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Abstract
Box-totally dual integral (box-TDI) polyhedra are polyhedra described by systems
which yield strongmin-max relations.We characterize them in several ways, involving
the notions of principal box-integer polyhedra and equimodular matrices. A polyhe-
dron is box-integer if its intersection with any integer box {� ≤ x ≤ u} is integer.
We define principally box-integer polyhedra to be the polyhedra P such that kP is
box-integer whenever kP is integer. A rational r × n matrix is equimodular if it has
full row rank and its nonzero r × r determinants all have the same absolute value. A
face-definingmatrix is a full row rank matrix describing the affine hull of a face of the
polyhedron. Our main result is that the following statements are equivalent.

• The polyhedron P is box-TDI.
• The polyhedron P is principally box-integer.
• Every face-defining matrix of P is equimodular.
• Every face of P has an equimodular face-defining matrix.
• Every face of P has a totally unimodular face-defining matrix.
• For every face F of P , lin(F) has a totally unimodular basis.

Along our proof, we show that a polyhedral cone is box-TDI if and only if it is
box-integer, and that these properties are carried over to its polar. We illustrate these
charaterizations by reviewing well known results about box-TDI polyhedra. We also
provide several applications. The first one is a new perspective on the equivalence
between two results about binary clutters. Secondly, we refute a conjecture of Ding,
Zang, and Zhao about box-perfect graphs. Thirdly, we discuss connections with an
abstract class of polyhedra having the Integer Carathéodory Property. Finally, we
characterize the box-TDIness of the cone of conservative functions of a graph and
provide a corresponding box-TDI system.
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1 Introduction

Box-totally dual integral systems are systems which yield strong min-max relations.
These systems are useful to prove strong min-max combinatorial theorems and are
known to be difficult to handle. A polyhedron that can be described by a box-totally
dual integral system is called a box-totally dual integral polyhedron [14]. In this paper,
we characterize box-totally dual integral polyhedra in several new ways. The key idea
is to introduce and study the abstract class of principally box-integer polyhedra—see
Definition 1 below. Indeed, the completely geometric nature of principally box-integer
polyhedra makes them easier to be studied, and it turns out that this class coincides
with that of box-totally dual integral polyhedra.

We characterize principally box-integer polyhedra in several ways. In this regard,
some matrices play an important role. They generalize unimodular matrices and we
call them equimodular matrices—see Definition 2 below. We show that the notion of
principal box-integrality is strongly intertwinedwith that of equimodularity: equimod-
ular matrices are characterized using principal box-integrality and, in turn, principally
box-integer polyhedra are characterized by the equimodularity of a family of matrices.
This sheds new lights on fundamental results in combinatorial optimization and inte-
ger programming. For instance, the classical characterization of unimodular matrices
by Veinott and Dantzig [45] and that of totally unimodular matrices due to Hoffman
and Kruskal [31] can be reformulated and extended using these notions.

More importantly, these notions bring a geometric and matricial perspective about
box-totally dual integral polyhedra. Since the class of principally box-integer poly-
hedra coincides with that of box-totally dual integral polyhedra our results provide
several new characterizations of the latter. We believe that these characterizations fill
in “the lack of a proper tool for establishing box-total dual integrality”—to quote Ding
et al. [17]—and we illustrate their use.

Main definitions Before going deeper into the details of our contributions, let us
give the main definitions relevant to this paper.

A polyhedron P = {x : Ax ≤ b} of Rn is integer if each of its faces contains an
integer point and box-integer if P ∩ {� ≤ x ≤ u} is integer for all �, u ∈ Z

n . For
k ∈ Z>0, the kth dilation of P is kP = {kx : x ∈ P} = {x : Ax ≤ kb}.

Definition 1 A polyhedron P is principally box-integer if kP is box-integer for all
k ∈ Z>0 such that kP is integer.

A full row rank r × n matrix is unimodular if it is integer and its nonzero r × r
determinants have value 1 or− 1 [38, Page 267]. There is a strong connection between
principally box-integer polyhedra and the following generalization of unimodular
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matrices. Note that equimodular matrices are studied under the name of matrices
with the Dantzig property in [29] or as unimodular sets of vectors in [28].

Definition 2 A rational r × n matrix is equimodular if it has full row rank and its
nonzero r × r determinants all have the same absolute value.

A linear system Ax ≤ b is totally dual integral (TDI) if the minimum in the linear
programming duality equation max{w�x : Ax ≤ b} = min{b�y: A�y = w, y ≥ 0}
has an integer optimal solution for all integer vectorsw for which the optimum is finite.
Every polyhedron can be described by a TDI system [38, Theorem 22.6]. Moreover,
the right-hand side of such a TDI system can be chosen integer if and only if the
polyhedron is integer [22]. A linear system Ax ≤ b is a box-TDI system if Ax ≤ b,
� ≤ x ≤ u is TDI for each pair of rational vectors � and u. In other words, Ax ≤ b is
box-TDI if

min{b�y + u�r − ��s: A�y + r − s = w, y ≥ 0, r, s ≥ 0} (1)

has an integer solution for all integer vectorsw and all rational vectors �, u forwhich the
optimum is finite. It is well-known that box-TDI systems are TDI [38, Theorem 22.7].
General properties of such systems can be found in [14], [39, Chap. 5.20] and [38,
Chap. 22.4]. Though not every polyhedron can be described by a box-TDI system, the
result of Cook [14] below proves that being box-TDI is a property of the polyhedron.

Theorem 1 (Cook [14, Corollary 2.5]) If a system is box-TDI, then any TDI system
describing the same polyhedron is also box-TDI.

This theorem justifies the following definition [14].

Definition 3 A polyhedron that can be described by a box-TDI system is called a
box-TDI polyhedron.

Let us now review results from the literature related to these notions.

Unimodular matrices The notion of unimodularity dates back to Smith [43] and
ensures that a linear system has an integral solution for each integer right-hand side.
Hoffman and Kruskal [31] proved that integral solutions still exist under the weaker
condition that (*) the gcd of the r × r determinants equals 1. Condition (*) and
equimodularity are complementary generalizations of unimodularity, in the sense that
if an integermatrix is equimodular and satisfies (*), then it is unimodular. Hoffman and
Oppenheim [30] introduced variants of unimodularity, which were afterward studied
by Truemper [44]. In [7,28], it is proved that equimodular matrices ensure that all basic
solutions are integer, provided that one of them is—see also Barnett [5, Chap. 7].

The stronger notion of total unimodularity plays a central role in combinatorial
optimization. A matrix is totally unimodular when all its subdeterminants have value
in {0,±1}. Examples of such matrices are network matrices and incidence matrices of
bipartite graphs. Hoffman and Kruskal [31] characterized totally unimodular matrices
to be the matrices for which the associated polyhedra are all box-integer. Several
other characterizations were obtained since then—see e.g. [10,25]. Totally unimodular
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matrices are now well understood due to the decomposition theorem of Seymour [40].
For a survey of related results, we refer to [38, Chap. 4 and 19].More recently, Appa [2]
and Appa and Kotnyek [3] generalized total unimodularity to rational matrices, their
goal being to ensure the integrality of the associated family of polyhedra for a specified
set of right-hand sides, such as those with only even coordinates. In another direction,
Lee [33] generalized totally unimodular matrices by considering the associated linear
spaces. The connections between his results and the previous ones are discussed in
Kotnyek’s thesis [32, Chap. 11].

Wewill see howprincipal box-integrality fitswithin the characterization of unimod-
ular matrices by Veinott and Dantzig [45] and that of totally unimodular matrices due
to Hoffman and Kruskal [31]. Then, these results are naturally extended to character-
ize equimodular matrices. Also, a new generalization of totally unimodular matrices
appears in Sect. 4.1, the notion of totally equimodular matrices, which still have nice
polyhedral properties.

Box-integrality In combinatorial optimization and integer programming, a desirable
property for polyhedra is to be integer, as then the vertices can be seen as combinatorial
objects. Henceforth, many results in those fields are devoted to the study of properties
and descriptions of integer polyhedra. The stronger property of being box-integer is
far less studied. Nevertheless, some important classes of polyhedra are known to be
box-integer, such as polymatroids [21], and more generally box-totally dual integer
polyhedra [38]. Box-integrality plays some role for polyhedra to have the Integer
Carathéodory Property in [27]. Binary clutters being 1

k -box-integer for all k ∈ Z>0 are
characterized in [24].

Actually, all these examples of box-integer polyhedra are principally box-integer.
Our characterizations then yield new insights towards their properties.

Box-total dual integrality Box-TDI systems and polyhedra received a lot of attention
from the combinatorial optimization community around the 80s. These systems yield
strong combinatorial min-max relations with a geometric interpretation. A renewed
interest appeared in the last decade and since thenmanydeep results appeared involving
such systems. The famous MaxFlow-MinCut theorem of Ford and Fulkerson [23] is a
typical example of min-max relation implied by the box-TDIness of a system. Other
examples of fundamental box-TDI systems appear for polymatroids and for systems
with a totally unimodular matrix of constraints.

Originally, box-TDI systems were closely related to totally unimodular matrices.
Indeed, any systemwith a totally unimodularmatrix of constraint is box-TDI.Actually,
until recently, the vast majority of known box-TDI systems were defined by a totally
unimodular matrix, see [39] for examples. When the constraint matrix is not totally
unimodular, proving that a given system is box-TDI can be quite a challenge: one has
to prove its TDIness, and then to deal with the addition of box-contraints that perturb
the combinatorial interpretation of the underlying min-max relation. Ding, Feng, and
Zang prove in [16] that it is NP-hard to recognize box-TDI systems.

Based on an idea of Ding and Zang [18], Chen, Chen, and Zang provide in [11] a
sufficient condition for some systems to be box-TDI, namely the ESP property. Due to
its purely combinatorial nature, the ESP property is successfully used to characterize:
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box-Mengerian matroid ports in [11], the box-TDIness of the matching polytope in
[17], subclasses of box-perfect graphs in [19]. Prior to the development of the ESP
property, the main tool to prove box-TDIness was [38, Theorem 22.9] of Cook. Its
practical application turns out to be quite technical as one has to combine polyhedral
and combinatorial considerations, such as in [13] where the box-TDIness of a system
describing the 2-edge-connected spanning subgraph polytope on series-parallel graphs
is proved. In [15], Cornaz, Grappe, and Lacroix prove that a number of standard
systems are box-TDI if and only if the graph is series-parallel.

