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Abstract. The relationship of local ordering and long-range order is studied for 
quasicrystalline tilings of plane and space. Two versions of the concept of local 
rules are introduced: strong and weak. Necessary conditions of the existence of 
strong local rules are found. They are mainly reduced to the constraints for 
irrational numbers related to incommensurabilities of the quasicrystals. For 
planar quasicrystals the quadratic irrationalities a + b[/~ (a, b ~ ~,  D e 7/.) play 
an important role. For three-dimensional quasicrystals not only quadratic but 
also cubic irrationalities a + b ~  +c3~/D ~ (a,b,c~tI~, D~TZ) are allowed. The 
existence of weak local rules is established for almost all two-dimensional 
quasicrystals based on quadratic irrationalities and for the three-dimensional 
quasicrystal having icosahedral symmetry. 

1. Introduction 

Quasicrystals discovered by Schechtman, Blech, Gratias, and Cahn [1] are 
materials with the long-range order of a new type. They exhibit scattering 
properties of ideal crystals but have a point symmetry group incompatible with 
periodicity. Unusual diffraction properties of quasicrystals were explained with 
the help of periodic structures in high-dimensional spaces by Kalugin et al. [2]; 
Elser [3]; Duneau and Katz [4] (see also Mackay [5]; Levine and Steinhardt [6]; 
Kramer and Neri [7]). All the models of the atomic structure of quasicrystals 
discussed so far include some periodic structures in high-dimensional spaces (for 
the icosahedron symmetry group the dimension of the space is six and for the 
pentagon symmetry group it is five). The physical space is embedded into the high- 
dimensional space as an incommensurate subspace and the positions of atoms in it 
are found by projection. In another version the positions of atoms are given by the 
common points of the periodic structure and the physical subspace. The models of 
this type explain successfully sharp peaks in the diffraction patterns obtained by 
scattering of electrons, X-rays and neutrons. 
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However, there is some problem with all these models: they describe the long- 
range order without showing how it emerges from the local ordering of atoms. It is 
well known that the interaction of atoms has an effectively short radius, i.e. it 
decreases very rapidly at large distances. The short-range interaction specifies the 
short-range order which includes the interspacing of neighboring atoms, the 
angles between the segments connecting neighbors and so on. The relation of the 
short-range order and the long-range order in quasicrystals is not understood well 
enough. In this work an attempt is made to study this problem for some particular 
class of quasiperiodic structures (see below). 

To give a heuristic introduction into the problem let us discuss first how the 
long-range order in an ordinary periodic crystal is supported by the short-range 
interaction. Consider for example the growth of a crystalline solid from the melt. 
When atoms get attached to the solid-liquid interface they are governed by the 
interaction with neighboring atoms and the place occupied by every next atom is 
determined by the positions of its neighbors in the solid phase. If the local 
arrangement of the atoms which is favoured by the growth process can be extended 
periodically to the whole space, then a crystal grows. It does not seem very 
surprising that periodic crystals can be formed by this process, since one can 
stabilize a periodic structure with an arbitrarily large but finite until cell by a 
choice of the short-range part of the interaction between atoms. To make this clear 
one should note that the whole structure of a crystal is completely defined by the 
correlation functions of atoms in the volume containing several neighboring unit 
cells which includes a finite number of atoms. This set of atoms gives a finite set of 
stability conditions, i.e. a finite set of equations for the interaction potential. These 
equations can undoubtedly be satisfied by a proper choice of the interaction. It is 
clear that the principal property of periodic structures which is responsible for the 
stability of the long-range order is the existence of local rules. We say that local 
rules exist for some structure if it is defined completely by the set of configurations 
of atoms having limited size, which participate in this structure. 

An analogous problem for quasicrystals becomes much less trivial because the 
structure of quasicrystals is not periodic. Consider a quasicrystal growing from the 
melt. The place occupied by ever), atom attached to the surface of the 
quasicrystalline solid is again determined by some local laws based on the short- 
range interatomic forces. An attached atom does not know anything about how 
the structure grows in the high-dimensional space. The attached atom has some 
information about its local environment only. Roughly speaking, one can say that 
atoms know only what is the set of local configurations they are allowed to form 
but nothing about the long-range order that will ultimately result from the growth 
process. In this work we do not touch upon the problem of growth of quasicrystals. 
The question considered here is associated with the growth problem but is 
somewhat easier. Rough formulation of this question is: "Is it possible to define the 
structure of a quasicrystal by the description of all allowed local configurations?" 

For periodic crystalline structures the answer to this question is obviously 
affirmative. To describe unambiguously the structure of a crystal one has to give 
positions of the atoms occupying the unit cell and say that the structure of 
neighboring unit cells is the same (in other words, the unit cell is repeated 
periodically throughout the space). As for quasicrystals, there is no full answer to 
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Fig. la and b. a Tiling of the plane associated with 3 vectors el, e2, e3. b Tiling of the line associated 
with 2 vectors el, e2 

the above question. All that is known concerns some special class of structures 
called "Penrose patterns" in honour of their inventor R. Penrose [83. The Penrose 
pattern is a tiling of the plane with rhombi having pentagonal symmetry. 

We consider a more general class of tilings of the plane with parallelograms 
defined as follows. Take n nonparallel vectors ei (i = 1,..., n) in the plane p z. Every 
pair (ei, e~) of these vectors such that i < j  defines the parallelogram with the sides e~ 
and % Consider the set of n(n-I)/2 parallelograms generated in such a way. 
Suppose that the plane is divided into parallelograms so that every two adjacent 
parallelograms have an edge or a vertex in common (see Fig. 1 a). We say that this 
tiling of the plane is associated with the chosen set of n vectors ei (i = 1,..., n) if each 
of the parallelograms participating in the tiling can be obtained by a shift of one of 
the parallelograms (el, e j )  (i <j). One can define a tiling of the 3-dimensional space 
IR 3 by a similar procedure using n nonparallel vectors ei (i = i , . . . ,  n) in ~ 3  and 
dividing p a into parallelotops (% % ek) (i <j,  j <  k). The generalization to the 
higher dimensions is straightforward. A tiling of a line associated with a finite set of 
segments e~ (i= 1 . . . .  , n) is defined if the line is divided into segments so that each of 
them is identical to one of the segments e i (i = 1,..., n) (see Fig. lb). We shall denote 
the constituents of any tiling (parallelograms, parallelotops, segments, etc.) by the 
common word "tiles." 

We define the lifting function w:II 2-+I1" for an arbitrary tiling of the plane ~ 2  
associated with n vectors ei (i = 1 , . . ,  n). Choose an arbitrary vertex x of one of the 
parallelograms of the tiling as the origin and put w(x) = (0,..., 0). For any other 
vertex y of a parallelogram of this tiling we find a chain of the edges of the 
parallelograms connecting x and y. Since every edge in such a chain is parallel to 
one of the vectors e~ (i = 1,..., n) we can express the vector x - y  as an integer linear 
combination of the vectors ei: 

y - x = z l e l  + . . .  +zne. (1.1) 

(z~ is equal to the number of times taken with a proper sign, when the vector e~ 
enters the chain.) One can immediately make sure that the integers z~ (i = 1, ..., n) do 
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not depend on the choice of the chain connecting the vertices x and y. After we put 

w(y) = (z I ..... z,) (1.2) 

the lifting function w is defined in all vertices of the tiling. To define the function w 
everywhere in the plane we introduce the condition of linearity (and continuity) of 
w inside every parallelogram including its boundary. Thus obtained the lifting 
function w transforms the tiling ofIR 2 in a two-dimensional continuous surface in 
IR" consisting of two-dimensional square faces of the n-dimensional unit cube with 
the vertices being the points of the integer lattice 2". The definition of the lifting of a 
two-dimensional tiling carl be generalized easily for other dimensions. The image 
of the lifting of a d-dimensional tiling associated with n nonparallel vectors in 11 a is 
a d-dimensional continuous surface in ~t", consisting of d-dimensional facets of the 
n-dimensional unit cubes. 

Now we introduce a special class of tilings which are known as quasicrystalline 
tilings or, simply, quasicrystals. Consider a two-dimensional linear subspace v in 
the n-dimensional space IR" given by a linear function 

v : ]R 2--~ ~ .  n , 

( x l ,  x 2 ) - * ( y  l ( x , ,  x2), . . ., y , ( x , ,  x~)) , 

y~(xl, x2) = vi(x~, x2)  + ci , (1.3) 

where vi(xl, xz) = a~xl + bix  2 ff 0 R 2 )  ', i = 1 . . . . .  n. We shall often denote the subspace 
Im [v] defined by (1.3) simply the letter v. Take an arbitrary point x = (xa, ..., x,) of 
the space IR" and attribute to it a unit cube C[x] with the vertices 

(x~ _+ ½,..., x, + ~), (1.4) 

where the signs in (1.4) alternate independently. The point x is the center of the 
cube C[x]. We define the standard tube T[v] associated with the subspace v as the 
union of all the cubes C[x] such that x belongs to v: 

TEv]= U C[x]. (1.5) 
X~IO 

Consider all the points of the lattice ;g" which belong to T[v]. We call the subspace 
v "singular" if there are some integer points on the boundary of T[v], otherwise v is 
a "regular" subspace. To construct a quasicrystalline tiling of the plane we take a 
regular two-dimensional subspace v and consider the set of integer points of T[v]. 
One can prove that there exists a tiling of the plane such that the lifting of this tiling 
is a two-dimensional surface included in the tube T[v]. Moreover, this tiling is 
unique if possible shifts are not taken into account (for the proof and discussion see 
Gahler and Rhyner [9]). We call this tiling "'the quasicrystal associated with the 
subspace v," or simply "v-quasicrystal." One should mention that the tiling 
produced by this method can be either periodic or quasiperiodic depending on 
whether the subspace v is commensurate with the lattice Z" or not. A quasicrystal 
in the space of an arbitrary dimension d is defined by a procedure analogous to that 
presented above with v being a d-dimensional subspace of ]R". Both two- 
and three-dimensional quasicrystalline tilings are of great interest for the physics 
of quasicrystals, since they are used to describe positions of atoms in real 
materials (see Henley and Etser [10]). 
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Fig. 2. Configurations of tiles 1, 2, 3, 4 inside the circles belong to the r-arias (r is the radius of the 
circles). Configurations 1 and 2 correspond to one and the same map of the atlas 

Now we introduce maps and atlases of maps for an arbitrary tiling of the plane. 
Define (r, x)-map as the maximal configuration of parallelograms (or files) lying 
inside the circle with the center x and the radius r. Those tiles which have common 
points with the boundary of the circle do not enter the map configuration (Fig. 2). 
Define an r-atlas of the tiling as the collection of all different (s, x)-maps of this 
tiling, such that s < r. If the configurations of tiles in two circles are identical they 
correspond to one and the same map in the atlas (Fig. 2). Since there is only a finite 
number of different configurations of tiles with limited size, the r-atlas of any tiling 
is a finite set of maps. 

After these definitions are given we can formulate more precisely the question 
which is studied in this work. Suppose that after the r-atlas is determined for a 
tiling of the plane and some positive r, the tiling is erased and we are left with its 
r-atlas only. Is it possible to recover the original tiling in any sense? If this is 
possible for some finite r we say that the filing is restorable or that local rules exist 
for this tiling. It is clear from the consideration presented above that only the 
restorable tilings are of interest for physics since the non-restorable ones can 
hardly be stabilized by a short-range interaction. On the other hand if the tiling is 
restorable one can hope to find a short-range interaction of the tiles which favours 
this tiling. 

