗5 -obstacle. If not, then we
apply in (b) the proof of Lemma 49. This can be done in polynomial time,
the first part by the results of section 7.2.4, and the second because the proof
of Lemma 49 is inductive and needs, at each of the t+ 2 ≤ |V |+ 2 steps, to
find one allowed splitting off and at most one allowed flip.
Step 7 first finds a consecutive improvement, unsplits the edge e involved,
and then finds a C∗6 -obstacle in Ge. This can be done in polynomial time by
the results of sections 7.2.2 and 7.2.4. Then, Step 7(b) unsplits an arbitrary
edge e′ of Ge and finds a complete allowed splitting off. Since mGe,e′ (V ) = 8,
this can be done in polynomial time.

7.3.3. Augmentation algorithm. We sketch why each step of the augmenta-
tion algorithm can be done in polynomial time, provided the function p is given with
a minimization oracle.

Steps 1–4 can be done in polynomial time by the arguments of sections 7.3.1
and 7.3.2.
Step 5 follows the proof of Lemma 70, in which the main algorithmic ingredi-
ents are checking color conditions and finding one or two suitable tight sets.
By the remarks of sections 7.2.3 and 7.2.4, this can be done in polynomial
time. We mention that in the proof of Lemma 70 we suppose that the exten-
sion m minimizes m(R) + m(B). This assumption is made in order to have
a shorter proof. We note that this assumption is not essential. When this
assumption is not satisfied, then we will change the extension at most twice,
and hence the proof can be modified so that Step 5 becomes polynomial.
Step 6 is similar to Step 2. Note that in this case the algorithm will stop
either in Step 3 or in Step 4.
Step 7 first increases m(V ) by two so that a complete allowed splitting off
exists, and then applies the splitting off algorithm, which is polynomial.

8. Conclusion. In this paper we proposed an abstract form for the problem
of partition constrained global edge-connectivity augmentation of a hypergraph. We
provided a minimax theorem for this problem, and we sketched a polynomial algorithm
to find an optimal solution when the function is given with a minimization oracle. This
theorem implies the main theorems of [4] and [6], and consequently the results in [2],
[3], and [11]. Our abstract form also provides a new application, given in section 6.
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