Contributions Our results provide a frameworkwithinwhich the notions of equimod-
ularity, principal box-integrality, and box-TDIness are all connected. The point of view
obtained from principally box-integer polyhedra unveils new properties and simplifies
the approach.

We now state our main result. A face-definingmatrix for a polyhedron is a full row
rank matrix describing the affine hull of a face of the polyhedron—see Sect. 4.2 for
more details.

Theorem 2 For a polyhedron P, the following statements are equivalent.

1. The polyhedron P is box-TDI.
2. The polyhedron P is principally box-integer.
3. Every face-defining matrix of P is equimodular.
4. Every face of P has an equimodular face-defining matrix.
5. Every face of P has a totally unimodular face-defining matrix.

Along our proof, we show that a polyhedral cone is box-TDI if and only if it is
box-integer, and that these properties are carried over to its polar. We use this to derive
a polar version of Theorem 2—see Corollary 6.

These new results allow us to prove the box-TDIness of systems by making full
use of Theorem 1: find a TDI system describing the polyhedron on the one hand,
and, on the other hand, apply one of the characterizations of principally box-integer
polyhedra to prove the box-TDIness of the polyhedron. In particular, when a TDI
system that describes the polyhedron is already known, our characterizations allow
us to pick whichever system—TDI or not—describing the polyhedron, and to use
algebraic tools to prove the “box” part. The drawback of our characterization is that it
does not provide a box-TDI systemdescribing the polyhedron.Nevertheless, one of our
characterizations gives an easy way to disprove box-TDIness: it is enough to exhibit a
face-defining matrix having two maximal nonzero determinants of different absolute
values. In particular, this provides a simple co-NP certificate for the box-TDIness of
a polyhedron.

We show how known results on box-TDI polyhedra are simple consequences of
our characterizations—see Sect. 5.2. We also explain how our results are connected
with Schrijver’s sufficient condition [39, Theorem 5.35] and Cook’s characterization
[14], [38, Theorem 22.9].

We illustrate the use of our characterizations on several examples—see Sect. 6.
First, we explain the equivalence between the main result of Gerards and Laurent [24]
and that of Chen et al. [12] about binary clutters. As a second application, we disprove
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a conjecture ofDing et al. [19] about box-perfect graphs. Then,we discussGijswijt and
Regts [27]’s abstract class of polyhedra having the Integer Carathéodory Property and
possible connections between principal box-integrality and the integer decomposition
property. Finally, we prove that the cone of conservative functions of a graph is box-
TDI if and only if the graph is series-parallel and we provide a box-TDI system
describing it.

Outline Section 2 contains standard definitions. In Sect. 3, we study general prop-
erties of principally box-integer polyhedra. Section 4 shows how equimodularity and
principal box-integrality are intertwined: each notion is characterized using the other
one. In Sect. 5, we first prove that a polyhedron is box-TDI if and only if it is prin-
cipally box-integer, and then discuss the connections between our characterizations
and existing results about box-TDI polyhedra. In Sect. 6, we illustrate the use of our
characterizations on several examples.

2 Definitions

Matrices Throughout the paper, all entries will be rational. The i th unit vector of
R
n will be denoted by χ i . For I ⊆ {1, . . . , n}, let χ I = ∑

i∈I χ i . An element A of
R
m×n will be thought of as a matrix with m rows and n columns, and an element b of

R
m as a column vector. When all their entries belong to Z, we will call them integer.

The row vectors of A will be denoted by a�
i , the column vectors of A by Ai . When

rank(A) = m, we say that A has full row rank. A matrix is totally unimodular, or TU,
if the determinants of its square submatrices are equal to − 1, 0 or 1.

Lattices The lattice generated by a set V of vectors of Qn is the set of integer
combinations of these vectors, and is denoted by lattice(V ) = {∑v∈V λvv: λv ∈
Z for all v ∈ V }. The lattice generated by the column vectors of a matrix A is denoted
by lattice(A).

Polyhedra Given A ∈ Q
m×n and b ∈ Q

m , the set P = {x ∈ R
n : Ax ≤ b} =

{x ∈ R
n : a�

i x ≤ bi , i = 1, . . . ,m} is a polyhedron. We will often simply write
P = {x : Ax ≤ b}. The matrix A is the constraint matrix of P . The translation of P
by w ∈ R

n is P + w = {x + w: x ∈ P}.
A face of P is a nonempty1 set obtained by imposing equality on some inequalities

in the description of P , that is, a nonempty set of the form F={x : a�
i x=bi , i ∈ I }∩P

where I ⊆ {1, . . . ,m}. A row a�
i or an inequality a�

i x ≤ bi with F ⊆ {x : a�
i x = bi }

is tight for F , and AFx ≤ bF will denote the inequalities from Ax ≤ b that are tight for
F . The set of points contained in F and in no face F ′ ⊂ F forms the relative interior
of F . Let lin(F) = {x : AFx = 0} and aff(F) = {x : AFx = bF }. The dimension
dim(F) of a face F is the dimension of its affine hull aff(F). A facet is a face that is
inclusionwisemaximal among all faces distinct from P . A face isminimal if it contains

1 In the standard definition, the emptyset is a face. It is not the case in this paper in order to lighten the
statements.
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no other face of P . Minimal faces are affine spaces. A minimal face of dimension 0
is called a vertex. Note that a polyhedron is integer if and only if each of its minimal
faces contains an integer point.

Cones A polyhedral cone is a polyhedron of the formC = {x : Ax ≤ 0}. Since all the
cones involved in this paper are polyhedral, we simply write cone. A cone C can also
be described as the set of nonnegative combinations of a finite set of vectors R ⊆ R

n ,
and we say that C = cone(R) is generated by R. A conic polyhedron is a rational
translation of a cone, that is, a set of the form t + {x : Ax ≤ 0} for some t ∈ Q

n .
The polar cone of a coneC = {x : Ax ≤ 0} is the coneC∗ = {x : z�x ≤ 0 for all z ∈

C}. Equivalently, C∗ is the cone generated by the columns of A�. Note that C∗∗ = C .
Given a face F of a polyhedron P = {x : Ax ≤ b}, the tangent cone associated to

F is the conic polyhedron CF = {x : AFx ≤ bF }. When F is a minimal face of P ,
its associated tangent cone is a minimal tangent cone of P . The cone of Rn generated
by the columns of A�

F is the normal cone associated to F . Note that the normal cone
associated to F is the polar of {x : AFx ≤ 0}.

For more details, we refer the reader to Schrijver’s book [38].

3 Generalities on principally box-integer polyhedra

This section is devoted to the basic properties of box-integer and principally box-
integer polyhedra. In particular, we study the behavior of these notions with respect
to dilation and translation.

3.1 Box-integer polyhedra

Recall that a polyhedron P is box-integer if P ∩ {� ≤ x ≤ u} is integer for all
�, u ∈ Z

n . Frequently, the following characterization will be more convenient to use
than the definition.

Lemma 1 A polyhedron P is box-integer if and only if for each face F of P, I ⊆
{1, . . . , n}, and p ∈ Z

I such that aff(F) ∩ {xi = pi , i ∈ I } is a singleton v, if v

belongs to F then v is integer.

Proof Let P = {x ∈ R
n : Ax ≤ b}. Suppose that P is not box-integer. Then, P ∩ {� ≤

x ≤ u} has a noninteger vertex v for some �, u ∈ Z
n . In particular, v belongs to

P ∩ {� ≤ x ≤ u} and is the unique solution of a nonsingular system a j x = b j , j ∈
J , xi = pi , i ∈ I where pi ∈ {�i , ui }. Now, F = {x : a j x = b j , j ∈ J } ∩ P is a face
of P , and {v} = aff(F) ∩ {xi = pi , i ∈ I } is not integer.

Conversely, suppose that {v} = aff(F) ∩ {xi = pi , i ∈ I } belongs to F and is not
integer, for some p ∈ Z

I . Define � and u as follows:�i = ui = pi for i ∈ I , and
�i = �vi� and ui = 
vi� otherwise. Then, v is a noninteger vertex of P ∩{� ≤ x ≤ u}
and P is not box-integer. ��

Note that, if I is such that the set aff(F) ∩ {xi = pi , i ∈ I } is a singleton for some
p ∈ R

I , then this set is either empty or a singleton for all p ∈ R
I . If I is moreover
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assumed inclusionwise minimal, then aff(F) ∩ {xi = pi , i ∈ I } is a singleton for all
p ∈ R

I .
The following two results seem to be known in the literature, we provide a proof

for the sake of completeness.

Corollary 1 If a polyhedron P is box-integer, then P is integer.

Proof Let F be a minimal face of P . There exists an inclusionwise minimal set I as
above, hence setting {xi = pi , i ∈ I } for some p ∈ Z

I yields a singleton in aff(F).
Since aff(F) = F , this singleton is integer by Lemma 1, and thus F contains an
integer point. ��
Corollary 2 Let P be a polyhedron of Rn. The following statements are equivalent.

1. P is box-integer.
2. P ∩ {x ≥ �} is integer for all � ∈ Z

n.
3. P ∩ {� ≤ x ≤ u} is integer for all �, u ∈ Z ∪ {−∞,+∞}n.
Proof Statement 3 immediately implies statement 2. Statement 2 implies statement 1
by Lemma 1, as if aff(F) ∩ {xi = pi , i ∈ I } is a singleton v ∈ F , then v is a vertex
of P ∩ {x ≥ �v�}. Statement 1 implies statement 3 because if P is box-integer, then
for all �, u ∈ Z ∪ {−∞,+∞}n , P ∩ {� ≤ x ≤ u} is box-integer—and hence integer
by Corollary 1. ��

The following lemma shows two operations which preserve box-integrality. The
second one will be used in Sect. 5.

Lemma 2 Let P = {x ∈ R
n : Ax ≤ b} be a polyhedron.