In this work we study the problem of the existence of local rules for 
quasicrystalline tilings. This problem of restorability was studied by different 
authors for some particular examples of quasicrystals. First we mention the 
remarkable work by de Bruijn [11], where the existence of local rules for the 
Penrose filing was proven. In the de Bruijn work the tilings of the plane with 
rhombi of two types (thin and thick) having angles 36 ° and 72 ° , respectively, and 
supplied with arrows (see Fig. 3) were considered. It was shown that if the tiling of 
plane with these rhombi satisfies the "arrow condition" (the arrows on the 
common sides of the adjacent rhombi are identical) then it coincides exactly with 
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Fig. 3. Thick (72 ° ) and thin (36 ° ) rhombi supplied with arrows provide strong local rules for the 
Penrose tiling 

the Penrose tiling which was originally constructed by Penrose by an entirely 
different algorithm (inflation-deflation procedure). In our terminology this means 
that local rules exist for the Penrose tiling or that it is restoraNe. The "arrow 
conditions" for the Penrose tiling were studied further by Pavlovitch and Kleman 
[12]. Another important contribution was made by Beenker [13], who considered 
the quasicrystalline tiling of the plane having eight-fold symmetry. He managed to 
show that there exists an arbitrarily large but finite piece of tiling for which one 
cannot decide using local inspection whether it participates in the quasicrys- 
talline tiling or not. This gives strong evidence for the absence of local rules for this 
case. 

The problem we are interested in can be formulated as: "What is the set of 
restorable quasicrystals?" Since the set of all atlases is countable, the set of the 
restorable quasicrystals is countable too. But the set of all quasicrystals is non- 
countable because all d-dimensional subspaces of an n-dimensional space form the 
Grassmann continuum and the subspaces having different slopes generate 
different tilings. So we conclude that most of the quasicrystals are not restorable. 
These arguments are strong but not constructive. A constructive description of the 
set of restorable quasicrystals is given below. 

The contents of the paper is as follows. In Sect. 2 two different variants of the 
definition of the restorability property are presented: strong and weak. In 
accordance with these two definitions two classes of restorable quasicrystals are 
introduced: quasicrystals with strong local rules and quasicrystals with weak 
local rules. In Sect. 3 the quasicrystals having codimension one (n= d+ 1) are 
considered. It is shown that they are restorable in the strong sense of Sect. 2 only 
if they are periodic, i.e. there are no nontrivial examples of restorable quasicrys- 
tals of codimension one. In Sect. 4 some useful properties of dual graphs of 
tilings are discussed. In Sect. 5 two-dimensional quasicrystals are studied. It is 
proven that they are restorable in the strong sense of Sect. 2 only when the 
coordinates xl, x2 in the plane IR 2 can be chosen so that all the coefficients ai, b~ 
(i= 1 .... , n) of the linear embedding (1.3) become quadratic irrationalities: 

ai, bi e q~(]//D) (1.6) 
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for some integer D (for a more rigorous formulation see Theorem2 and 
Propositions 5, 6). On the other hand, it is found in Sect. 6 that almost all two- 
dimensional quasicrystals based on quadratic irrationalities (1.6) are restorable in 
the weak sense of Sect. 2. Three-dimensional quasicrystals are studied in Sect. 7. 
The necessary condition for their restorability (in the strong sense of Sect. 2) 
obtained in Sect. 7 is quite analogous to the condition (1.6) for the two-dimensional 
tilings. The main difference is that not only quadratic irrationalities, but also cubic 
irrationalities of the fields Q(~/D) are allowed. The quasicrystalline tiling of the 
three-dimensional space having icosahedral symmetry is studied at the end of 
Sect. 7. This tiling is shown to be restorable in the weak sense of Sect. 2. The 
preliminary version of this work containing no rigorous proofs of the assertions 
but  only formulations of basic definitions and statements was published in [14]. 

Notation. The letters JR, 7Z, Q have the usual meaning of real line, set of integers 
and set of rational numbers. 

If x e N then [x] is the integer part of x. 
IN" is the linear space of (XD..., Xn) , where xi ~ IR (i = 1 . . . .  , n), with the standard 

scalar product and metrics: 

2 (1.7) (x,y)=xlyl+...+Xny,, Ilxll2=x~+...+X,, 

where x = (xl, ..., x,), y = (Yl ..... y,) e N?. 
2g" is the integer lattice (zl , . . . ,  z,), where z~ ~ 2g (i = 1 ..... n). 
The letter i always represents an element of the set {1, 2 . . . . .  n}. "For all i" will 

mean for i = 1,..., n. 
I R ' =  ~ " ) '  denotes the space of linear functions 

f : R " ~ , . ,  (x 1 .. . . .  x , ) - + f l x l + . . . + f , x , ,  (1.8) 

where fi elR and xi are the standard coordinates in ]R". ~I~' =(@")' is the space of 
linear functions (1.8) with rational coefficients f~ e @. Elements of@"' form a linear 
space over the field @. 

For the dimension of a linear space v the standard notation dim(v) is used. 

For  every integer D we use the notation @(V ~ )  for the field of all a + bVD 
(a, b e @) and the notation Q(~/D) for the field of all a + b~v/D + c~/~D ~ (a, b, c e @). 

For  two functions f, g we use '3 c * g" to denote their composition. 

2. Basic Definitions 

Consider n nonparallel vectors el in the plane R 2 and closed parallelograms (or 
tiles) associated with the pairs of vectors ( %  e j )  (i <j). We define a configuration of 
tiles as a finite set of parallelograms in the plane satisfying the tiling conditions: 

a) every tile of the configuration is produced by a proper shift of one of the 
parallelograms (% ei) (i <j);  

b) if two tiles of the configuration intersect, then the intersection set is either a 
vertex or an edge; 

c) the configuration is a connected set. 
Some examples of configurations are shown in Fig.4. The radius of a 

configuration is defined as the minimal radius of the circle containing this 
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Fig. 4a-c. Examples of configurations to tiles: a and b are configurations, while c is not 

configuration. We say that two configurations are identical if there exists a shift 
transforming one configuration onto another. 

We define r-rules as an arbitrary set of nonidentical configurations having 
radius less than r. It is clear that there exist only a finite number of different r-rules 
for every fixed r. 

When a positive r is given and some r-rules are specified we say that a tiling of 
the plane satisfies these r-rules if for every positive s, s < r, the s-atlas of this tiling is 
a subset of the r-rules. 

Now we introduce local rules (LR) for planar quasicrystalline tilings. Let some 
r-rules, r > 0, be specified. We call them strong local rules if they have the following 
properties. 

a) every tiling satisfying these r-rules is a quasicrystal; 
b) at least one quasicrystal satisfies the rules; 
c) Let two subspaces v and v' define quasicrystals according to (1.3), (1.4), (1.5). 

If both v-quasicrystal and v'-quasicrystal satisfy the r-rules then the subspaces v 
and v' are parallel (i.e. they are identical up to a shift). 

Remark. If the embedding functions v, v' define parallel subspaces according to 
(1.3) (the parameters being ai, bi, c~, and a'i, b~, c'i respectively) then one can find a 
coordinate transformation x'~ = c~xl + fix2, x'2 = 7x 1 + 6x2 such that a' = aa + fib, 
b '=Ta+fb.  

In other words, strong LR fix the slope of the embedding (1.3). When strong LR 
exist they specify the structure almost entirely with the only freedom left related to 
shifts of the subspace (i.e. to the changes of constants el in (1.3)]. The importance of 
such shifts becomes clear from the following proposition. 

Proposition 1. For every linear embedding v: ]R2-*]R" given by (1.3) consider a linear 
subspace Q"'[v] C (t1~")' consisting of all functions f ~ (~")' such that the composition 
f * v is a constant function on N 2 : f(v(x)) = const for all x ~ R 2. Let two embeddings 
v' and v" be defined by (1.3) with the coefficients a~, b'i, c'i and aT, b~', e'.[ respectively. 

I f  a'i= aT, b'i = b7 for all i, and f(c ')= f(e") for all linear functions f e ~ ' [ v ] ,  
where e '=  (el . . . .  , c',), e "=  (c~,..., c~), then for every positive r the r-atlas of  the v'- 
quasicrystat coincides with the r-atlas of the V"-quasicrystal. 

We shall prove this proposition in Sect. 4 after dual graphs of tilings will be 
introduced. Some comments should be made on the definition of the subspace 
~ ' [ v ] .  The dimension of ¢I~"[v] is equal to the "number of commensurabilities" of 
the linear embedding v. If a~ ~ I1) and bi e II) in (1.3) for all i, then dim(Q"'[v]) = n -  2. 
If v is completely incommensurate then dim(Q"'[v])= 0. To finish with strong LR 
we formulate without proof a simple assertion on periodic tilings (a planar tiling is 
periodic if it has two noncollinear periods). 
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Proposition 2. For any periodic tiling one can f ind r > 0 and r-rules such that 
a) this tiling satisfies the rules; 
b) every two tilings satisfying the rules are related by a shift of  the plane ~2.  

This proposition means simply that a periodic tiling is completely described by 
its r-atlas for sufficiently large r. As a consequence, we obtain that periodic 
quasicrystals satisfy strong LR. 

In addition to strong LR we introduce weak LR. Ifv is a linear imbedding given 
by (1.3) we say that the v-quasicrystal satisfies weak local rules if there exist positive 
r and r-rules such that 

a) the v-quasicrystal satisfies these r-rules; 
b) for any tiling satisfying the r-rules and every lifting of this tiling there exists a 

positive constant C such that the distance from any point of the lifting to the 
subspace Italy] is not larger than C (the distance is measured in the standard 
metric of JR"). 

In other words, the lifting of every tiling satisfying weak LR is almost parallel to 
the subspace Im[v] and the distance between the points of the lifting and 
corresponding points of the subspace Im [v] is uniformly bounded by a constant. 
In the physical language weak LR allow some structural disorder without 
destroying the long-range quasicrystalline order. 

The extension of all the constructions and definitions introduced above to 
arbitrary dimensions is straightforward. 

In order to have an example of using these definitions we consider one- 
dimensional quasicrystals which are generated by linear embeddings of R in R" 
(by analogy with (1.3)]: 

v : i R ~  n, x ~ ( a l x + c  1 ....  ,a,x+c~); c e ~ .  (2.1) 

A fairly simple assertion is valid: 

Proposition 3. A one-dimensional quasicrystal (2.1) satisfies weak LR only if it is 
periodic: ai /aj~Q for all i and j in (2.1). 

Proof Suppose that some weak LR for the quasicrystal (2.1) do exist. Let r denote 
the maximal radius of the configurations included in the rules. 

Suppose that a tiling of the line R satisfying these LR is given. Find two 
nonintersecting pieces in this tiling with the configurations of tiles in the pieces 
being identical and having radius larger than r. Let g be the shift of the line 
( x ~ x + g )  which transforms one of the pieces onto another. 

Consider a new periodic tiling with the period equal to g which is generated by 
a repetition of the region between the two pieces of the original tiling. One checks 
immediately that so obtained periodic tiling satisfies the LR. By the definition of 
weak LR the lifting of the tiling we started with does not go far from the lifting of 
the constructed periodic tiling. Since the lifting of the periodic tiling goes along a 
commensurate subspace, the linear embedding (2.1) for the original tiling is 
commensurate. Hence the original tiling is periodic. Proposition 3 is proven. 

In conclusion I would like to comment on the definition of local rules. The 
existence of strong LR implies the existence of weak LR and the absence of weak 
LR implies the absence of strong LR. 
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3. Quasicrystals of Codimension One 

In this section we study quasicrystalline tilings of P~'-1 generated by linear 
embeddings oflR"- 1 in R". The most interesting cases for physics are n = 3, 4. The 
n = 3-case corresponds to the plane in the three-dimensional space, i.e. describes a 
surface of a periodic crystal (see [153). Every linear embedding P~"- 1 -*R" gives a 
hyperplane in ~ "  and, on the other hand, after the vectors e i in ~ " -  1 are specified 
(that we always have in mind) every hyperplane defines a quasicrystalline tiling of 
~ n -- 1 

Now we characterize the hyperplanes which yield periodic tilings of ~" -1 .  
Consider a linear embedding 

v :~.~,- 1 ~ . ' 
(3.1) 

x~(f l (x)  + cl, ..., f,(x) + c) ; x e ~  "-1 , f e 0R"- 1) ' . 

Any hyperplane in IR" parallel to the hyperplane Im [v] is given by an equation 

g(y) = const (y eP,", g e (P,")'), (3.2) 

where g is connected with v by 

g * v = const. (3.3) 

Consider the set Z[g]  of vectors of Z" which are parallel to the hyperptane g: 

2~['g] = {y [ y e 2~", g(y) = 0}. (3.4) 

2~[g] is a sublattice of Z". We say that the hyperplane g is rational if 
dim(2~[g]) = n -  1, i.e. if this hyperplane is spanned by n -  1 independent vectors of 
2~". When Ira[v] is a rational hyperplane the corresponding v-quasicrystal is 
periodic. One should mention the duality of the subspace Q"'[v] defined in 
Proposition I and the lattice •[v]. Thus introduced objects g and Zig]  will be 
useful for the proof of the principal statement of this section formulated as 

Theorem 1. I f  an embedding v : JR"- ~ -~]R ~ generates a quasierystal satisfying some 
strong LR, then the quasicrystal periodic. 

This statement means that nonperiodic quasicrystals of codimension one 
cannot satisfy strong LR. Let us explain briefly the idea of the proof. We take an 
incommensurate embedding v and for an arbitrarily large positive r find a new 
embedding u such that the slopes of the subspaces Im [u] and Im [v] are different 
but close to each other and the r-atlases of the two quasicrystals are identical. Since 
the obtained subspaces with different slopes are not parallel, an incommensurate 
quasicrystal with strong LR cannot exist. 

In the proof of Theorem I we use the following notations. If a hyperplane g is an 
image of an embedding v we write "g-quasicrystal" instead of "v-quasicrystal," 
since we assume the set of vectors e~ in IR"- ~ to be specified (see above). We also 
write "(r, 0-atlas" instead of "r-atlas of the v quasicrystal." 

Proof of Theorem 1. Consider two regular (see Sect. 1) parallel hyperplanes g', g" 
in JR" and find r-atlases of the corresponding quasicrystals for some r>0 .  
According to Proposition 1 we obtain that these r-atlases coincide. This means 
that the r-atlas depends on the linear part of the embedding (1.3) only and does not 
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depend on the constants cl. This remark shows that an atlas is well defined on the 
Grassmann space G[n, n - 1 ]  of hyperplanes in JR". 

Definition. Consider an arbitrary configuration k of tiles in R " -  ~ and attribute a 
subset F[k] ~ G[n, n -  1] to it. F[k] is defined as the set of all hyperptanes g such 
that g-quasicrystal contains the configuration k infinitely many times. 

Note  that whatever the configuration k is the set F[k] is open in the topology of 
Gin, n -  1] since no integer points can lie on the boundary of a standard tube (see 
Sect. 1). 

Consider an arbitrary configuration k of tiles and a hyperplane g. There are 
three possibilities for g: 

a) the point g of G[n,n-1] lies inside the open set F[k] ;  
b) the point g of G[n,n-1] lies on the boundary of the set F[k];  
c) the point g of G[n, n -  1] belongs to the exterior of the set F[k]. 
In the case a) of configuration k belongs to the (1, g)-atlas for r large enough. In 

the case b) we say that "the configuration k is dangerous for the hyperplane g." 
Let us give a geometrical description of dangerous configurations. Consider a 

hyperplane g and write (3.2) in the standard coordinates (Yl . . . .  ,y,) of R":  

glYl + . - - +  g,Y, = c. (3.5) 

The points of the tube T[g] are given by 

e - g ' < g l y ~ + . . . + g , y , < c + g ' ,  where g '=( lg l l+ . . .+ lg , [ ) /2 .  (3.6) 

The boundary of T[g] consists of two hyperplanes 
a) glYl +... + g,Y, = c + g', 

(3.7) 
b) glYl + . . .  + g,Y, = c - g ' .  

Let a configuration k be dangerous for the hyperplane g. Consider its lifting w(k). 
From the definition of a dangerous configuration we obtain that w(k) can be 
immersed in the closure of the tube (3.6) by a proper shift. After this shifting is 
performed the lifting w(k) is positioned so that both boundaries (3.7a) and (3.7b) 
contain corner points of w(k) (see Fig. 5). Consider the set A of the corner points of 
w(k) which belong to the hyperplane (3.7a) and the set B of the corner points 

) / I  J B= 

Fig. 5. Dangerous configuration immersed in the tube is shown [the boundary hyperplanes (3.7) 
are represented by the lines a and b]. Dangerous corner points C1, C2, C3 form two sets A, B. 
VectorCzC'z represents the shift (3.8) 
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belonging to the hyperplane (3.7b). Since the shift 

y ~ y  + (sign(g 0 ....  , sign(g,)) (y~]R") (3.8) 

transforms the hyperplane (3.7b) onto the hyperplane (3.7a), the set B' produced by 
the shift (3.8) of the set B belongs to the hyperplane (3.7a) (Fig. 5). Consider the set 
S of all vectors connecting the points of the union A uB'.  Since the set A contains at 
least one point and the set B also contains at least one point, the set S is not empty. 
Two properties of the set S are important for us: 

a) all the vectors belonging to S are parallel to the hyperplane g; 
b) each vector of S belongs to Z". 
The property a) is true because the hyperplane (3.7a) is parallel to g. The 

property b) is true because every vector connecting corner points of a configu- 
ration belongs to 7/" and the shift vector in (3.8) also belongs to Z". Consider the 
sublattice H[k] of Z" formed by all integer linear combinations of the vectors 
belonging to S. The sublattice H[k] is parallel to the hyperplane g and has the 
dimension not less than one. Thus we conclude that every configuration k 
dangerous for a hyperplane yields a nonzero sublattice H[k] CZ" parallel to this 
hyperplane. 

To obtain the proof of Theorem 1 we first show that if a configuration k is of the 
type a) or c) for a hyperplane g (see above), then k is of the type a) or c) for every 
hyperplane close to g in the topology of Gin, n -  1]. Consider a configuration k of 
the type a). The point g of the space Gin, n -  1] of hyperplanes lies inside the set 
F[k] since this set is open. This means that every hyperplane u close enough to g 
lies inside F[k] or, in other words, that the configuration k is of the type a) for the 
hyperplane u. Since the exterior of a set is an open set, the same arguments are 
applicable for the configurations of the type c). 

Let us take a nonrational hyperplane g (d im(Z[g] )<n-1 ) .  Choose some 
positive r and consider all configurations {ki} ( j= 1,..., N) dangerous for g and 
having radii less than r. Let H[r] be the sum of all the sublattices H[kj]. H[r] is the 
minimal sublattice of Z" which includes all H[kj] (j = 1 ..... N). From the other 
hand tt[r] is included in the maximal sublattice Z ig]  defined above. It is clear that 
H[r] = Z i g ]  if r is large enough. Take a hyperplane u such that 

(i) =zig] ,  
(ii) u is close but not equal to g. 
This is possible only if the hyperplane g is nonrational, i.e. if dim(7l[g]) < n -  1. 

If u is close enough to g, then all the configurations k s dangerous for g are 
dangerous for u also. 

We have shown that for a nonrational hyperplane g and sufficiently large r a 
hyperplane u exists such that every configuration with the radius less than r, which 
is of the type a), b), or c) for g, is of the same type for u. This means that the 
(r, g)-atlas and the (r, u)-atlas are identical. Theorem I is proven. 

Our final remark is that the method of this proof is not applicable for the case of 
codimension larger than one. The key point of the proof is that the boundary of the 
tube T[g] consists of two parallel hyperplanes (3.7) connected by an integer vector. 
This makes it possible to gather all the critical corner points of a dangerous 
configuration on one of the two boundary hyperplanes. If the codimension is larger 
than one, this method fails since different parts of the tube boundary are not 
parallel. 
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4. Dual Graphs and Grids 

In this section we introduce dual graphs of tilings and study their properties with 
the purpose of application in Sects. 5-7. 

We consider the tilings o f ~  2 as graphs and introduce their dual graphs by the 
standard definition used in the graph theory [16] (see Fig. 6). The dual graph of a 
tiling consists of n arrays of curves in one-to-one correspondence with the vectors 
% The important properties of the dual graph are: 

a) no two curves of one array intersect; 
b) every two curves of different arrays intersect and have one point in 

common; 
c) no three curves have a common point; 
d) the intersection points of pairs of curves are in one-to-one correspondence 

with the tiles and, moreover, the intersections of the curves belonging to the ith and 
jth arrays correspond to the parallelograms (% ej)  for all i, j =  1,..., n. 

The dual graph of a tiling defines it completely up to the shift, after the 
correspondence of the vectors e~ and the arrays of lines of the graph is specified 
(that we always assume). Dual graphs yielding identical tilings are referred to as 
equivalent. 

Remark. Any continuous one-to-one transformation ~2__,p2 does not destroy 
the topology of the graph and, hence, transforms it to an equivalent one. 

Now we discuss the properties of dual graphs of quasicrystalline tilings first 
studied by de Bruijn. In the work [11] de Bruijn shows that the dual graph of the 
Penrose tiling is equivalent to that consisting of five arrays of straight equidistant 
lines with the angles between the lines of different arrays being multiples of 36 ° . It 
was shown later that an analogous assertion is valid for an arbitrary quasicrystal 
[9]. One should note that for a dual graph of an arbitrary tiling o f ~  2 it is possible 
to find a continuous transformation ]R2--,IR 2 such that it transforms two of the 
arrays of the curves of the graph onto two arrays of straight parallel equidistant 
lines. The characteristic property of dual graphs of quasicrystals is that a 
continuous transformation can be found such that not only two but all the arrays 
of curves are simultaneously transformed onto arrays of straight parallel 
equidistant lines (Fig. 6.b). 

An array of straight parallel and equidistant lines is called "grid." Every grid is 
given by a linear function f ~ ]R 2' and equations 

/ (x)  = k + c, (x ~ JR2), (4.1) 

a b 

Fig. 6a and b. a A piece ofa quasicrystalline tiling and its dual graph; b The lines of the dual graph a 
transformed into grids by a continuous transformation 
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where k takes all integer values and c is some real constant. The dual graph of a 
quasicrystal is given by a set of functions {f~}, a set of constants {c~} and equations 

fi(x) = ki + c~, (x ~ ~2,  k~ ~ ~g). (4.2) 

Remark. Consider v-quasicrystal corresponding to the embedding (1.3). Let its 
dual graph be given by (4.2). One can prove that a linear transformation R2 ~ R 2  
exists such that it transforms vi(x) in f/(x) for all i (see [9]). 

Another important remark is that it is possible to reformulate all the 
constructions introduced in Sects. 1, 2 in terms of dual graphs. One can take a 
graph with the properties a), b), c) (see above) as the fundamental object instead of 
tilings and define liftings, maps, atlases, strong LR and weak LR for graphs. We 
briefly show below how to do this. 

Let us begin with the lifting of a dual graph. The lifting of a graph having 
properties a), b), c) is defined as a function 

W : R2---~]R 2 , y-~(wl(y),..., Wn(Y)) , (y ~ R 2 ) ,  (4.3) 

where the component functions w are defined as follows. Remove all the curves of 
the graph except those from the i th array. Choose a point x which does not belong 
to the graph and set wi(x) = 0. For any other point y of the plane, the value wi(y) is 
given by the number of curves from the i th array separating the points x and y, 
taken with a proper sign (Fig. 7). The function w~ is defined everywhere except the 
lines of the i th array. Hence, the lifting w(y) is defined for all points y of R 2 not 
belonging to the graph. 

The relation of the lifting of a graph to the lifting of the corresponding tiling is 
quite clear. Every region surrounded by the lines of the graph corresponds to some 
vertex of the tiling. Since all the components wi of (4.3) take constant integer values 
in such a region, the function with integer values is defined on the vertices of the 
tiling. After adding the condition oflinearity inside the tiles (see Sect. 1) one gets the 
lifting of the tiling. On the other hand, the lifting of a tiling defines unambiguously 
the lifting of its dual graph. We denote both liftings by the letter w since it will be 
clear everywhere below which of the two is used. Finally we give the expression for 
the lifting w of the dual graph (4.2) of a quasicrystal: 

wi(Y) = [ A(Y) --  Ci] (Y ~ ~_2). (4.4) 

Maps of a dual graph are defined as the maps of the corresponding tiling. After 
maps are defined so the definitions of r-atlases, rules, strong RL, and weak RL are 
straightforward. 