1. P is box-integer if and only if P̃ = {(y, z) ∈ R
n×R

n : A(y+z) ≤ b} is box-integer.
2. P is box-integer if and only if P± = {(y, z) ∈ R

n ×R
n : A(y − z) ≤ b, y, z ≥ 0}

is box-integer.

Proof To establish the “only if” part of statement 1, suppose that P̃ is box-integer.
Then, so is P̃ ∩ {z = 0}. Since P is obtained from P̃ ∩ {z = 0} by deleting z’s
coordinates, P is box-integer. To establish the “if” part of statement 1,weuseLemma1.
Let F be a face of P̃ , of affine space aff(F) = {(y, z) ∈ R

n × R
n : a j (y + z) =

b j , j ∈ J }, and let p and q be integer vectors such that S = aff(F) ∩ {yi = pi , i ∈
Iy, zi = qi , i ∈ Iz} is a singleton (ȳ, z̄) which belongs to F . Let us show that (ȳ, z̄) is
integer. By Lemma 1, this implies that P̃ is box-integer.

We denote by G the face of P of affine space {x ∈ R
n : a j x = b j , j ∈ J }. Then

aff(G)∩ {xi = pi + qi , i ∈ Iy ∩ Iz} is the singleton x̄ = ȳ + z̄. Indeed, if it contained
an other point x̄ ′, we could set ȳ′

i = pi , i ∈ Iy, z̄′i = qi , i ∈ Iz and then build (ȳ′, z̄′)
in S such that ȳ′ + z̄′ = x̄ ′ �= ȳ+ z̄, a contradiction. P is box-integer and ȳ+ z̄ belongs
to P , thus ȳ + z̄ is integer by Lemma 1. Since S is a singleton, no (ȳ + χi , z̄ − χi )

belongs to S, and for all i , we have either yi = pi or zi = qi . Since p, q, and ȳ + z̄
are integer, (ȳ, z̄) is integer.

To establish the “only if” part of statement 2, suppose that P is box-integer. Then,
so is P± by statement 1 and because P± is obtained from P̃ ∩ {y ≥ 0, z ≤ 0} by
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replacing z by −z. To establish the “if” part of statement 2, suppose now that P± is
box-integer. For t ∈ R

n , define t+ = max{0, t} and t− = max{0,−t}. For �, u ∈ Z
n ,

we have u = u+ −u−, � = �+ −�−, and u+, u−, �+, �− ≥ 0, hence P ∩{� ≤ x ≤ u}
is the projection onto x = y − z of P± ∩ {�+ ≤ y ≤ u+,−�− ≤ −z ≤ −u−}. Since
the latter is integer, this implies the integrality of P ∩ {� ≤ x ≤ u}. ��

3.2 Dilations of box-integer polyhedra

In this section, we investigate how the box-integrality of a polyhedron behaves with
respect to dilation. As a preliminary, the following observation describes the behaviour
of integrality with respect to dilation.

Proposition 1 Let P be a polyhedron. There exists d ∈ Z>0 such that {k ∈
Z>0: kP is integer} = dZ>0.

Proof When P has vertices, it is enough to choose d as the smallest positive integer
d such dv is integer for every vertex v of P . To treat the general case, we prove that
if kP and k′P are integer polyhedra, then gcd(k, k′)P is an integer polyhedron too.
Then, the smallest positive integer k such that kP is integer divides all the others, and
as any dilation of an integer polyhedron is an integer polyhedron too, this proves the
observation.

Let P = {x : Ax ≤ b}, i = gcd(k, k′), k = k/i , k′ = k′/i , and F be a minimal
face of i P . Since F is a minimal face, F is the affine space F = {x : AFx = ibF }.
Note that kF and k′F are minimal faces, respectively of kP and k′P , thus contain an
integer point, respectively xk and xk′ . By Bézout’s lemma, there exist λ and μ in Z

such that λk + μk′ = i . Then AF (λxk + μxk′) = ibF , hence F contains an integer
point. Therefore, gcd(k, k′)P is an integer polyhedron. ��

One of the arguments in the previous proof is the fact that the dilations of an
integer polyhedron are also integer polyhedra. This does not hold for box-integrality,
intuitively because any0/1polytope is box-integer, though its dilations haveno reasons
to be.Actually, an example of box-integer polyhedron having non box-integer dilations
will be provided at the end of this section. For now we prove the following lemma in
order to determine, given a polyhedron P , the structure of the set of positive integers
k such that kP is box-integer.

Lemma 3 Let P be a polyhedron and k ∈ Z>0 such that kP is integer but not box-
integer. Then, no dilation k′P with k′ ≥ k is box-integer.

Proof Let k′ ≥ k. Assume k′P integer, as otherwise k′P would not be box-integer. By
Lemma 1, there exist a face F of kP and an integer vector p such that aff(F) ∩ {xi =
pi , i ∈ I } is a noninteger singleton v ∈ F . By Proposition 1, kP and k′P are both
dilations of an integer polyhedron dP . In particular, there exists an integer point z in
F such that z′ = k′

k z is an integer point contained in the face F ′ = k′
k F of k′P . Since

k′ ≥ k, we have F − z ⊆ F ′ − z′, thus in particular v − z is in F ′ − z′, which implies
that v′ = (z′ − z) + v is in F ′. Moreover, aff(F ′) ∩ {xi = (z′i − zi ) + pi , i ∈ I } is the
singleton v′ of F ′, which is not integer, hence k′P is not box-integer by Lemma 1. ��

123



P. Chervet et al.

A polyhedron P is fully box-integer if kP is box-integer for all k ∈ Z>0. In other
words, P is fully box-integer if and only if P is principally box-integer and integer.

Proposition 2 For a polyhedron P, the following statements are equivalent.

1. P is principally box-integer.
2. There exists d ∈ Z>0 such that {k ∈ Z>0: kP is box-integer} = dZ>0.
3. P has a fully box-integer dilation.

Proof The definition of principal box-integrality and Proposition 1 give (1)⇒(2). To
get (2)⇒(3), just note that dP is a fully box-integer polyhedron. To prove (3)⇒(1),
suppose that P is not principally box-integer, that is, there exists a positive integer k
such that kP is integer but not box-integer. By Lemma 3, this is not compatible with
the existence of a fully box-integer dilation of P . ��

We mention that relaxing k ∈ Z>0 to k ∈ Z in Definition 1 yields an equivalent
definition. Then, the set arising in statement 2 of Proposition 2 is dZ, which is a prin-
cipal ideal of Z. This explains why we called these polyhedra principally box-integer.
The next proposition shows what can happen when a polyhedron is not principally
box-integer.

Proposition 3 For a polyhedron P, exactly one of the following situations holds.

1. P is principally box-integer.
2. No dilation of P is a box-integer polyhedron.
3. There exist d, q ∈ Z>0 such that kP is box-integer if and only if k ∈

{d, 2d, . . . , qd}.
Proof If P has a box-integer dilation but is not principally box-integer, then there is a
smallestq inZ>0 such that (q+1)P is a polyhedronwhich is integer but not box-integer.
By Lemma 3, no kP with k > q is box-integer. Now, if d is chosen as in Proposition 1,
the minimality of q gives {k ∈ Z>0: kP is box-integer} = {d, 2d, . . . , qd}. ��

Note that the following property, which holds for integrality, also holds for box-
integrality: if kP and k′P are box-integer polyhedra, then so is gcd(k, k′)P .

Remark 1 Though we only considered dilations with positive integer coefficients, all
these results can readily be adapted to dilations with rational coefficients.

We conclude this section with an example of polyhedron whose box-integrality is
not preserved by dilation.

As P = conv (0, (1, 1, 0, 0, 0), (1, 0, 1, 0, 0), (1, 0, 0, 1, 0), (1, 1, 1, 1, 1)) is a 0/1
polytope, it is box-integer. However, it can be checked that (2, 1, 1, 1, 1/2) is a frac-
tional vertex of 2P ∩ {x2 = x3 = x4 = 1}. In particular, P illustrates statement 3 of
Proposition 3.

3.3 Translations of principally box-integer polyhedra

Box-integrality is clearly preserved under integer translation. So are principal and full
box-integrality.
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Observation 1 Box-integrality, principal box-integrality and full box-integrality are
all preserved by integer translation.

Proof The translation Q = t + P of a box-integer polyhedron P by t in Z
n is also

box-integer because Q ∩ {� ≤ x ≤ u} = t + (P ∩ {� − t ≤ x ≤ u − t}) for all
�, u ∈ Z

n . Moreover, since kQ = kt + kP and kt ∈ Z
n for all k ∈ Z>0, principal

box-integrality and full box-integrality are also preserved by integer translation. ��
Conic polyhedra play an important role in the next sections. One of the reasons is

that, up to translation, every dilation of a conic polyhedron is the conic polyhedron
itself. Since box-integrality is preserved by integer translation, this has the following
consequences.

Observation 2 Let D = t +C be a conic polyhedron for some cone C ofRn and some
t ∈ Q

n.

1. For C, the three properties of being box-integer, fully box-integer, or principally
box-integer are equivalent.

2. D is fully box-integer if and only if it is box-integer.
3. D is principally box-integer if and only if C is box-integer.

Proof The fact that kC = C for all k ∈ Z>0 proves statement 1. When D is box-
integer, its minimal face contains an integer point, hence t can be chosen to be an
integer. Since kD = (k − 1)t + D for all k ∈ Z>0, and since integer translation
preserves box-integrality, statement 2 follows. When t ∈ Q

n , take k large enough
such that kt is integer. Now, kD = kt + C is a fully box-integer dilation of D if and
only if C is box-integer, which proves statement 3. ��

4 Principally box-integer polyhedra and equimodular matrices

In this section, we show how equimodularity and principal box-integrality are inter-
twined. First, we characterize equimodular matrices using principal box-integrality.
Then, principally box-integer polyhedra are characterized by the equimodularity of a
family of matrices.

4.1 Characterizations of equimodular matrices

In this section, we extend to equimodular matrices two classical results about unimod-
ular matrices. We first state the results of Heller [28] about unimodular sets in terms
of equimodular matrices—see also [38, Theorem 19.5].

Theorem 3 (Heller [28]) For a full row rank r × n matrix A, the following statements
are equivalent.