-3 -2 

1 0 
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Now we apply the introduced concepts to prove Proposition 1. 

Proof  of  Proposition 1. For the proof we make use of a theorem proven by 
Kronecker (see [20]). 

Kroneeker Theorem. Let  k linear functions Lj ~ (~") '  (j = 1, . . . ,  k) and an arbitrary 
vector g ~ F, k (g=(gl ,- . - ,  gk)) be given. The following two statements are equivalent. 

(i) For every e > 0 one can f ind  an integer vector a ~ Z "  such that the inequalities 

((L,(a)-  g j)) < e (4.5) 

are satisfied simultaneously for al l j  = I, . . . ,  k. (Here  ((x)) means min({x}, { - x}), i.e. 
the distance from x to the nearest integer; {x} = x -  [x] is the fractional part of  x . )  

(ii) For every integer vector z e Z  k (z = (zl . . . . .  Zk)) such that the linear function 

zlL,(x) + . . .  + ZkLk(X ) (4.6) 

has integer coefficients, the quantity 

z ig  1 + . . .  + zgg k (4.7) 
takes an integer value. 

In order to apply this theorem we first find two independent functions among vi 
in (1.3). Let them be vl and v2. Since the equations 

tl  =v l ( x l ,  x2), t==vi (x l ,  x=) (4.8) 

can be solved for all t~, t2 two independent linear functions 

x~(q, t2), x2(t~,t2) 
are defined. We denote 

c = e' - e" = (c l  - c~, . . . ,  c ' , -  c~) = (c~, . . . ,  c , ) ,  

and choose the functions ~, q given by 

= t 1 "~-C 1 =Vl (X1 ,  X2) + C  1 , 
(4.9) 

I" I = t 2 + Ca = v 2(x l, X2) -'~ C2, 

as new coordinates in 1R 2. Consider all y~ [see (1.3)] as functions of these new 
variables: 

y , (¢ ,q )={ ,  y2({, q)= r/, (4.10) 

for i>2 :  
y,(~,  ,/) = v ~ x l  (~, ,/), x2(¢ ,  n)) + v , (x  °, x °)  + c i ,  

where x °, x2 ° satisfy the equations 

VI(XO, X0) ~-- - - C l ,  V2(X O, X20) = - -C  2 , 

It is easy to see that the functions 

L,.(¢,q)=vj+z(xl({,rl),x2(¢,~l)) q = l ,  . . . , n - 2 ) ,  

and the vector 
g = (v3(x °, x °) + c3 . . . .  , v.(x °, x °) + c.) E F." - ~ 
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satisfy Condition (ii) of the Kronecker theorem (m = 2, k = n -2 ) .  The theorem 
states that for every e > 0, one can find ~, q E 7~ such that 

((vi(x~(~, ~t), x2(~, rt)) - vj(x °, x ° ) -  c~>> < ~, 
and hence 

((vj(x~(~, tl) - x °, x2(~, q) -- x °) - c j)) < e, (4.11) 

for all j = 3  . . . .  ,n. 
We see that for every pair of vectors c', c" with the properties claimed in 

Proposition 1 and an arbitrary point x ' =  (x'l, x~)a N 2, one can find another point 
st t "  t t  t r x  ~ 2  x =tXl ,X2~e~ such that 

<<vi(x') + c'~ - vi(x" ) - c7>> < e (4.12) 

for all i = 1 . . . . .  n [according to (4.11) x~ = x'l + x ° -  ,, , o xl(~, ,I), x2 = x2 + x2 - x2(~, ,1)]. 
After the inequalities (4.t2) are viewed as conditions for the lifting functions 

and combined with the properties of the dual graphs discussed above, we obtain 
that one can find r > 0 depending on e such that 

a) (r,x')-map of the v'-quasicrystal coincides with (r,x")-map of the 
v"-quasicrystal. 

b) r~oo ,  when e--+0. 
Properties a) and b) together mean that the r-atlas of the v'-quasicrystal 

coinddes with the r-atlas of the v"-quasicrystal. Proposition 1 is proven. 
A useful assertion concerning the relation of distances between the intersection 

points of a dual graph and the corresponding parallelograms of the tiling should be 
finally mentioned. 

Proposition 4. Consider a quasicrystalline tiling and its dual graph formed by grids. 
One can find four constants c,c', C,C' ~N. (C>O, C'>O) such that for any two 
intersection points x, y ~ ]R E o f  the lines of the graph and corresponding parallel- 
ograms of  the tiling with centers x', y '~ ]R2, the following inequalities are satisfied: 

Clly-xll  + e <  Ily'-x'll < C'l/y-xll +c' ,  (4.13) 

where II... [i is the standard metrics in ]R 2. 

This proposition (which we leave without proof) means that the metrics in the 
"dual graph representation" of a quasicrystal is equivalent to the metrics in the 
"tiling representation." Proposition 4 will be used in Sect. 6. 

5. Two-Dimensional Quasicrystals 

In this section we prove the absence of strong LR for a wide class of 
quasicrystaUine tilings of the plane. First introduce an important definition. 
Consider three linear functions f, g, h ~ (p z),. 

Definition. We say that the SI-condition is satisfied for the triplet (f, g, h) if there 
exist k, l, m ~ Z such that Ikl + Ill + Iml > 0 and the system of equations 

f(x) = k, g(x) = l, h(x) = m, (x ~ R2) (5.1) 

has a solution (the abbreviation SI = "second intersection" will become clear later). 
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It is useful to write the SI-condition (5.1) explicitly in the coordinate 
representation. If the functions f, g, h have the form 

f(x)=j~xl + Jix2, g(x)=glxl+g2~2, 
(5.2) 

h(x) = h~x 1 + h2x2, 

the SI-condition means that there exist integers k, lom such that lkl + Ill + Iml > 0 and 

det gl g2 --0. (5.3) 
ha 

After the functions f, g, h are chosen the SI-condition (5.3) is no more than a 
linear equation for k, l, m e Z. The set of the integer solutions of Eq. (5.3) is a 
sublattice of the integer lattice ~g3. The dimension d of this sublattice is an 
important characteristic of the triplet (f, g, h). Ifd = 3, then f, g and h are collinear in 
~ 2 i  : 

f(x) = constg(x), g(x) = const h(x) (5.4) 

for all x ~ R  2. I fd = 2, then the functions f, g, h are linearly dependent over the field 
@, i.e. there exist rational numbers a, b, c ~ @ such that [al + [b[ + Icl > 0 and 

af(x) = bg(x) + ch(x) = 0 (5.5) 

for all x ~ IR 2. If d = 0 then the SI-condition is not satisfied. The most interesting 
d=l-case has a simple geometric meaning. Consider three grids 

f(x) = c 1 + k, g(x) = C 2 -~ l, h(x) = C 3 -~  m,  (5.6) 

where k, I, m take integer values and c 1, c2, c3 are some constants. Suppose that the 
SI-condition is satisfied for the triplet f, g, h and the constants Cl, c2, c3 in (5.6) are 
chosen so that three of the grid lines have an intersection point. The condition (5.1) 
means that there is a second intersection point common for other three lines of 
these grids. If d--- 1, these triple intersection points form a row (Fig. 8). A pattern of 
three grids satisfying the SI-condition has at least one period. 

Y / / 
_ / 

_/  / 
/ /  / 

/ /  
/ , 

_ / / 

? 
//i ! _  

/ 

/_ 

/ 
Fig. 8. When three grids satisfying SI-condition intersect, the intersection points form a row 
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The principal assertion of this section is: 

Theorem 2. Let a quasicrystalline tiling of the plane be generated by grids (4.2). I f  
this quasicrystal has strong LR, then the SI-condition is satisfied for every triplet of 
the grids (4.2). 

We begin the proof of Theorem 2 with several auxiliary lemmas. 

Lemma 1. Suppose the plane is decomposed onto two half-planes. I f  two quasicrys- 
tals are identical in one of the half-planes, they are identical everywhere. 

The assertion of Lemma 1 is a trivial consequence of the quasiperiodicity of 
quasicrystalline filings. 

Lemma 2. Let a two-dimensional quasicrystal satisfy some strong LR. Let r be the 
maximal radius of the configurations included in these LR. I f  two positive numbers 
s , q ~ R  and two points x,y of the plane ~2  exist for which 

a) the restrictions of the tiling to two rings 

s <  Ilz-xll  < s + 2 q ,  
(5.7) 

s<  tfz--Yfr < s + 2 q ,  (z~lR z) 
are identical; 

b) the (s, x)-map is different from the (s, y)-map, then the radius r is bigger than 
q:r>q. 

Proof of Lemma 2. Suppose the maximal radius r of the strong LR is not larger 
than q:r < q. Make a new tiling by the replacement of the (s + 2q, x)-map by the 
(s + 2q, y)-map. Since the new tiling satisfies the same LR, it is a quasicrystal. Thus 
obtained two quasicrystals contradict Lemma 1. This proves Lemma 2. 

Remark. One can easily reformulate Lemma 2 for grids, since there is a simple 
relation for distances between points of the dual graph and distances between 
corresponding parallelograms of the tiling (see Proposition 4). 

We also need some results on the triangles formed by grids. Consider three 
grids (5.6) and the triangles formed by the lines of these grids. All such triangles are 
similar. We say that a triangle has diameter d if the largest of the distances between 
the vertices of the triangle is equal to d. 

Choose a small positive d and consider the triangles having diameter less 
than d. We are interested in the distribution of such triangles over the plane. 

Suppose first that the functions f g, h are linearly dependent over Q [see (5.5)]. 
In this case there exists a positive d such that the diameter of any triangle is larger 
than d. So the triangles with sufficiently small diameters are absent. 

If the functions f, g, h are linearly independent over ~,  the triangles with small 
diameters do exist. Their distribution is characterized by the following lemmas. 

Lermna 3. Define the distribution density n(d) of the triangles as 

n(d)= lim N/S,  
S--~ o~ 

where N is the number of triangles having diameters less than d and lying in a large 
circle of the area S. Thus defined the function n(d) is linear, i.e. n=constd. 
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-_ ° -_ -° 

-- " 4  -- 

L. "--__ " . °  

Fig. 9a and b. Distribution of small triangles formed by three grids over the plane, a SI-condition is 
satisfied; b SI-condition is not satisfied 

Lenmla 4. If  the SI-condition is satisfied for f g, h and the number d is small enough, 
then the triangles having diameter less than d form parallel rows (Fig. 9a) such that 

a) the distance between every two neighboring triangles in a row is a constant not 
depending on d and the row; 

b) the minimal separation of every two neighboring rows, as a function of d, 
tends to infinity when d goes to zero. 

Lemma 5. Define the function dist(d) as the minimal distance between the triangles 
having diameters less than d. If  the SI-condition is not satisfied for the functions 
f g, h, then 

dim dist(d)= oe. (5.8) 
d - * O  

The assertion of Lemma 5 means that small triangles are far from each 
other, if the SI-condition is not satisfied (Fig. 9b). 

One easily obtains the proof of Lemmas 3, 4, 5 by making use of the expression 
for the area S of a triangle formed by three lines a~x 1 +bjx 2 ---cj (j= 1, 2, 3): 

[al c2 , IAt2312 , where At23=det  a2 b2 cl 
b~ 

S= 2A12A23A31 
a3 b3 c3 

dik=det bj b k ' 

Consider a v-quasicrystal for some embedding v and its dual graph given by the 
grids (4.2). The subspace ll~'[v] defined in Proposition 1 characterizes the shifts of 
the grids which do not change the atlases of the tiling. 

Definition. We define an equivalence transformation for a quasicrystal (4.2) as 
a transformation 

c~ = c i + h i (5.10) 

of the parameters c~ in (4.2) such that 

f ( h ) = 0  for all f e l ~ ' [ v ] ;  h=(hl, . . . ,h,) .  (5.11) 
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Fig. 10a and b. Rearrangements produced in the tiling a and in the grid pattern b by an equivalence 
transformation (5.10), (5.11) 

The transformation (5.10), (5.11) changes the tiling but preserves its r-atlases for all 
r (see Proposition 1). 

We are interested now in what the grids pattern changes are that are produced 
by the equivalence transformations (5.10), (5.11). Since there are 

N = C 3 = n ( n -  I) ( n -  2)/6 (5.13) 

subsets of cardinality three in a set of cardinality n, the triplets of the grids (4.2) 
form triangles of N types. When an equivalence transformation is performed, some 
of the triangles are rearranged (Fig. 10). It is clear that equivalence transformations 
(5.10) with small h~ yield rearrangements of small triangles only. Several properties 
of the rearranging triangles will be useful for the proof of Theorem 2. By making 
use of (5.9) one proves easily the following assertions. 

I.emma 6. Let the absolute values of  all h i in (5.10) be smaller than some positive d: 

Ihil < d. (5.14) 

A constant C exists such that all the triangles rearranged by the equivalence 
transformation (5.10), (5.11) have diameters less than Cd. 

Lemma 7. Let three grid functions fi, f~, fk (i,j, k = 1 .. . .  , n) from (4.2) be linearly 
dependent over Q. There is no equivalence transformation that yields rearrangements 
of  the triangles formed by the lines of  the i th, the f h and the k th grids. The only result 
of  an equivalence transformation is a shift of  such triangles without any change of  
their size. 

Lemma 8. Let three grid functions J}, fj, fk (i,j, k = 1,..., n) fi'om (4.2) be linearly 
independent over ~ .  There exists a positive constant C such that for every 
sufficiently small positive d one can choose the parameters hi of  the transformation 
(5.10), (5.11) so that 

a) ]hil < Cd for all i; 
b) every triangle with the diameter less than d formed by the lines of  the i th, thej tr, 

and the k th grids is rearranged by one of the two equivalence transformations 

c'i=ciq-hi, c ' i=ci-h ~. (5.15) 

Everything is ready now for the proof of Theorem 2. The general plan of this 
proof is the following. For  a quasicrystal having at least one triplet of grids not 
satisfying the SI-condition we find an equivalence transformation (5.10), (5.11) 
with sufficiently small hi such that 

a) there exists a triangle which is rearranged by this transformation; 
b) the piece of the tiling in a thick ring surrounding this triangle is not 

rearranged. 
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Since equivalence transformations do not change the atlases of tilings, the 
rearranged piece of the tiling inside the ring can be found in the original tiling. After 
this we apply Lemma 2 which states that if strong LR exist, then there is a 
configuration included in these rules with the radius larger than half of the 
thickness of the ring. Since one can make the thickness of the ring arbitrarily large 
by a proper choice of small h, we conclude that strong LR do not exist. 

Proof of Theorem 2. Let r be the maximal radius of the configurations from the 
LR of a quasicrystal. Divide the triplets of grids (4.2) forming the dual graph of the 
quasicrystal into three sets: A, B, and C. The set A contains the triplets which do 
not satisfy the SI-condition. The set C contains the triplets of functions which are 
linearly dependent over Q. The set B contains the triplets which satisfy the SI- 
condition but are not included in the set C. We call a triangle formed by a triplet of 
grids belonging to the set A (B, C) "A-triangle" ("B-triangle," "C-triangle"). For 
every triplet of grids of the set A the function dist : R ~ R  is defined according to 
Lemma 5. We define the function Dist :F,~IR by 

Dist (d) = min dist (d). (5.16) 

The minimum in (5.16) is taken over all triplets belonging to A. 
Suppose that Theorem 2 is not valid, i.e. the set A is not empty but contains at 

least one triplet, say fl, f2, f3. Let d be some small positive number (we will choose 
the exact value of d at the end of the proof). Choose the parameters h~ in the 
equivalence transformation (5.10), (5.11) according to LemmaS. Consider the 
triangles which are rearranged by the transformations (5.15). 

The triangles which are rearranged by any of two transformations (5.15) have 
diameters less than constd (Lemma 6). No C-triangles are rearranged (Lemma 7). 
The B-triangles which are rearranged by the transformations (5.15) form rows 
separated by large distances and, hence, rarely distributed over the plane 
(Lemma 4). 

For every rearranged A-triangle we find its separation from the nearest 
rearranged B-triangle. The maximum of these distances, taken over all rearranged 
A-triangles, defines the function Dist'(d). Let us prove that 

lim Dist'(d) = ~ .  (5.17) 
d~O 

Suppose that (5.17) is not valid, i.e. a constant D exists such that Dist'(d) < D for 
all d. This means that each of the rearranged A-triangles is separated by a distance 
less than D from one of the rearranged B-triangles. Consider the union of all 
D-vicinities of the rearranged B-triangles (D-vicinity of a triangle is the set of all 
points separated from it by less than D). One can cover this set with strips of the 
width 2D + d centered on the rows (Fig. 11). Since the minimal distance between 
parallel rows of B-triangles becomes arbitrarily large when d gets sufficiently small 
(Lemma 4), the parallel strips do not intersect for d small enough. Since the 
distance between every two similar rearranged A-triangles is not less than 

Dist(constd) (5.18) 

[see (5.16)], one can estimate the density n of these A-triangles as 

n < const' (20 + d)/Dist (const d) (5.19) 
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Fig. 11 

for sufficiently small d. The constant in (5.18) is equal to the product of the 
constants from Lemma 6 and Lemma 8. Since 

lim Dist(x) = oo (5.20) 
x---~O 

(see Lemma 9), the inequality (5.19) is in conflict with Lemma 3. This contradiction 
proves the assertion (5.17). 

Find a rearranged A-triangle such that all the rearranged B-triangles are 
separated from this triangle by the distances larger than Dist'(c0/2. Let 

X = min [Dist (const d), Dist'(d)/2], (5.21) 

where the constant in (5.21) is equal to that in (5.18). Choose a circle having the 
radius X/2 with the center y inside the found A-triangle. No rearranged B-triangles 
are contained in this circle. There is not more than one rearranged A-triangle for 
each triplet of the set A inside the circle. Therefore, there are not more than N 
rearranged triangles in this circle [N is given by (5.13)]. Divide the circle into 
2N + 1 concentric rings 

jX ~j + 1)X 
< Ix-r l  < (5.22) 

(2N + 1)2 = (2N + 1)2' 

where x ~ R2,j = 0 .... ,2N. If d is small enough, every rearranged triangle inside the 
circle intersects not more than two rings (5.22). Since the number of these triangles 
is not more than N, at least one of the rings (5.22) is free of rearranged triangles. 

Consider the piece of the grid pattern inside the thus found free ring. This piece 
is rearranged by one of the equivalence transformations (5.15). Since the 
equivalence transformations do not change atlases, the rearranged piece can be 
found somewhere else in the original grid pattern. One can apply Lemma 2 and 
conclude that the radius r is not less than the half of the thickness of the ring, i.e. 
that 

X 
r > const 4(2N + 1)" (5.23) 

A constant appears in (5.23) because the quantity r mentioned in Lemma 2 is the 
radius of configurations of tiles but not of pieces of the grid pattern (see 
Proposition 4). 

Since the quantity X can be made unlimitedly large by a proper choice ofd [-see 
(5.17) and (5.20)3, we obtain the contradiction with finiteness of r. 
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Theorem 2 is proven. 

Let us apply Theorem 2 to the quasicrystals having n-fold rotational symmetry. 
n vectors e~ in this case form a regular star and the grid functions fi from (4.2) are 
given by 

fi(x 1, x2)=cos(o:j)x 1 + sin(cq)x2, ~=2z~/n, (5.24) 

wherej  = 0,..., n -  1. Let us take the triplet fo, f , ,  f3 and check whether it satisfies 
the SI-condition or not. The SI-condition yields 

cL 0 "1 det sine n2 = 0 ,  
cos3c~ sin3c~ n3 

where nl, n2, n3 are some integers, or 

(5.25) 

cos(27~/n) e ~ if n = 3 , 4 , 6 ;  

cos (2re/n) e Q(~/-2) if n = 8 ;  

cos(2rc/n) ~ Q([f3) if n = 1 2 ;  

cos(2rc/n) e Q(]/5) if n=5 ,10 .  

All the quasicrystals having n-fold symmetry with n not included in (5.28) do not 
satisfy strong LR. 

Remark. Since different grids in (4.2) cannot be parallel, no quasicrystals 
correspond to n = 6  and n =  10 in (5.28). However, 6-fold symmetric and 10-fold 
symmetric quasicrystals can be constructed by an appropriate choice of the 
parameters c, in (4.2), where the grid functions are given by (5.24) with n = 3 and 
n = 5 respectively (the 10-fold symmetric quasicrystal obtained in such a way is the 
Penrose filing). 

Periodic quasicrystals having n=3 ,  4, 6 obviously satisfy strong LR. The 
existence of strong LR for n = 10 was shown by de Bruijn. Evidence for the absence 
of strong LR in the n = 8-case was given by Beenker. Nothing is known about  the 
n = 12-case. 

Let us try to express the restrictions of Theorems 1, 2 to the two-dimensional 
quasicrystals in a more explicit form. Suppose that a quasicrystal given by the grids 
(4.2) satisfies strong LR. 

Consider first the situation, when the number n of grids is equal to three: n = 3. 
This is the case of codimension one and hence Theorem I is applicable. We 
conclude that the quasicrystal is periodic. 

(5.28) 

nl s i n 2 a -  n 2 sin 3a + n 3 sins = 0. (5.26) 

After simplification of (5.26) we obtain 

4n2(cos ~) 2 - 2n 1 c o s a -  (n 2 + n3) = 0. (5.27) 

One can satisfy (5.26) only if cos(2zc/n) is a rational number or a quadratic 
irrationality. It is well known from Galouis theory that this happens onty when 

n~{3, 4, 5, 6, 8, 10, 12}; 
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Now we study the case n = 4 when there are four linear functions fi in (4.2). 
Since different grids are not parallel (by the definition of the dual graph) every two 
of the functions f~ form a basis of(~2) '. Choose f~ and f2 as such a basis and express 
f3 and f~ as linear combinations of f l ,  f2: 

f 3=a f l  +bf2 , f4=cf~ +df2. (5.29) 

We make use of Theorem 2 and apply the SI-conditions to all triplets of functions 
j} (i = 1 ..... 4). For the four triplets of f~ we introduce four triplets of integers 

(ml, mz, m3), (nl, nz, n3), (Pl,P2,P3), (ql,q2,q3) 

which appear in (5.1) and write the SI-conditions in the form (5.3) using the 
representation (5.29): 

det ! o: I 1 m 2 : O, d e t  1 n 2 = O,  

b d n 3 
(5.30) 

i det b det a b q2 = 0 .  

d P3 c d 

We consider the SI-conditions (5.30) as equations for unknown variables a, b, c, 
d. Since the number of equations is equal to the number of variables, Eqs. (5.30) can 
be solved (if they are independent). The properties of the solutions of Eqs. (5.30) are 
described in the following proposition. 

Proposition 5. 

1. I f  Eqs. (5.30) are independent, the solutions a, b, c, d are either rational numbers or 
quadratic irrationalities: 

a, b, c, dOl~(~/D) for some integer D. (5.31) 

The number of different solutions of Eqs. (5.30) is equal to 
a) one, if a, b, e, d~lI~; 
b) two, if a, b, c, d ~ ( ~ ) .  
In the case b) the solutions are mutually conjugated algebraic numbers (the 

numbers x,x' s~(~-D) are called conjugated if x - - a + b V ~  , x ' = a - b [ / D ,  where 
a , b ~ ) .  