1. A is equimodular.
2. For each nonsingular r × r submatrix D of A, lattice(D) = lattice(A).
3. For each nonsingular r × r submatrix D of A, D−1A is integer.
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4. For each nonsingular r × r submatrix D of A, D−1A is in {0,±1}r×n.
5. For each nonsingular r × r submatrix D of A, D−1A is totally unimodular.
6. There exists a nonsingular r × r submatrix D of A such that D−1A is totally

unimodular.

Veinott and Dantzig [45] proved that an integer r × n matrix A of full row rank is
unimodular if and only if the polyhedron {x : Ax = b, x ≥ 0} is integer for all b ∈ Z

r .
Observe that statement 2 of Corollary 2 allows us to reformulate their result as follows,
since {x : Ax = kb}∩{x ≥ �} = �+{x : Ax = b′, x ≥ 0}, where b′ = kb+k A� ∈ Z

r .

Theorem 4 (Veinott and Dantzig [45]) Let A be a full row rank matrix of Zr×n. Then,
A is unimodular if and only if {x : Ax = b} is fully box-integer for all b ∈ Z

r .

It turns out that this result can be extended to characterize equimodular matrices.

Theorem 5 Let A be a full row rank matrix of Qr×n. Then, A is equimodular if and
only if {x : Ax = b} is principally box-integer for all b ∈ Q

r .

Proof Suppose that A is equimodular and let b ∈ Q
r , k ∈ Z>0 be such that H =

{x : Ax = kb} is integer. Then b′ = kb belongs to lattice(A). Let D be a nonsingular
r×r submatrix D of A. By statement 2 of Theorem3,we have lattice(D) = lattice(A),
hence D−1b′ is in Zr . Since A has full row rank, by statement 5 of Theorem 3, D−1A
is unimodular. By Theorem 4, we get that {x : D−1Ax = D−1b′} is fully box-integer.
In particular, H is box-integer.

Conversely, suppose that A is not equimodular. Then, possibly reordering the
columns, wemay assume that the first r columns of A are linearly independent, and, by
statement 3 of Theorem3, that the (r+1)th column Ar+1 of A is a noninteger combina-
tion of those. Let H = {x : Ax = Ar+1}. Then, {x : Ax = Ar+1}∩{x j = 0, j ≥ r+1}
has no integer solution, hence H is not box-integer. However, H is integer as it contains
χr+1 as an integer point. Therefore, H is not principally box-integer. ��

Veinott and Dantzig [45] devised Theorem 4 in order to get a simpler proof of
a characterization of totally unimodular matrices due to Hoffman and Kruskal [31].
This characterization states that an integer matrix A is totally unimodular if and only
if {x : Ax ≤ b} is box-integer for all b ∈ Z

m . In our context, this can be reformulated
as follows.

Theorem 6 (Hoffman and Kruskal [31]) A matrix A of Zm×n is totally unimodular if
and only if {x : Ax ≤ b} is fully box-integer for all b ∈ Z

m.

Anequivalent definition of total unimodularity is to ask for every set of linearly inde-
pendent rows to be unimodular. In this light, it is natural to define totally equimodular
matrices as those for which all sets of linearly independent rows form an equimodular
matrix. Theorem 6 then extends to totally equimodular matrices as follows.

Theorem 7 A matrix A of Qm×n is totally equimodular if and only if {x : Ax ≤ b} is
principally box-integer for all b ∈ Q

m.
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Proof Suppose A totally equimodular and b ∈ Q
m , and let us prove that P = {x : Ax ≤

b} is principally box-integer. Let k ∈ Z>0 be such that kP is an integer polyhedron,
and let us prove that kP is box-integer. Let F be a face of kP and p be an integer vector
such that aff(F) ∩ {xi = pi , i ∈ I } is a singleton x̄ in F . By Lemma 1, it remains to
show that x̄ is integer. There exists a full row rank subset L of rows of A such that
aff(F) = {x : ALx = kbL}. Since A is totally equimodular, AL is equimodular. By
Theorem 5, aff(F) is principally box-integer. Now, since kP is integer, so is aff(F).
Hence, aff(F) is box-integer and x̄ is integer.

Suppose now that A is not equimodular, that is, there exists a full row rank submatrix
AL of size r×n of Awhich is not equimodular.Wemay assume that the first r columns
of AL are linearly independent, and that the (r + 1)th column of AL is a noninteger
combination of those. Let x̄ be the unique solution of ALx = 0, xr+1 = −1, x j =
0, j > r + 1. Then, x̄ /∈ Z

n . Define bL = 0 and b j = 1 if j /∈ L , and let us show that
P = {x : Ax ≤ b} is not principally box-integer. There exists k ∈ Z>0 large enough
such that x̄ ∈ kP , and such that kP is integer. Then, kP ∩ {xr+1 = −1, x j = 0, j >

r + 1} contains x̄ as a vertex because x̄ satisfies to equality n linearly independent
inequalities. Therefore, kP is not box-integer. ��

Since deciding whether a given matrix is totally unimodular can be done in polyno-
mial time—see e.g. [38, Chapter 20]—statement 5 of Theorem 3 implies that deciding
whether a given matrix is equimodular can be done in polynomial time. However, for
totally equimodular matrices, the recognition problem remains open.

Open Problem 1 Can totally equimodularmatrices be recognized in polynomial time?

As we shall see later, totally equimodular matrices are precisely the matrices whose
associated polyhedra are all box-TDI—see Corollary 8. Interestingly, it is enough
to study totally equimodular matrices with 0, ±1 coefficients. Indeed, in a totally
equimodular matrix, the nonzero coefficients of a given row all have the same absolute
value. Thus, such a matrix can be scaled row by row into a 0, ±1 matrix. This scaling
preserves total equimodularity and does not change the family of associated polyhedra.

Remark 2 The full row rank hypothesis made throughout this section is convenient,
but not really necessary, provided the notions of unimodularity and equimodularity
are correctly extended. Hoffman and Kruskal [31] extend the notion of unimodularity
to not necessarily full row rank matrices, and Theorem 4 still holds for those matrices
[38, Page 301]. The correct extension of equimodularity to general matrices is to
require, for a matrix A of rank r , that each set of r linearly independent rows of A
forms an equimodular matrix. Properties of such matrices are studied in [28]. None of
the definitions and results of this paper are affected if these extended definitions are
adopted and the full row rank hypothesis removed.

4.2 Affine spaces and face-definingmatrices

Affine spaces being special cases of conic polyhedra, by statement 3 Observation 2,
{x : Ax = b} is principally box-integer for all b if and only if {x : Ax = 0} is fully box-
integer. In particular, one can drop the quantification over all b ∈ Q

n from Theorem 5
as follows.
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Corollary 3 Let A be a full row rank matrix ofQr×n and b ∈ Q
n. Then, A is equimod-

ular if and only if the affine space {x : Ax = b} is principally box-integer.
An affine space {x : Ax = b} being integer if and only if b belongs to lattice(A),

the previous result has the following immediate consequence.

Corollary 4 Let A be a full row rank matrix of Qr×n and b ∈ Q
n. The affine space

{x : Ax = b} is fully box-integer if and only if A is equimodular and b ∈ lattice(A).

Corollary 3 yields a correspondence between equimodular matrices and principally
box-integer affine spaces. We shall see in the next section that this correspondence,
when applied to the faces of a polyhedron, provides a characterization of principally
box-integer polyhedra. This motivates the following definition.

Face-defining matrices Let P = {x : Ax ≤ b} be a polyhedron of Rn and F be a
face of P . A full row rank matrix M such that aff(F) can be written {x : Mx = d}
for some d is face-defining for F . Such matrices are called face-defining matrices of
P .2 Note that face-defining matrices need not correspond to valid inequalities for the
polyhedron. A face-defining matrix for a facet of P is called facet-defining.

Affine spaces are polyhedra whose only face is themselves. The following obser-
vation characterizes their principal box-integrality in terms of face-defining matrices.

Observation 3 For an affine space H, the following statements are equivalent.

1. H is principally box-integer.
2. H has an equimodular face-defining matrix.
3. Every face-defining matrix of H is equimodular.
4. H has a totally unimodular face-defining matrix.

Proof The equivalence among statements 1, 2, and 3 follows from Corollary 3. The
equivalence between statements 2 and 4 follows from statement 5 of Theorem 3,
because if A ∈ Q

r×n is face-defining for H , then so is D−1A for each nonsingular
r × r submatrix D of A. ��

Note that, when P is full-dimensional, facet-defining matrices are composed of a
single row and are uniquely determined, up to multiplying by a scalar. In general, the
number of rows of a face-defining matrix for a face F is n − dim(F). More precisely,
the following immediate observation characterizes face-defining matrices.

Observation 4 A full row rank matrix M ∈ Q
k×n is face-defining for a face F of

a polyhedron P ⊆ R
n if and only if there exist a vector d ∈ Q

k and a family H ⊆
F∩{x : Mx = d} of dim(F)+1 affinely independent points such that |H|+k = n+1.

4.3 Characterizations of principally box-integer polyhedra

In this section, we provide several characterizations of principally box-integer poly-
hedra, the starting point being the following lemma.

2 When we write that a face F has a face-defining matrix M , we mean that M is face-defining for the face
F , which is more restrictive than being a face-defining matrix of the polyhedron F .
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Lemma 4 A polyhedron P is principally box-integer if and only if aff(F) is principally
box-integer for each face F of P.

Proof Let P be a polyhedron such that the affine spaces generated by its faces are all
principally box-integer. Then, when k ∈ Z>0 is such that kP is integer, all the affine
spaces generated by the faces of kP are box-integer. Therefore, by Lemma 1, if F is
a face of such a kP and p is an integer vector such that aff(F) ∩ {xi = pi , i ∈ I } is a
singleton in F , then this singleton is integer. Then, by the other direction of Lemma 1,
kP is box-integer, thus P is principally box-integer.