2. I f  Eqs. (5.30) are not independent, then after a proper permutation of the 
functions f l ,  f2, f3, f4 is made the solutions a, b, c, d are given by 

a=a'+a"t ,  b=b'+b"t ,  
(5.32) 

c' + c"t d' + d"t 
e =  - -  d =  - -  

h'+h"t '  h'+h"t '  

where a', a", b', b", e', c", d', d", h', h" ~ ~ and t is a real parameter. Only eight of ten 
rational constants a',..., h" are independent. 
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Proof Since the triplets of integers m j, n j, p j, qj. (j = i, 2, 3) in (5.30) are related to 
four grids they have some special properties. Consider the triplet (ml, mz, m3). One 
checks easily that if two of mj (j = 1, 2, 3) are equal to zero then the third mj equals 
zero too. The same is valid for n~, p~, qi (j = 1, 2, 3). One can use this property and see 
that by a proper permutation of the functions f l ,  f2, f3, f4 in (5.29) Eqs. (5.30) are 
reduced to equations of the same type with an extra condition, 

m2+O , n2 =t=0. (5.33) 

after writing (5.30) explicitly we get 

(i) m 3 - m l a - m 2 b = O ,  

(ii) na-n~c -n2d=O,  

(iii) p3 b -  p2 d + p l (ad -  bc) = O, 
(5.34) 

(iv) q2 c - -  q3 a + q l (ad -  bc) = O. 

By excluding the variables b, d, c successively from Eqs. (5.34) one obtains (5.31) 
or (5.32). 

Consider the case n > 4. 

Proposition 6. Let the SI-condition be satisfied for every triplet of the grid functions 
f~. 

1. I f  there exist four functions fj, fk, fz, fm such that Eqs. (5.20) for them are 
independent, then one can express all functions f~ as linear combinations of two, e.g. 
f j  and fk, with the coefficients being quadratic irrationalities: 

f/(x) = aifj(X) + bifk(x), x ~ Fx 2 , 
(5.35) 

ai, bi ~ Q(]/~), D ~ Z .  

2. I f  for every four functions f j, fk, fl, fm Eqs. (5.30) are not independent, then one 
can express all the functions fi as linear combinations of  two, say f l  and f2, as 

f/(x) = aif~(x) + b i A ( x ) ,  x ~ R 2 , 
(5.36) 

a'i + a"t b'i + b'i't 
a i= , bi= hi+h'[t' h~+h[t' 

where t is a real parameter, a' i, a'i', b'i, b'i', h'i, h' i' E ~ for all i. Not all of the constants 
t t t  a i . . . .  , h  i are independent. 

The proof of this proposition can be obtained immediately by making use of 
Proposition 5. 

We see that the limitations for the quasicrystals satisfying strong LR derived in 
Theorem 2 are essentially reduced to (5.35) or, in some exceptional cases, to (5.36). 
One should note that the set (5.36) of"exceptional" quasicrystals is non-countable, 
whereas the "regular" set (5.35) is countable. It was mentioned in Sect. 1 that the set 
of restorable quasicrystals is countable. We suspect that the quasicrystals (5.36) 
do not have strong LR although we have not proved this. 
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6. Quasicrystais Based on Quadratic Irrationalities 

In this section we study the quasicrystals generated by quadratic irrationalities. 
Let us repeat the definition (1.6) in a slightly different form. For  the v-quasicrystal 
associated with the embedding (1.3) we consider the orthogonal complement v* to 
the subspace Im(v) of N. 2. 

Definition. We say that the v-quasicrystal is based on quadratic irrationalities of 
the field Q(]/~)  if v* is spanned by a set of vectors {g j} (gj E R" , j  = 1, ..., n -  2) of the 
form 

g=(Yl,-.-,Y,), where yistl~(V-D ). (6.1) 

In terms of grid functions f~ this definition means that every function fj  (j = 3 .. . . .  n) 
can be expressed as a linear combination off1, f z  with the coefficients belonging to 

II~(V~): f~(x) = ajf i  (x) + bJ2(x) ,  (6.2) 

where j = 3 . . . .  , n, x ~ •2, a j, bj ~ tl)(l/~ ). 
The principal result of this section is that a wide class of quasicrystals (6.2) has 

weak LR (see Theorem 3 below). We start with a very simple assertion. 

Lemma 9. I f  a quasicrystal (4.2) is based on quadratic irrationalities, then every 
triplet ( f  j, fk, fz) satisfies the SI-condition. 

One obtains the proof easily by substituting f~(x)=atf~(x)+bif2(x) with 
' ' . . . .  

al = at + at , bi = b~ + b t (ai, a~, bt, b~' ~ ~ in the SI-conditions (5.3). 
We introduce now some constructions which will be used in the proof of 

Theorem 3. Consider an arbitrary quasicrystal (1.3) and find its r-atlas for some 
positive r. Take this r-atlas as local rules. Let some tiling of the plane IR 2 satisfy 
these rules. One can expect that when r is sufficiently large this tiling resembles 
some properties of the quasicrystal. Particularly we show below that the lifting of 
the tiling goes almost in the same direction as the lifting of the  quasicrystal. 

Consider the dual graph of the tiling and that of the quasicrystal. We perform a 
continuous transformation R 2 --).IN 2 such that the first and the second array of 
curves of the dual graph are transformed onto two grids 

Xj=kj, ( /=1,2 ,  kj~'). (6.3) 

Other arrays of curves of the dual graph are not necessarily transformed onto grids 
by the transformation. Find a linear transformation R2 ~ IR  z such that the first 
two grids of the quasicrystal are transformed onto the grids (6.3). Since the 
transformation is linear, the other grids of the dual graph are transformed onto 
some grids 

f j ( x ) = k j + c j ,  ( ]=3, . . . ,n ,  x e l l  2, k j e Z ,  cjelR).  (6.4) 

Take j E {3,..., n} and consider an arbitrary curve of the jth array of the dual 
graph of the tiling (after the transformation is performed). Although this curve is 
not necessarily straight its slope is close to the slope o f t h e f  h grid. To explain what 
we mean let us consider two points x~, x 2 on this curve which are contained in a 
map of the tiling having radius less than r. Since the r-atlas of the tiling is included 
in the r-atlas of the quasicrystal one can find two new points x], x~ such that 
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a) the point x~, belongs to the same square of the lattice formed by the grids 
(6.3) as the point x,, (m = 1, 2); 

b) the segment (x], x~) is parallel to the lines of the j  th grid of the quasicrystal. 
The maximal distance between the points xl, x2 is of order r because they are 

included in a map of the r-atlas. We conclude that the slope of the curve differs from 
that of the jth grid to not more than const/r. We need this result reformulated in 
terms of lifting functions. 

Lemma 10. Let a tiling satisfy the r-rules given by the r-atlas of a quasicrystal. 
Apply the introduced continuous transformations ~ 2 ~ 2 to the dual graphs of the 
tiling and of the quasicrystaI as explained above. Consider the lifting of the 
transformed dual graph of the tiling 

w(x) = (Ix 1], Ix2], w3(x),..., w,(x)), (x ~ R2) (6.5) 

and that of the grid pattern 

w'(x) = (Ix 1], Ix2], [f3(x)], ..., [f,,(x)]), (x ~ 1~2). (6.6) 

There exist two constants c~ >0,  c 2 > 0  such that 

[(w,(y) - w~(y'))- (f~(y)- f~(y'))[ < cl + (c2/r) ]P y -  y' ][ (6.7) 

for all i and y, y' ~ ]R 2. 

The assertion of Lemma 10 is valid for an arbitrary quasicrystal. We show 
below that for a broad class of quasicrystats (6.1), (6.2) the parameter c2 in (6.7) is 
equal to zero. This means that the lifting w of the tiling differs from the lifting w' of 
the quasicrystal to not more than a constant, i.e. the tiring satisfies weak LR. 

Theorem 3. Let a two-dimensional quasicrystal with n = 4  be such that 
a) every triplet of the grid functions f~ satisfies the M-conditions (5.3); 
b) jour equations (5.30) are independent. 
I f  some auxiliary constraints for the integer numbers m j, n j, p j, qj q = 1, 2, 3) are 

satisfied (see (6.19) and (6.34)), then the quasicrystal satisfies weak LR. 

The auxiliary constraints mentioned in Theorem 3 mean nothing more than all 
the expressions which will appear in the denominators of different fractions during 
the proof  are assumed to take nonzero values. Since these constraints are not very 
important but  rather cumbersome we analyze them at the end of the proof. 

First we discuss the idea of the following proof on a nonrigorous level. Choose 
some positive r and take the r-atlas of the quasicrystal as LR. Ifr  is sufficiently large 
the lifting functions w~ (6.5) are close to f~ (6.6) in the sense of Lemma 10. We neglect 
for some time by the discontinuities of the lifting functions w~ and consider them as 
smooth functions at scales larger than the separations of the fines in the dual graph. 
Suppose further that linearizations (linear parts) of wl approximate them well at 
sufficiently large scales. These linearizations satisfy the SI-condition (5.3) every- 
where the plane. Since Eqs. (5.30) are independent, they have only two solutions. 

. . ~ W  i 
So, we can use Proposition 5 and conclude that all clerivatlves -_~ are constant on 

OXk 
the whole plane. This means in turn that w~ are linear functions corresponding to 
one of the solutions of Eqs. (5.30) (see Proposition 5). One can exclude one of these 
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solutions by choosing sufficiently large r and making use of Lemma 10: according 
to Lemma 10 all functions w~ are close to f~ when r is large. Combining the above 
results we obtain that wi are identical to f~ in (6.6). The reality is that the functions 
wi are not continuous (and non-differentiable as well!). Nevertheless, the rigorous 
proof of Theorem 3 is based on the same ideas. 

Proof of the Main Theorem 3 

Step 1 (SI-Conditions for Dual Graphs). Let us choose LR being identical to the 
r-atlas of the quasicrystal for some large r. The exact value of r will be determined 
at the end of the proof. 

Let a tiling of the plane satisfy these rules. Find a continuous transformation 
]R2....~2 which transforms the first two arrays of curves belonging to the dual 
graph of the tiling onto the grids (6.3), and a linear transformation ~2_..~]R 2 which 
transforms the first two grids of the quasicrystal onto the grids (6.3), as explained 
before Lemma 10. The corresponding lifting functions w, w' have the form (6.5), 
(6.6). Since SI-conditions are satisfied for the grids ofthe quasicrystal, the functions 
f3 and f4 are given by 

f3(x) = axl + bxz, (6.8) 

fa(X) = CX 1 + dx2, 

where a, b, c, d are solutions of(5.30). In order to prove the existence of weak LR we 
must show that for sufficiently large r two functions 

wj(x)- fj(x) q=3 ,4)  (6.9) 

are bounded on the whole plane. 
We need to modify the definition of SI-conditions in order to make it 

applicable for arbitrary dual graphs [not only for grids as in (5.1)]. Let 
w(x) = (wl(x) . . . . .  w,(x)) be the lifting function of a dual graph. Let (wj(x), wk(x), wl(x)) 
be a triplet of the component functions of the lifting w(x) (j, k, 1 ~ { 1,2, 3, 4}). 

Definition. The SI-condition is satisfied for the triplet (w j, wk, w~) and three integers 
m l, m z, m 3 if for any x e R 2 one can find x' e ~R z such that wj(x') = wj(x) + m l, w~(x') 
= wk(x) + m2, w~(x') = w~(x) + m3. 

It is clear that the definition of SI-condition for grids is a particular case of the 
more general definition given above. One proves an easy 

Lemma 11. I f  the radius r of the local rules defined above is sufficiently large then 
the tiling satisfies the SI-conditions identical to that of the quasierystal (with the 
same triplets of integers). 

One can write these conditions for the component functions w~ of the lifting w. 
Consider the triplet (wl, wz, w3) as an example. The SI-condition for this triplet 
states that for every point x of the plane there exists a point x' such that 

wl(x')  = w l ( x ) +  m l ,  

wz(x') = w2(x) + mz, (6.10a) 

w3(x') = w3(x) + m3. 
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If we use the so-obtained point x' instead of x in the SI-conditions, then we find 
another point x" such that 

wl(x" ) = wl(x' ) + ml,  

w2(x") = w2(x') + m2, (6.10b) 

w3(x") = w3(x') + m3. 

Since this procedure can be repeated any finite number of times, we conclude that 
for any integer k and every point x of the plane there exists a point x' such that 

wl(x' ) = wl(x ) + kmx, 

w2(x' ) = w2(x ) + km2, (6.11) 

w3(x' ) = w3(x ) 4- km 3 . 

The SI-conditions for other triplets of wi are quite analogous to (6.11). Recall that 
after the transformations IR 2--.jR 2 found above are performed, the lifting function 
takes the form (6.5). Let us rewrite the SI-conditions (6.11) for this particular case. 

Step 2 (Triplets (1, 2, 3), (1, 2, 4)). The SI-condition for the triplet (wl, w2, w3) states 
that for any integer k and every point x = ( x l ,  x2) of the plane there exists a point 
x' = (xq, x~) such that 

x~ =Xx +kin1, 

x'2 = x2 + kin2, (6.12) 

w3(x')= w3(x) + km 3 . 

We know from Lemma 10 that the functions w3 and w4 are close to ax~ + bx2 and 
cx~ + dx2 respectively if r is large enough. Bearing this in mind we introduce new 
functions F and • such that 

w3(x ) =F(x)  + a x  1 4- bx2, 
(6.13) 

W4(X ) ~--- ~(X) 4- CX 1 4- dx2, x = (x1, x2) e R 2 . 

F(x) and ~(x) are exactly the functions (6.9) and we have to prove that both F(x) 
and ~(x) are uniformly bounded on N 2. Condition (6.12) reads: 

F(x l+kml ,  x z+km2)=F(x l ,  xz) for all integer k. (6.14) 

This means that F(x) mainly depends on the variable 

U=NzX 1 - - m i x  2 (6.15) 

only, or, more precisely, that a function f :  P , , ~ N  exists such that the difference 
F ( x ) -  flu(x)) is bounded: 

lF(x)- f(u(x)) l  <cons t  for all x e l R  z . (6.16) 

The function u(x) in (6.16) is given by (6.15). 

Remark. Since we wish to prove that F(x) and 4~(x) are bounded, we shall neglect 
all bounded functions everywhere below and write A(x)=B(x)  instead of 
"IA(x)-B(x)I <cons t  for all x e N 2 .  '' 
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In accordance with this convention we write (6.16) as 

F(x)= f(u(x)),  (6.17) 

where u(x) = mzXl - mix2, x = (x 1, x2) ~ IR 2. 
The analysis of the SI-condition for the triplet (wl, w2, w4) can be performed in 

a quite similar way. The result is that a function ~0 : R - , R  exist such that 

(b(x) = qffv(x)), (6.18) 

where v(x)-.=n2xl-nlx2, x=(x l ,  x2)~R 2. We obtain that both F(x) and ~(x) 
depend on one variable (the corresponding variables are u and v respectively). 

Suppose that two functions u(x) and v(x) are independent, i.e. 

nl m2[] A=de t  ml ~ 0 .  (6.19) 
n2 

It is convenient to choose u and v as new coordinates instead of xl, x 2. The 
variables xl and x2, as functions of u and v, are given by 

x 1 = ( m l v - n l u ) / A  , x2=(m2v-n2u) /A .  (6.20) 

Step 3 (Triplets (1,3,4), (2,3,4)). Consider the SI-condition for the triplet 
(Wl, w3, w4). It states that for any integer k and every point x ~R2 one can find a 
point x ' e  R 2 such that 

W3(X' ) = Wa(X ) + kp2 , (6.21) 

w4(x') = w4(x) q- kp3 • 

Using (6.13), (6.17), (6.18) and taking into account that wdx) = X l we rewrite (6.21) 
in new variables u, v. Condition (6.21) means that for any integer k and a point (u, v) 
of IR 2 there exists a point (u + u', v + v') such that 

mxv ' -  nlu '= Aplk , 

f (u + u ' ) -  f (u) = (P2 -- ap O k -  b(mzv ' -  n2u')/ A , (6.22) 

qO(V q- V') -- (p(v) = (Pa -- cpl)k - d(mzv' - nzu')/A. 

By making use of (5.34) we exclude u' and v' from the right-hand side of (6.22) and 
get 

(i) d ( f  (u + u ' ) -  f (u)) = b(rp(v + v ' ) -  ~o(v)), 

(ii) b ( m 2 v ' - n z u ' ) / A = ( p 2 - a p O k - ( f ( u + u ' ) - f ( u ) ) ,  (6.23) 

(iii) mxv' - nlu' = Aplk.  

Suppose that b :~ O. If this is the case, one can use (6.23.ii), (6.23.iii) to express u' 
and v' as functions of k and f ( u +  u ' ) - f (u ) :  

(i) d ( f  (u + u ' ) -  f (u))= b( ~o(v + v ' ) -  rp(v)) , 

(ii) u' = Ak + A' ( f (u  + u ' ) -  f(u)),  

(iii) v' = Bk + B'( f(u + u')-- f lu)) ,  

(6.24) 
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where 

A=(p lm3-p2ml ) /b ,  A '=ml /b  , 

B=(pl (n la+nzb) -pznO/b ,  B '=nl /b .  

The SI-condition for the triplet (wl, w3, w4) says that for all (u, v) e R 2 and k e 7Z, 
Eqs. (6.24) can be satisfied simultaneously by properly chosen u', v'. The thus- 
obtained form (6.24) of the SI-condition for the triplet (wl, wa, w4) is the most 
convenient one for our analysis. 

After similar calculations for the triplet (w2, w3, w4) we obtain the SI-condition 
rewritten in new variables u,v. The condition gives for any k e Z  and arbitrary 
point (u, v) e R 2 the existence of a point (u + u', v + v') e p 2  such that 

O) c(f(u + u ' ) -  f(u)) = a(q~(v + v ' ) -  q~(v)), 

(ii) u' = Fk + F'(f(u + u ' ) -  f(u)), (6.25) 

(iii) v' = Gk + G'(f(u + u ' ) -  f(u)), 

where 
F =(qzmz--qlm3)/a, F'= - m z / a ,  

G = (naqz-  ql(nla + n2b))/a, G' = - nz/a. 

Step 4 

Remark. In what follows we show that if the function f(u) is not bounded then SI- 
conditions (6.24) and (6.25) contradict each other. There are two difficulties with 
Eqs. (6.24), (6.25) which are in the way of establishing the contradiction: 

1) u' appears not only in the left-hand side of Eqs. (6.24), (6.25) but also in the 
right-hand side as a part of the argument of function f This makes it difficult to 
give a good estimate of f (u  + u') + f(u). 

2) Not  only f but also ~0 takes part in Eqs. (6.24), (6.25). So one has to eliminate 
~0. 

We prove a useful lemma which shows how one can avoid difficulty 1. 

Lemma 12. Let a function f : I R ~ I R  satisfy the modified Lipshitz condition 

[f (u + u ' ) -  f (u)[ < c + c'tu' [ (6.26) 

with positive c and c' for all u, u'. Let two constants A, A' such that Ic'A'[ < 1 be 
specified. Then there exist positive constants C, C' such that 

if u '=A+A' ( f (u+u ' ) - - f (u ) )  for some u,u 'e lR,  
(6.27) 

then I f (u  + u ' ) -  f(u)] < C + C'lf(u + A ) -  f(u)[. 

Proof 

[f(u + u')-- f(u)[ < tf(u + u')-- f (u  + A)t + [f(u + A ) -  f(u)t 

< c + c'lu'-- A[ + [f(u + a ) -  f(u)[ 

< c +[c'A'[]f(u + u') - f (u)]  +] f (u  + A) - f ( u ) [ .  
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We obtain (6.27) with 

C=c/( l - l c 'Z ' t ) ,  C'=l / (1  --Ic'A'l). 

Consequences of Lemma 12. One can find positive constants C, C' such that 
1) if for some u, u', v, v ' e~ ,  and kz2g, Eqs. (6.24) are satisfied, then 

tf(u + u ' ) -  f(u)[ < C + (C'/r) lf(u + A k ) -  f(u)l ; (6.28) 

2) if for some u, u', v, v' ~ R and k s 2g, Eqs. (6.25) are satisfied, then 

]f(u + u') - f (u ) l  < c + (C'/r)If(u + Fk) - f (u ) [ .  (6.29) 

Proof According to Lemma 10 the function f(u) satisfies the modified Lipshitz 
condition (6.26) with c '=  const/r. Therefore, after applying Lemma 12 to (6.24), 
(6.25) we get (6.28), (6.29), respectively. 

Step 5 (Elimination of q)) 

Remark. Up to now we considered Eqs. (6.24) [and Eqs. (6.25)] as SI-conditions: 
whenever u, v, k are given they define u' and v'. One can try to view Eqs. (6.24) from 
another side: for all u, v, v' they define u' and k. Really, if we know u, v, v', then we 
can find f ( u + u ' ) - f ( u )  from (6.245) (assuming that d#0) ,  then obtain k from 
Eq. (6.24.iii)(assuming that B =# 0), and finally get u' from Eq. (6.24.ii) (the same 
concerns Eqs. (6.25) provided c =~ 0, G ~ 0). 

To eliminate q) we have to consider Eqs. (6.24), (6.25) simultaneously. Let us use 
~7, ~, if, ~', k-to denote the variables of(6.25) and reserve the old notation u, v, u', v', k 
for the variables of(6.24). Let independent variables in (6.25) be t7, ~, 15' according to 
the above Remark [-for Eqs. (6.24) we use the standard triplet u, v, k of independent 
variables]. Equations (6.24), (6.25) enable one to determine u', v', k, ~' whenever u, v, 
k, ~, g, 0' are known. 

t I)t Let us choose some u, v, k, and ~, then find u, from (6.24) and put 

= v, ~' = v'. (6.30) 

This means that instead of six independent variables u, v, k, ~i, ~, ~7' we consider only 
four u, v, k, ~i, while g and 17' depend on them according to (6.30). Relations (6.30) 
make it possible to exclude v, v, v', ~' from (6.24), (6.25) and get 

(i) ad(f(u + u ' ) -  f(u)) = bc(f(~ + ~ ' ) -  f ( @ ,  

(ii) u' = Ak + A ' ( f  (u + u ' ) -  f (u)), 
(iii) ff = Fk+ F'(f(~ + ~') - f ( @ ,  (6.31) 

(iv) Bk + B'(f(u + u') - f(u)) = Gk+ G'(f(gt + i f ) -  f(a)). 

[A, A', B, B', F, F', G, G' are defined in (6.24), (6.25).] Note that we still have four 
independent variables in (6.31), i.e. for all values of u, v, k, ~7 there exist u', if, k-such 
that Eqs. (6.31) are satisfied. More precisely, v does not participate in (6.31), so the 
number of independent variables is reduced to three, they are u, a, k. So we are left 
with equations for the function f only. 
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Step 6 (Final). By applying consequences (6.28), (6.29) of Lemma 12 to (6.31.i) and 
using (6.31.ii), (6.31.iii), (6.31.iv) one can find positive constants c, c', and c", such 
that 

]S(f(u + Ak) - f(u)) - T( f (~ + H k ) -  f(a))I < c 

C 1 C" 
+ - - [ f ( u + A k ) - f ( u ) r +  - - t f ( ~ + H k ) - f ( ~ ) [  for all u,~,k,  (6.32) 

/" r 

where S = ad, T =  be, H = F(B/G). Inequality (6.32) enables one to prove that f is 
bounded. 

Lemma 13. Let function f satisfy the modified Lipshitz condition (6.26) and 
inequality (6.32) with nonzero A, H, S, T I f  SA 4- TH in (6.32) and r is sufficiently 
large, then f is a bounded function. 

Proof. Suppose that f is not bounded. Choose a large number M and find x 0 e R ,  
k e 2g such that ]f(x o + H k ) -  f(x)t > M. From (6.32) obtain that for all x, y e IR, 

(i) f ( x  + A k ) -  f (x)  _ 1 C C' 
f ( y + A k ) - f ( y )  < - r  + --'M 

C C' (6.33) 
(ii) f ( x  + H k ) -  f (x)  _ 1 

f ( y  + Hk) - f(y) < --r + M '  

where C and C' are some constants [first one has to prove (6.33.i) and then gets 
(6.33.ii) as a consequence of (6.32), (6.33.0]. 