Conversely, let P be a principally box-integer polyhedron and F be a face of P .
If F is a singleton, then aff(F) = F is a singleton, thus obviously principally box-
integer. Otherwise, let t be a rational point in the relative interior of F , let G = F − t
and Q = P − t . By statement 3 of Observation 2, it suffices to show that aff(G)

is box-integer. Let p be an integer vector such that aff(G) ∩ {xi = pi , i ∈ I } is a
singleton x̄ in aff(G). Since t was chosen in the relative interior of F , there exists
k ∈ Z>0 such that x̄ ∈ kQ. Moreover, such a k can be chosen so that kt is integer and
kP is an integer polyhedron. Since P is principally box-integer, kP is box-integer and
so is kQ = kP−kt by Observation 1. Applying Lemma 1 to the face kG of kQ yields
x̄ integer. By applying the other direction of Lemma 1 to the unique face aff(G) of
aff(G), we obtain that aff(G) is box-integer. ��
Theorem 8 For a polyhedron P, the following statements are equivalent.

1. The polyhedron P is principally box-integer.
2. Every minimal tangent cone of P is principally box-integer.
3. Every face of P has an equimodular face-defining matrix.

Proof Each face of P is contained in a face of someminimal tangent cone of P having
the same affine hull. Conversely, each face of a minimal tangent cone of P contains
some face of P having the same affine hull. Therefore, Lemma 4 gives the equiva-
lence between statement 1 and statement 2. The equivalence between statement 1 and
statement 3 is immediate by Corollary 3 and Lemma 4. ��

The minimal faces of a polyhedron being affine spaces, Lemma 4 has a fully box-
integer counterpart.Moreover, by statement 2 ofObservation2, so does the equivalence
between statement 1 and statement 3 of Theorem 8. This gives the following corollary.

Corollary 5 For a polyhedron P, the following statements are equivalent.

1. The polyhedron P is fully box-integer.
2. Every minimal tangent cone of P is box-integer.
3. For each face F of P, aff(F) is fully box-integer.

5 Box-totally dual integral polyhedra

5.1 New characterizations of box-TDI polyhedra

The main result of this section is that the notions of principal box-integrality and box-
TDIness coincide—see Theorem 9 below. Combined with Theorem 8, this provides
several new characterizations of box-TDI polyhedra.
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Theorem 9 A polyhedron is box-TDI if and only if it is principally box-integer.

Proof The proof relies on Lemmas 5 and 6, which are proven below.
Lemma 5 states that a polyhedron is box-TDI if and only if all its minimal tangent

cones ares box-TDI. By Theorem 8, a polyhedron is principally box-integer if and
only if all its minimal tangent cones are principally box-integer. Hence it is enough to
prove Theorem 9 for conic polyhedra.

Lemma 6 states that a cone is box-TDI if and only if it is box-integer. Then, by
statement 3 of Observation 2, and since box-TDIness is preserved under rational
translation, a conic polyhedron is box-TDI if and only if it is principally box-integer.

��
The following lemma seems somewhat implicitly known in the literature, but is

not stated explicitly to the best of our knowledge. For the sake of completeness, we
provide a proof which relies only on the definitions. It can also be shown using known
characterizations of box-TDI polyhedra, such as the one by Cook [38, Theorem 22.9].

Lemma 5 A polyhedron is box-TDI if and only if all its minimal tangent cones are.

Proof Let P = {x : Ax ≤ b} be a polyhedron of Rn and w ∈ Z
n . We will denote

(P�,u) = max{wx : Ax ≤ b, � ≤ x ≤ u} and (PF
�,u) = max{wx : AI x ≤ bI , � ≤ x ≤

u} for a minimal face F of P where I is the index set of the tight rows for F .
To establish the “only if” part of the statement, suppose that the system Ax ≤ b is

box-TDI. Let F be a minimal face of P , v ∈ F and let x� be an optimal solution of
(PF

�,u). Since aiv < bi for all i /∈ I , there exists λ > 0 such that y� = v + λ(x� − v)

belongs to P and ai y� < bi for all i /∈ I . Let �′ = v+λ(�−v) and u′ = v+λ(u−v).
Then, y� is an optimal solution of (P�′,u′), as otherwise x� would not be an optimal
solution of (PF

�,u). Let (z
�, r�, s�) be an integer optimal solution of the dual of (P�′,u′).

By complementary slackness, denoting by z�I the vector obtained from z� by deleting
the coordinates not in I , without loss of generality we have z� = (z�I , 0). Now, since
w�y� = b�z� + u′�r� − �′�s�, one can check that w�x� = b�

I z
�
I + u�r� − ��s�,

by applying the definition of y�, u′ and �′, b�z� = b�
I z

�
I , w = A�z� + r� − s�,

A�z� = A�
I z

�
I , and AI v = bI . Therefore, (z�I , r

�, s�) is an integer optimal solution
of the dual min{b�

I z + u�r − ��s: A�
I z I + r − s = w, zI , r , s ≥ 0} of (PF

�,u).
To establish the “if” part of the statement, let H be the face of P composed of all the

optimal solutions of (P�,u) = max{wx : Ax ≤ b, � ≤ x ≤ u} and let F be a minimal
face of P contained in H whose tight rows are indexed by I . Let (z�I , r

�, s�) be an
integer optimal solution of the dual of (PF

�,u). Then, one can check that extending z�I
to a vector z� = (z�I , 0) of R

m yields an integer optimal solution (z�, r�, s�) of the
dual of (P�,u). ��

The following result reveals that cones behave nicely with respect to box-TDIness.
It is already known that a box-TDI cone is box-integer [39, Equation (5.82)]. Surpris-
ingly, the converse holds and these properties are carried over to the polar.

Lemma 6 For a cone C, the following statements are equivalent.

1. C is box-TDI,
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2. C is box-integer,
3. C∗ is box-TDI,
4. C∗ is box-integer.

Proof Let C = {x : Ax ≤ 0} be a cone of Rn . By [38, Theorem 22.6(i)], the system
Ax ≤ 0 can be chosen to be TDI.

Suppose that C is box-TDI. By Theorem 1, the system Ax ≤ 0 is box-TDI. Hence,
for all �, u ∈ Z

n , the system Ax ≤ 0, � ≤ x ≤ u is TDI. As � and u are integer,
this system defines an integer polyhedron by [38, Corollary 22.1c]. Therefore, C is
box-integer, and we get (1)⇒(2). This also gives (3)⇒(4).

All that remains to prove is (4)⇒(1). Indeed, applying this implication to the cone
C∗ and using that C∗∗ = C yields (2)⇒(3).

Suppose that C∗ is box-integer and let us prove that the dual (D) of the linear
program (P) below has an integer solution for all w ∈ Z

n and �, u ∈ Q
n such that the

optimum is finite.

(P)

max w�x
Ax ≤ 0
x ≤ u

−x ≤ −�

(D)

min u�r − ��s
A�z + r − s = w

z , r , s ≥ 0

The projection of the set of points (z, r , s) satisfying the constraints of (D) onto the
variables r and s is the polyhedron Q = {r , s ≥ 0: v�(s−r+w) ≤ 0, for all v ∈ K },
where K is the projection cone K = {v ∈ R

n : v�A� ≤ 0}. That is K = C and
therefore Q = (C∗ − w)±—see Lemma 2.

Since integer translations of box-integer polyhedra are box-integer, C∗ −w is box-
integer. Thus, by statement 2 of Lemma 2, Q is box-integer. In particular, Q is integer.

Since the optimum of (D) is finite, so is min{u�r − ��s: (r , s) ∈ Q}. Since Q
is an integer polyhedron, this minimum is achieved by an integer (r̄ , s̄) ∈ Q. Let
w̄ = w − r̄ + s̄. As (r̄ , s̄) belongs to Q, there exists a feasible solution z̄ of the dual of
max{w̄�x : Ax ≤ 0}. Recall that Ax ≤ 0 has been chosen to be TDI. Hence, since w̄

is integer, such a z̄ can be chosen to be an integer. Then, (z̄, r̄ , s̄) is an integer optimal
solution of (D). ��

We are now ready to prove our main result, Theorem 2.

Proof of Theorem 2 Statements 2 and 1 are equivalent by Theorem 9. Statements 2 and
4 are equivalent by the equivalence between statements 1 and 3 of Theorem 8. Finally,
the equivalence among statements 3, 4, and 5 comes from Observation 3. ��

We now apply polarity to derive additional characterizations of box-TDI polyhedra.

Corollary 6 For a polyhedron P, the following statements are equivalent.

1. The polyhedron P is box-TDI.
2. For every face F of P, every basis of lin(F) is the transpose of an equimodular

matrix.
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3. For every face F of P, some basis of lin(F) is the transpose of an equimodular
matrix.

4. For every face F of P, some basis of lin(F) is a totally unimodular matrix.

Proof Let F be a face of P . By Corollary 3, F has an equimodular face-defining
matrix if and only if aff(F) is principally box-integer. Equivalently, by Observation 2,
lin(F) is box-integer. By Lemma 6, lin(F) is box-integer if and only lin(F)∗ is. By
Corollary 3, lin(F)∗ is box-integer if and only if lin(F)∗ has an equimodular face-
defining matrix M . Note that the columns of M� form a basis of lin(F), therefore
F has an equimodular face-defining matrix if and only if some basis of lin(F) is the
transpose of an equimodular matrix.

Since, by Theorem 2, the polyhedron P is box-TDI if and only if each of its
faces F has an equimodular face-defining matrix, this proves the equivalence between
statements 1 and 3. The equivalence with the two others statements follows from
Observation 3. ��

Recall that a cone C = {x : Ax ≤ 0} can also be defined as C = cone(R) for some
set R of generators. Moreover, by Lemma 6, a cone is box-TDI if and only if it is
box-integer. Corollary 6 then allows us to check whether cones are box-integer by
looking at their generators.

Corollary 7 A cone C = cone(R) is box-integer if and only if S� is equimodular for
each linearly independent subset S of R generating a face of C.

Consequently, the recognition of box-integer conesmight have a different complex-
ity status than the following related problems, which are all co-NP-complete: deciding
whether a given polytope is integer [37], deciding whether a given system is TDI or
box-TDI [16], deciding whether a given conic system is TDI [36].

Open Problem 2 What is the complexity of deciding whether a given cone is box-
integer?

We mention that polarity preserves box-integrality only for cones, and does not
extend to polyhedra. For instance, the polyhedron conv ((2,−1), (−2,−1), (0, 1)) is
fully box-integer, and its polar conv ((1, 1), (−1, 1), (0,−1)) is integer but not box-
integer.

5.2 Connections with existing results

In this section, we investigate the connections of our results with those from the
literature about box-TDI polyhedra. We first derive known results about box-TDI
polyhedra from our characterizations. Then, we show how Cook’s characterization
[38, Theorem 22.9] is connected to ours. Finally, we discuss Schrijver’s sufficient
condition [39, Theorem 5.35].

5.2.1 Consequences

Here, we review several known results about box-TDI polyhedra which can be derived
from our results. The dominant of a polyhedron P of Rn is dom(P) = P + R

n+.
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Consequence 1 ([14, Theorem 3.6] or [38, Theorem 22.11]) The dominant of a box-
TDI polyhedron is box-TDI.

Proof A face of dom(P) is the sum of a face of P and a cone generated by unit
vectors. By statement 4 of Corollary 6, and since adding unit vectors preserves total
unimodularity, the dominant of a box-TDI polyhedron is box-TDI. ��
Consequence 2 ([38, Remark 2.21]) If P is a box-TDI polyhedron, then aff(P) =
{x :Cx = d} for some totally unimodular matrix C.

Proof If P is a box-TDI polyhedron, then by statement 5 of Theorem 2, since P is a
face of P , its affine hull can be described using a totally unimodular matrix. ��
Consequence 3 ([38, Remark 2.22]) Each edge and each extremal ray of a pointed
box-TDI polyhedron is in the direction of a {0,±1}-vector.
Proof This is statement 4 of Corollary 6 applied to the faces of dimension one of the
polyhedron. ��

By polarity, the above proof shows that every full-dimensional box-TDI polyhedron
can be described using a {0,±1}-matrix. Edmonds and Giles prove in [22] that it is
still true without the full-dimensional hypothesis.

Consequence 4 ([22, Theorem 2.16]) If P is a box-TDI polyhedron, then P =
{x : Ax ≤ b} for some {0,±1}-matrix A and some vector b.

Proof Let P be a box-TDI polyhedron. By Consequence 2, we have aff(P) =
{x :Cx = d} for some full row rank totally unimodular matrix C . By statement 5
of Theorem 2, for each facet F of P , there exists a totally unimodular matrix DF such
that aff(F) = {x : DFx = dF }. Then, one of the rows aF x = bF of DFx = dF does
not contain aff(P). Possibly multiplying by − 1, we may assume that aF x ≤ bF is
valid for P because F is a facet of P . Then, the matrix A whose rows are those of C
and every aF yields a description of P as desired. ��

5.2.2 Cook’s characterization [14], [38, Theorem 22.9]

In order to get a geometric characterization of box-TDI polyhedra, Cook [14]
introduced the so-called box property. Schrijver [38, Theorem 22.9] states Cook’s
characterization with the following equivalent form of the box property: a cone C of
R
n has the box property if for all c ∈ C there exists c̃ ∈ C∩Zn such that �c� ≤ c̃ ≤ 
c�.

To highlight the connections with our results, we reformulate Schrijver’s version as
follows.

• A polyhedron is box-TDI if and only if the normal cones of its faces all have the
box property (Cook [38, Theorem 22.9]).

The parallel with our work is clear with the following reformulation of one of our
characterizations.
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• A polyhedron P is box-TDI if and only if every minimal tangent cone of P is
box-integer, up to translation (Observation 2 and Theorems 8 and 9).

The first difference between these two results is that the first one involves the normal
cones, whereas the second one involves the tangent cones. Recall that the tangent
cones are the polars of the normal cones, up to translation. This polarity connection
between the two statements is not surprising in light of the polarity result of Lemma 6.
The second difference is that the first result involves the box property, whereas the
second involves the notion of box-integrality. It is easy to see that box-integer cones
have the box property. The converse does not hold. In fact, the lemma below shows
that the box property is a local property when the box-integrality is a global one. The
third difference is a consequence of this local/global aspect: the first result involves
all the normal cones, whereas the second involves only the minimal tangent cones.

To sum up, the first result is a polar local characterization of box-TDI polyhedra,
and the second is a primal global characterization.

Proposition 4 A cone is box-integer if and only if all its faces have the box property.

The following lemma proves the proposition, since a cone C is box-integer if and only
if aff(F) is box-integer for all faces F of C .

Lemma 7 Let F be a face of a cone C.

• If C is box-integer, then F has the box property.
• If F has the box property, then aff(F) is box-integer.

Proof Suppose thatC is box-integer and let c ∈ F . Since c belongs to P = F∩{�c� ≤
x ≤ 
c�}, the latter is nonempty. Since C is box-integer, so is F , hence P has only
integer vertices, and any of them forms a suitable c̃ which shows that F has the box
property.

Suppose now that F has the box property. Let p ∈ Z
I be such that aff(F) ∩ {xi =

pi , i ∈ I } is a singleton c in aff(F). There exists t ∈ Z
n such that c′ = c + t ∈ F .

By the box property of F , there exists c̃ ∈ F ∩ Z
n such that t + �c� = �c′� ≤ c̃ ≤


c′� = 
c� + t . Now, c̃ − t belongs to aff(F) ∩ {xi = pi , i ∈ I }, hence c = c̃ − t is
integer. By Lemma 1, aff(F) is box-integer. ��

In a way, the above lemma shows that the box property of a cone is sandwiched
between the box-integrality of the cone and that of its underlying affine space—
an even more local property. This, up to polarity again, further compares Cook’s
characterization andours, as the latter property appears inLemma4. Figure 1 illustrates
some differences between the three properties.

The notion of box-integrality of cones and affine spaces sheds a better light on box-
TDI polyhedra by providing insights of how their local, global, and polar properties are
connected. Both are preserved by polarity, the global notion yields a global geometric
characterization of box-TDI polyhedra, and the most local one allows us to derive
matricial counterparts.
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Fig. 1 The cone C = cone{(2, 1), (1, 0)} has the box property but is not box-integer. The cone C ′ =
cone{(2, 1), (3, 1)} does not have the box property, yet aff(C ′) = R

2 is box-integer. The cone C ′′ =
cone{(2, 1)} does not have the box property, yet its polar does

5.2.3 Schrijver’s sufficient condition [39, Theorem 5.35]

In this section, we compare our results on box-TDI polyhedra with known results on
box-TDI systems. It appears that our results in some sense allow us to split the “box-”
from the “-TDI”: to prove that a given system is box-TDI, prove that it is TDI on the
one hand, and prove that the polyhedron is box-TDI with Theorem 2 on the other hand.

As noticed by Schrijver [38, Page 318], Hoffman and Kruskal’s result [31] implies
that a matrix A is totally unimodular if and only if the system Ax ≤ b is box-TDI
for each vector b. Then, by Theorems 7 and 9, the parallel with totally equimodular
matrices can be thought of as relaxing the box-TDIness of those systems to that of the
associated polyhedra.

Corollary 8 A matrix A of Qm×n is totally equimodular if and only if the polyhedron
{x : Ax ≤ b} is box-TDI for all b ∈ Q

m.

Totally unimodular matrices being totally equimodular, the following well-known
result is a special case of the above corollary.

Consequence 5 A polyhedron whose constraint matrix is totally unimodular is box-
TDI.

We mention that there exist box-TDI systems which are not defined by a totally
unimodular matrix. By Corollary 8 and Theorem 1, any TDI system defined with a
totally equimodular matrix is box-TDI. Therefore, to find a box-TDI system for a
polyhedron described by a totally equimodular matrix, there only remains to find a
TDI system describing this polyhedron.

Another interesting parallel can be observed with Schrijver’s Sufficient Condition.
Schrijver proves in [39, Theorem 5.35] that the followingweakening of A being totally
unimodular already suffices to obtain the box-TDIness of the system Ax ≤ b.

Theorem 10 ([39, Theorem 5.35]) Let Ax ≤ b be a system of linear inequalities, with
A an m × n matrix. Suppose that (�) for each c ∈ R

n, max{c�x : Ax ≤ b} has (if
finite) an optimum dual solution y ∈ R

m+ such that the rows of A corresponding to
positive components of y form a totally unimodular submatrix of A. Then Ax ≤ b is
box-TDI.
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Note that the property (�) is equivalent to the condition that for every face F of
{x : Ax ≤ b}, the system Ax ≤ b contains a totally unimodular face-defining matrix
for F . Theorem 2 contains a polyhedral version: a polyhedron is box-TDI if and only if
each of its faces has a totally unimodular face-defining matrix. This latter condition is
weaker than (�), hence does not ensure the box-TDIness of the system. Nevertheless,
when satisfied, all that remains to do is to find a TDI system describing the same
polyhedron.

In light of our characterizations, one could wonder whether Theorem 10 can be
turned into an equivalence, that is: can every box-TDI polyhedron be described by
a box-TDI system satisfying (�)? Unfortunately, the answer to this question is nega-
tive. Indeed, systems satisfying (�) can be assumed {0,±1}, and there exist box-TDI
polyhedra for which no TDI description is {0,±1}—see [38, Page 325].

6 Illustrations

In this section, we provide illustrations of our results. The first one is a new perspective
on the equivalence between two results about binary clutters. Secondly, we refute a
conjecture ofDing et al. [19] about box-perfect graphs. Thirdly,wediscuss connections
with an abstract class of polyhedra introduced in [27]. Finally, we characterize the box-
TDIness of the cone of conservative functions of a graph.

6.1 Box-Mengerian clutters

We briefly introduce the definitions we need about clutters. A collection C of subsets
of a set E is a clutter if none of its sets contains another one. We denote by AC
the C × E incidence matrix of C and by PC = {x ∈ R

E : ACx ≥ 1, x ≥ 0} the
associated covering polyhedron. A clutter C is binary if the symmetric difference of
any three elements of C contains an element of C. A clutter C is box- 1d -integral if
for all �, u ∈ 1

dZ
E , each vertex of PC ∩ {� ≤ x ≤ u} belongs to 1

dZ
E . A matrix

A ∈ {0, 1}m×n is called (box-)Mengerian if the system Ax ≥ 1, x ≥ 0 is (box-)TDI.
A clutter C is (box-)Mengerian if AC is (box-)Mengerian. Deleting an element e ∈ E
means replacing C by C\e = {X ∈ C: e /∈ X} and contracting an element e ∈ E
means replacing C by C/e which is composed of the inclusionwise minimal members
of {X\{e}: X ∈ C}. The minors of a clutter are the clutters obtained by repeatedly
deleting and contracting elements of E . The clutter Q6 is defined on the set E4 of the
edges of the complete graph K4, and its elements are the triangles of K4—see Fig. 2.
The clutter Q7 is defined on E4 ∪ {e} where e /∈ E4, and its elements are X ∪ {e} for
each triangle or perfect matching X of K4.

In 1995, Gerards and Laurent [24] characterized the binary clutters that are box- 1d -
integral for all d ∈ Z>0 by forbidding minors.

Theorem 11 ([24, Theorem 1.2]) A binary clutter is box- 1d -integral for all d ∈ Z>0 if
and only if neither Q6 nor Q7 is its minor.

In 2008, Chen et al. [12] characterized box-Mengerian binary clutters by forbidding
minors. In [11], Chen, Chen, and Zang provide a simpler proof of this characterization,
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AQ6 =

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

Fig. 2 The matrix representation of the clutter Q6

based on the so called ESP property.Wemention that none of the proofs of Theorem 12
rely on Theorem 11.

Theorem 12 ([12, Corollary 1.2]) A binary clutter is box-Mengerian if and only if
neither Q6 nor Q7 is its minor.

The combination of Theorems 11 and 12 implies that a binary clutter is box-
Mengerian if and only if it is box- 1d -integral for all d ∈ Z>0. We show in the following
how this equivalence is actually a special case of Theorem 9.

By definition, a clutter C is box- 1d -integral if and only if dPC is box-integer, which
implies the following reformulation of the class of polyhedra characterized in Theo-
rem 11.

• A clutter C is box- 1d -integral for all d ∈ Z>0 if and only if PC is fully box-integer.

Recall that a system is box-TDI if and only if it is TDI and defines a box-TDI poly-
hedron. Then, by Theorem 9, a clutter is box-Mengerian if and only if it is Mengerian
and PC is principally box-integer. Since C being Mengerian implies the integrality of
PC , we get the following reformulation for the systems involved in Theorem 12.

• A clutter C is box-Mengerian if and only if it is Mengerian and PC is fully box-
integer.

Therefore, to prove the announced equivalence it is enough to show the following
statement.

• If C is binary and PC is fully box-integer, then C is Mengerian.

We apply Seymour’s characterization [41]: a binary clutter is Mengerian if and
only if it has no Q6 minor. The property of PC being fully box-integer is closed under
taking minors since PC/e and PC\e are respectively obtained from PC ∩ {xe = 0} and
PC ∩ {xe = 1} by deleting e’s coordinate. Furthermore, PQ6 is not fully box-integer
by statement 3 of Theorem 8. Indeed, the first three rows of the matrix AQ6 of Fig. 2
form a nonequimodular matrix M , as the determinant of the three first columns equals
2 and that of the three last columns equals 1. Moreover, M is face-defining for PQ6 ,
by Observation 4 and because χ1 + χ6, χ2 + χ5, χ3 + χ4, and χ4 + χ5 + χ6 are
affinely independent, belong to PQ6 , and satisfy Mx = 1. Therefore, if C is binary
and PC is fully box-integer, then C has no Q6 minor.

6.2 On box-perfect graphs

In this section, we provide a construction which preserves non box-perfection, and
use it to refute a conjecture of Ding et al. [19].
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In a graph, a clique is a set of pairwise adjacent vertices, and a stable set is the
complement of a clique. The stable set polytope of a graph is the convex hull of the
incidence vectors of its stable sets. Perfect graphs are known to be those whose stable
set polytope is described by the system composed of the clique inequalities and the
nonnegativity constraints:

x(C) ≤ 1 for all cliques C ,
x ≥ 0.

A box-perfect graph is a graph for which this system is box-TDI. Since this system is
known to be TDI if and only if the graph is perfect [34], a graph is box-perfect if and
only if it is perfect and its stable set polytope is box-TDI. The characterization of box-
perfect graphs is a long standing open question raised by Cameron and Edmonds [8].
Recent progress has been made on this topic by Ding et al. [19]. They exhibit several
new subclasses of perfect graphs, and in particular prove the conjecture of Cameron
and Edmonds [8] that parity graphs are box-perfect. They also propose a conjecture
for the characterization of box-perfect graphs.

To state their conjecture, they introduce the class of graphsR, built as follows. Let
G = (U , V , E) be a bipartite graph whose biadjacency matrix is minimally non-TU.
Add a set of edges F between vertices of V such that the neighborhood NG ′(u) of u
in G ′ = (U ∪ V , E ∪ F) is a clique for all u ∈ U . If there exists u ∈ U such that
NG ′(u) = V , then G ′\{u} is inR, otherwise G ′ is inR.

Conjecture 1 (Ding et al. [19]) A perfect graph is box-perfect if and only if it contains
no graph from R as an induced subgraph.

We introduce the operation of unfolding a vertex v ∈ V in G = (V , E). Take a
vertex v ∈ V and two sets of vertices X and Y such that X ∪ Y = NG(v) and no
edge connects X\Y and Y\X . Delete v and add two new vertices x and y such that
the neighborhoods of x and y are respectively X and Y . Finally, add another vertex z
adjacent only to x and y.

We mention that unfolding a vertex might not preserve perfection. Nevertheless, if
the starting graph is perfect but not box-perfect, then the graph obtained by unfolding
is not box-perfect.

Lemma 8 Unfolding any vertex in a perfect but not box-perfect graph yields a non
box-perfect graph.

Proof We show that if the stable set polytope of a graph has a nonequimodular face-
defining matrix, then so does any graph obtained by unfolding. By Theorem 2, this
proves the Lemma.

Let G = (V , E) be a graph which is perfect but not box-perfect, let v be a vertex
of G, let H be obtained from G by unfolding v, and x, y, z be the new vertices. Let
n = |V |. Since G is not box-prefect, its stable set polytope has a nonequimodular
face-defining matrix M ∈ Q

k×n for a face F . Since G is perfect, we may assume that
the rows of M are the incidence vectors of a set K of cliques of G. Indeed, it can be
checked that removing the rows corresponding to nonnegativity constraints yields a
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Fig. 3 A non box-perfect graph
obtained by unfolding the vertex
v in S3, with X = {b, c, e} and
Y = {b, c, d}

G = S3

a b d

c v

e

Gv

a b d

c y

zxe

smaller nonequimodular face-defining matrix. By Observation 4, there exists a family
S of affinely independent stable sets of F with |S| = n − dim(F) + 1. Build a family
T of stable sets of H from S as follows: if S ∈ S contains v, then S\{v}∪ {x, y} ∈ T ,
otherwise S ∪ {z} ∈ T . All these sets are stable sets and are affinely independent.
Build a family L of k + 2 cliques of H as follows. For each K ∈ K,

• If v /∈ K , then K ∈ L.
• If v ∈ K , the fact that X ∪ Y = NG(v) and no edge connects X\Y and Y\X
ensures that at least one of K\{v} ∪ {x} and K\{v} ∪ {y} is a clique of H . If both
are cliques, then add one of them to L, otherwise add the clique.

• Add {x, z} and {y, z} to L.
Let N denote the (k + 2) × (n + 2) matrix whose rows are the incidence vectors of
the cliques of L. The matrix N has full row rank and each stable set T of T satisfies
|T ∩ L| = 1 for all L ∈ L, hence N is face-defining for the stable set polytope of H by
Observation 4. There only remains to show that N is not equimodular. To prove this,
we show that each k × k submatrix of M gives rise to a (k + 2) × (k + 2) submatrix
of N having the same determinant. Since M is not equimodular, neither is N .

Let A be a k × k submatrix of M . If A does not contains v’s column Mv , then add
two rows of zeros and then the two columns N y and Nz . Note that the determinant has
not changed: first develop with respect to {x, z}’s row, and then with respect to {y, z}’s
row, to obtain the starting matrix. If A contains v’s column Mv , then delete it, add two
rows of zeros and finally add the three columns Nx , N y , and Nz . Let A′ denote this
new matrix. We obtain det(A′) = det(A) as follows: first replace the column Ax by
Ax + Ay − Az , then develop with respect to {x, z}’s row, and finally with respect to
{y, z}’s row. The resulting matrix is precisely A. ��

Unfolding a vertex in S3 as shown in Fig. 3 yields a graph which is perfect but
not box-perfect, and contains no induced subgraphs from R. This disproves Conjec-
ture 1—see Proposition 5.

It is well-known that the graph S3 in Fig. 3 is not box-perfect [9]. It can also be
seen because the nonequimodular matrix M below is face-defining for the stable set
polytope of S3.

M =
⎡

⎣
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

⎤

⎦
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Indeed, up to reordering the vertices, the rows of M correspond to the three external
triangles, and the four affinely independent stable sets {a, v}, {b, e}, {c, d}, {a, d, e}
belong to the corresponding face. By Observation 4 and Theorem 2, S3 is not box-
perfect.

Proposition 5 The graph G of Fig. 3 is perfect but not box-perfect and none of its
induced subgraphs belongs toR.

Proof Note that the graphs G and Gv are perfect. By Lemma 8, Gv is not box-perfect.
The graph Gv\{z} is box-perfect, as one can check that the constraint matrix of its
stable set polytope is totally unimodular. Hence, if Gv contains an induced subgraph
H ∈ R, then z ∈ V (H). As no graph inR has a vertex of degree one, this contradicts
the claim below.

• If H ∈ R has a vertex z with only two neighbors x and y, then xy is an edge of
H .

Recall that vertices of H are partitioned into setsU and V such that the neighborhood
of every vertex of U is a clique of V , and the biadjacency matrix M of the edges
between U and V is either minimally non-TU or obtained from such a matrix by
removing a row. In particular, every column of M contains at least a one, and every
row of M contains at least two ones.

If z ∈ U , then xy is an edge of H . Suppose now z ∈ V . The z-column ofM contains
a one, so a neighbor of z, say x , belongs to U . The x-row of M contains two ones, so
x has an other neighbor in V , which is connected to z. Therefore, this neighbor is y,
and xy is an edge of H . ��

Note that choosing X = {c, e} and Y = {b, c, d} when unfolding v in Fig. 3
yields another perfect but not box-perfect graph with no graph fromR as an induced
subgraph.

6.3 Integer decomposition property

In this section, we discuss possible connections between full box-integrality and the
integer decomposition property. This property arises in various fields such as inte-
ger programming, algebraic geometry, combinatorial commutative algebra. Several
classes of polyhedra are known to have the integer decomposition property, as for
instance: projections of polyhedra defined by totally unimodular matrices [40], poly-
hedra defined by nearly totally unimodular matrices [26], certain polyhedra defined
by k-balanced matrices [46], the stable set polytope of claw-free t-perfect graphs and
h-perfect line-graphs [6].

A polyhedron P has the integer decomposition property, if for any natural number k
and any integer vector x ∈ kP , there exist k integer vectors x1, . . . , xk ∈ P with
x1 + · · · + xk = x . A stronger property is when the polyhedron P has the Integer
Carathéodory Property, that is, if for every positive integer k and every integer vector
x ∈ kP , there exist n1, . . . , nt ∈ Z≥0 and affinely independent x1, . . . , xt ∈ P ∩ Z

n

such that n1 + · · · + nt = k and x = ∑
i ni xi .
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In [27], Gijswijt and Regts introduce a classP of polyhedra and show that they have
the Integer Carathéodory Property. They define P to be the set of polyhedra P such
that for any k ∈ Z≥0, r ∈ {0, . . . , k}, andw ∈ Z

n the intersection r P∩(w − (k − r)P)

is box-integer. They also show [27, Proposition 4] that every P ∈ P is box-integer.
Given the definition of P , note that if a polyhedron is inP , then so are all its dilations.
Therefore, every P in P is fully box-integer. By Theorem 9, this has the following
consequence.

Corollary 9 Every P ∈ P is box-TDI.

The converse of Corollary 9 does not hold. We show below that polyhedra in P
satisfy the stronger property that not only the affine hulls of their faces are principally
box-integer, but also the intersection of the affine hulls of any two faces. In terms of
matrices, this is phrased as follows.

Proposition 6 If P ∈ P , then aff(F)∩aff(G) has an equimodular face-definingmatrix
for all faces F and G of P.

Proof Let F and G be faces of P , and let xF and xG be rational points in their
respective relative interiors. There exists k ∈ Z>0 such that both kxF and kxG are
integer. Let w = k(xF + xG), and Q = kP ∩ (w − kP) = k(P ∩ (xF + xG − P)).
Since P ∈ P , note that r Q is box-integer for all r ∈ Z>0, that is, Q is fully box-
integer. By the choice of xF and xG , the minimal face H of Q containing kxF satisfies
aff(H) = k (aff(F) ∩ −(xF + xG + aff(G))). Thus, the latter is a translation of
aff(F) ∩ −aff(G). Since Q is fully box-integer, aff(H) has an equimodular face-
defining matrix by Theorem 8, hence so has aff(F) ∩ −aff(G) by translation. Since
aff(F) ∩ aff(G) can be described using the matrix of constraints of aff(F) ∩ aff(G)

and multiplying by −1 the right-hand sides corresponding to aff(G), we get an
equimodular face-defining matrix for aff(F) ∩ aff(G). ��

Fully box-integer polyhedra do not inherit the Integer Carathéodory Property.
Actually, they do not even inherit the integer decomposition property, as the
classical example of polytope without the integer decomposition property P =
conv ((0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)) is fully box-integer. To see that P is fully
box-integer, note that in the minimal linear description of P given below, the matrix
of constraints is totally equimodular. Since P is also integer, this implies that P is
fully box-integer by Theorem 7. The point (1, 1, 1) is in 2P and cannot be written as
an integer combination of the integer points of P , hence P does not have the integer
decomposition property.

P =

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ R
3:

⎡

⎢
⎢
⎣

1 − 1 − 1
− 1 1 − 1
− 1 − 1 1
1 1 1

⎤

⎥
⎥
⎦ x ≤

⎡

⎢
⎢
⎣

0
0
0
2

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

Nevertheless, given the strong integrality properties of fully box-integer polyhedra and
as the above large subclass P has the Integer Carathéodory Property, it might be that
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many of them have the integer decomposition property. In this area, a long standing
open question is known as Oda’s question [35]: is it true that every smooth polytope
has the integer decomposition property? A full-dimensional polytope of Rn is simple
if every vertex has n neighbors. A simple integer polytope is smooth if for every vertex
v the generators of the associated minimal tangent cone form a basis of the lattice Zn .

The polyhedron of the example above is not smooth, and the following special
case of Oda’s question is a reasonable first step to determine which fully box-integer
polyhedra have the integer decomposition property.

Open Problem 3 Do smooth fully box-integer polyhedra have the integer decomposi-
tion property?

6.4 Box-TDIness for conservative functions

In [15], the authors prove that the standard system describing the circuit cone is box-
TDI if and only if the graph is series-parallel. We illustrate that polarity preserves the
box-TDIness of cones by providing a box-TDI system for the cone of conservative
function—polar of the circuit cone.

Let G = (V , E) be an undirected graph. The set of edges connecting a given set of
vertices and its complement is called a cut. A cut containing no other nonempty cut
is called a bond. A set of edges is called a circuit if it induces a connected subgraph
where every vertex has degree two. The minors of a graph are the graphs obtained by
repeatedly contracting edges and deleting edges and isolated vertices. Given e ∈ E ,
the graphs obtained from G by respectively deleting and contracting e are denoted by
G\e and G/e. A graph is series-parallel if and only if contains no K4 minor [20].

The circuit cone Ccircuit(G) = cone{χC for all circuits C of G} is the cone gen-
erated by the incidence vectors of the circuits of G. Seymour [42] proved that
Ccircuit(G) = {x ∈ R

E : x ≥ 0, x(D\e) ≥ xe for all cuts D of G and e ∈ D}. A
function f : E → R is conservative if f (C) ≥ 0 for each circuit C of G. These
functions form the cone of conservative functions Ccons(G) = {x ∈ R

E : x(C) ≥
0 for all circuits C of G}. By polarity [39, Corollary 29.2h], we have Ccons(G) =
−Ccircuit(G)� = cone{χe for all e ∈ E, χD\e − χe for all cuts D of G and e ∈ D}.

We show that box-TDI systems describing Ccons(G) only exist when G is series-
parallel. In this case, we provide such a system in the following proposition.

Proposition 7 For a graph G = (V , E), the following statements are equivalent.

1. The graph G is series-parallel.
2. The cone of conservative functions of G is box-TDI.
3. The system 1

2 x(C) ≥ 0 for all circuits C of G is box-TDI.

Proof Since the cone of conservative functions of G is described by 1
2 x(C) ≥ 0 for

all circuits C of G, statement 3 implies statement 2.
To prove that statement 1 implies statement 3, suppose that G is series-parallel.

Then, [15, Theorem 1] asserts that the system x ≥ 0, x(D\e) ≥ x(e) for all cuts
D of G and e ∈ C is box-TDI. Hence the circuit cone of G is a box-TDI cone. By
Lemma 6, Ccons(G) = −Ccircuit(G)� is box-TDI. By Theorem 1, it remains to show
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Fig. 4 The graph K4 and a
face-defining matrix M of
Ccons(K4) 1

32

54

6

M =
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

that the system 1
2 x(C) ≥ 0 for all circuits C of G is TDI. [38, Corollary 22.5a] states

that a system Ax ≤ 0 is TDI if and only if the rows of A form a Hilbert basis. In
other words, it remains to show that any integer vector z in the circuit cone of G is
a nonnegative integer combination of vectors of H = { 12χC : C is a circuit of G}. [1,
Theorem 1] asserts that, in graphs with no Petersen minors, if p is an integer vector of
the circuit cone such that p(C) is even for all cuts C of G, then p is a sum of circuits.
Since the Petersen graph contains a K4 minor, [1, Theorem 1] applies to G. Since 2z
satisfies the conditions, 2z = ∑

C∈C χC for some family C of circuits ofG. Therefore,
z = ∑

C∈C 1
2χ

C .
To prove that statement 2 implies statement 1, we show that if the graph G is not

series-parallel, then its cone of conservative functions is not box-TDI. For e ∈ E ,
one can see that Ccons(G\e) and Ccons(G/e) are respectively obtained by deleting e’s
coordinate in Ccons(G)∩{xe = +∞} and Ccons(G)∩{xe = 0}. Hence, taking minors
preserves the box-TDIness of the cone of conservative functions. It remains to prove
that Ccons(K4) is not box-TDI. Let us apply Theorem 2.

The nonequimodular matrix M of Fig. 4 is the constraint matrix obtained by con-
sidering the inequalities associated with the three circuits formed by the three internal
triangles of K4. By Observation 4, M is face-defining forCcons(K4) because 0 and the
three conservative functions χ4+χ5−χ1, χ4+χ6−χ2 and χ5+χ6−χ3 are affinely
independent, belong to Ccons(K4) and satisfy Mx = 0. Therefore, by statement 3 of
Theorem 2, the cone Ccons(K4) is not box-TDI. ��

Note that the coefficients of the system in Proposition 7 are half-integral. We leave
open the question3 of finding a box-TDI system with integer coefficients, which exists
by [38, Theorem 22.6(i)] and Theorem 1.

By planar duality, there is a correspondence between the circuits of a planar graph
and the bonds of its planar dual. This is used in [15] to obtain the box-TDIness of the
standard system describing the cut cone of a series-parallel graph. Applying planar
duality to Proposition 7 provides the following: if the graph is series-parallel, then
1
2 x(B) ≥ 0 for all bonds B is a box-TDI system describing the polar of the cut
cone. This is in fact an equivalence as one can check that the box-TDIness of the
corresponding cone is preserved under taking minors and that the matrix of Fig. 4 is
face-defining when G = K4.

Acknowledgements We are grateful to András Sebő for his invaluable comments and suggestions. We also
thank the referees for their very careful reading and useful suggestions.

3 Between the submission and the publication of this paper, the question was answered in [4].
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