Consider two sequences {x j}, {y j}: x j= Xo + Hkj, y j= Xo + Akj. Define 

X = inf [ ( f ( x j ) -  f(xm))/(xj-  xm)], 
j * m  

X' = sup 
j * m  

Y= inf 
j~:m 

Y'= sup 
j*rn 

[(f(xj) - f(xm))/(xj - xm)], 

[ ( f (Yj)-  f(Y,~))/(Y~- ym)], 

[ ( f  (Yj) -- f (Ym))/(Yj-- Ym)] " 

I fSA + TH and both r and M is large enough, then (6.32) and (6.33) imply that the 
segments [X, X'] and I-Y,, IT'] do not intersect. This is in contradiction with (6.26), 
since for every m~2g one can findj~2g such that lx j-y , , l  <constk.  Lemma 13 is 
proven. 

Thus we obtain that f is bounded if 

a4=0, b + 0 ,  c4-0,  d ~ 0 ,  A4-0,  B=~0, F=~0, G4:0,  

adA G + bcBF. (6.34) 

Since f is bounded, 9 is bounded as well due to (6.24.i). 
We established that Theorem 3 is valid provided (6.19)and (6.34). 
Let us discuss an interesting example of an application of Theorem 3. Consider 

the two-dimensional quasicrystal having pentagonal symmetry. Its grid functions 
j~ are given by 

f j (x)=cos(2---~j)x~+sin(2---~j)x2,  ( j=0,  . . . , 4 ; x e ~ 2 ) .  (6.35) 
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The dual graph consists of the grids 

fj(x) = z i +  cj (zje~E). (6.36) 

If cj are such that "2 = ~. cj = 0, we obtain Penrose tiling for which the existence of 
2 

strong LR was established by de Bruijn. What  happens when ?: ~: 0? 

Proposition 7 (consequence of Theorem 3). All 5-fold symmetric quasicrystals (6.35), 
(6.36) satisfy weak LR. 

Proof  Let us erase one of the grids (6.36), say j0(x) = Zo + Co. One can try to apply 
Theorem 3 to the remaining grids given by (6.35), (6.36) with j = 1, 2, 3, 4. Simple 
calculations show that 

f3(x) = a f l  (x) + bfz(x), f4(x) = cfl(x) + dfz(x), (6.37) 

where a= - 1, c = d =  - b = ( 1  -V~)/2 .  
Condition a) of Theorem 3 is satisfied according to Lemma 9. Calculation gives 

(ml, mz, m3)=(1,O, - 1 ) ,  (nl, n2,n3)-=(l, - 1,0), 
(6.38) 

(pl, pz, p3) =(0, 1, - - ] ) ,  (ql, q2,q3)=(1,0, --1). 

One easily makes sure that Eqs. (5.30) with the integers given by (6.38) are 

independent and have solutions a = - 1, c = d = - b = (1 + 1/~)/2. So condition b) of 
Theorem 3 is also satisfied. Calculations show that conditions (6.19), (6.34) are 
satisfied as well. Hence Theorem 3 is applicable and gives existence of weak LR for 
the dual graph formed by the grids. 

Since these arguments can be applied to every four of the grids (6.35), (6.36) 
Proposition 7 is proven. 

The existence of weak LR for pentagonal quasicrystals established in 
Proposition 7 will be used in the next section for the study of three-dimensional 
quasicrystals having icosahedral symmetry. 

7. Three-Dimensional Quasicrystals 

In this section we show that many of the results obtained in the previous sections 
can be extended (with appropriate modifications) to three-dimensional quasicrys- 
tals. For every tiling of space with parallelotops the dual graph is defined in a way 
similar to that discussed in Sect. 4. It consists of arrays of two-dimensional 
surfaces. 

The dual graph of a quasicrystalline tiling is topologically equivalent (in the 
sense of Sect. 4) to n arrays of parallel equidistant planes (three-dimensional grids): 

f j x ) =  c i + k i , (7.1) 

where i = l ,  . . . ,n, f i e (N3)  ', x s N  3, c i ~ N  , ke2g. We assume that these grids are 
non-degenerate, i.e. every three of functions f~ are linearly independent. 

In order to formulate an analogue of Theorem 2 we introduce SI-condition 
for such grids. Consider four of the grid functions f / f rom (7.1), say f l ,  f2, f3, f4. We 
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say that the grid functions f~ (j = 1, 2, 3, 4) satisfy an SI-condition, if four integer 
numbers k s (j = 1,2, 3, 4) exist such that 

a) Ik~l + Ik2t + ]k3t + ]k41 > 0; 
b) the equations 

f~(x) = kj (j = 1,2, 3, 4) (7.2) 

have a solution. 
It proves useful to have the SI-condition (7.2) written in the coordinate 

representation. Let the functions fj be given by 

fi(x) = aix 1 + bjx 2 + cjx3 , (7.3) 

where j =  1, 2, 3, 4, x =(xl ,  x2, x3)~F- 3. The SI-condition (7.2) means that 

a l  b l  

det a2 b2 
a3 b3 

a4 b4 

cl kl 

c2 k2 =0 .  
C 3 k 3 

c4 k4 

(7.4) 

After this definition is introduced the generalization of Theorem 2 becomes 
straightforward. 

Theorem 4. I f  a three-dimensional quasierystal has strong LR, then for every four 
of its grids the SI-eondition (7.2) is satisfied. 

The proof of this theorem is almost identical to the proof of Theorem 2. 
Now we discuss an analogue of Proposition 5. Consider four grids (7.1) and 

suppose that the condition (7.4) is satisfied for some k s (j = 1,2, 3, 4). The set of all 
integer vectors (k ~, k2, k3, k4) satisfying (7.4) form a sublattice of the lattice Z 4. One 
should distinguish several possibilities corresponding to the dimension d of this 
sublattice. 

a) Ifd =4, then four vectors (a j, b~, ci) (j= 1 . . . .  ,4) belong to a two-dimensional 
plane (this degenerate case never occurs). 

b) If d = 3, then four grid functions fj are dependent over the field Q: 

pJj(x) = 0 (7.5) 
j = l  ..... 4- 

for all x e R 3 and some p jeQ.  In this case the corresponding quasicrystal is 
periodic. 

c) If d = 2, the "second intersection" points form a two-dimensional lattice in 
]1{ 3 . 

d) If d = 1, the "second intersection" points form a one-dimensional row. 
Consider a three-dimensional quasicrystal produced by n grids. Since every 

three of the grid functions are linearly independent (see the nondegeneracy 
condition a) mentioned above), we can choose fl ,  f2, f3 as a basis and express other 
functions as linear combinations of these three: 

~(x) = a J d x )  + bilE(X) + cjf3(x) (7.6) 

( j=4, . . . ,n ,  xsP,3). Without discussing the whole variety of possibilities we 
consider two typical examples. 
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a) Suppose that for every four of the grid functions the SI-condition is satisfied 
with d = 1 (see above). These conditions give N = C 4 = n (n - 1) ( n -  2) ( n -  3)/24 
equations of the type (7.4). Suppose further that all these equations are 
independent. The number M of variables a j, b j, c~ ( j=4  .. . .  , n) is equal to the 
dimension of the Grassmann manifold Gin, 3], i.e. M = 3 (n-3) .  One checks that 
M < N  only when n>5 .  Possible solutions of N equations (7.4) are cubic 
irrationalities: 

aj, bj, c j ~ / - D )  for a t l j  and some D ~ Z .  (7.7) 

b) Suppose that the SI-condition is satisfied for every four grid functions with 
d = 2. In this case every SI-condition (7.4) gives two equations for the coefficients a j, 
b i, cj in (7.6), since there are two essentially different ways of choosing the integers 
kj in (7.2). We assume that all these equations are independent, so the total number 
of equations is 2N. The number of variables is M again. One checks that M < 2N 
when n >4. The solutions of the equations are quadratic irrationalities: 

a j, b~, cj ~ t~(VrD) for all j and some D ~ ;E. (7.8) 

One can think that there exist other possibilities corresponding to the cases 
intermediate between a) and b). 

Possible generalizations of Theorem 3 for the tilings of ~ 3  seem to be rather 
cumbersome. Instead of making general assertions like Theorem 3 we study a 
particular example. The quasierystal having icosahedral symmetry is the most 
important of three-dimensional quasicrystals, since it has applications to really 
existing materials (see Sect. 1) and is widely discussed in physical literature. By 
making use of Theorem 3 we show that this quasicrystal satisfies weak LR. 

Proposition 8. The icosahedrally symmetric quasierystaIline tiling of N 3 satisfies 
weak LR. 

Proof Consider six 5-fold symmetry axes of the icosahedron and the unit vectors 
ei (i = 1,..., 6) directed along these axes. The grid functions f~ of the icosahedral 
tiling are given by 

f~(x) = (% x), (7.9) 

where x ~ ]R 3 , "( .. . . . . .  )" is the standard scalar product in/R 3. The grids are given by 
(7.1). Let us choose r > 0, find the r-atlas of the quasicrystal and take this r-atlas as 
local rules. 

Consider a tiling oflR 3 which satisfies these LR, and determine its dual graph. 
Choose three arrays of surfaces from the dual graph of this tiling, say the first, the 
second, and the third, and find a continuous transformation ~ a ~ / R 3  which 
transforms these arrays onto three corresponding grids (as in the proof of 
Lemma 10). After this transformation is performed the dual graph of the tiling 
consists of three grids and of three arrays of surfaces which are not necessarily 
grids. The lifting of this tiling is given by 

w(x)=(wl(x) .... ,w6(x)), x ~ 3 ,  
(7.10) 

wj(x) = [(ej, x)-- cj] for j = 1, 2, 3. 
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To establish the existence of weak LR we must show that the last three arrays 
(j = 4, 5, 6) are almost parallel to the corresponding grids. 

Let us choose one of the planes of the first grid, say 

( e l , x )=c l - . kk  (x~Fx3; k~Z) ,  (7.11) 

and consider the intersection lines of this plane and other surfaces of the dual 
graph. We obtain five arrays of lines on the plane (7.11). Note that three- 
dimensional r-rules induce two-dimensional r'-rules for the so-obtained graph on 
the plane (7.11), where r '>  const r. These r'-rules coincide with the r'-atlas of one of 
the 5-fold symmetric two-dimensional quasicrystals (6.35), (6.36) with properly 
chosen constants cj. According to Proposition 7 there exist weak LR for this 
quasicrystal and, moreover, the f-at las gives such rules if r' is large enough. This 
means that the lifting of the two-dimensional tiling, which is given by restricting 
the last five components of (7.10) on the plane (7.11), is close to the lifting of the 
quasicrystal: 

](wj(x) - w~(x'))- ((e~, x) - (e j, x'))[ < const (7.12) 

for all x, x' s ~ 3  satisfying (7.11) and j = 2 . . . .  ,6. Although the constant in (7.12) 
does not depend on k, condition (7.12) does not imply the existence of three- 
dimensional weak LR. Nevertheless, condition (7.12) means that one can find 
functions sj: N--*R (j = 2,..., 6) such that 

[wj(x) - (e j, x ) -  sj(k)[ < const (7.13) 

for all x e R 3 such that (el, x )=  c t + k , j  = 2,..., 6, where the constant in (7.13) does 
not depend on k. Now we choose one of the planes of the second grid, say 

(e2, x)= c2 q-k (x GR3, k ~J~r), (7.14) 

instead of (7.11) and repeat the above considerations. We obtain that one can find 
functions s~ : R ~ R  (j = 1, 3 . . . .  ,6) such that 

Iwj(x)- (% x ) -  s'j(k)L < const, (7.15) 

for all x ~ ]R 3 such that (e2, x )=  c 2 + k, j =  1, 3,..., 6, where the constant does not 
depend on k again. The conditions (7.13), (7.15) together applied to the 
components w~(j = 3, 4, 5, 6) of the lifting function w give the existence of a constant 
C such that the inequalities 

Iwj(x)- (% x ) -  s~((el, x))[ < C, 
(7.16) 

Iw~(x)-(e j, x ) -  s'j((e2, x))l < c ,  

are satisfied simultaneously for all j. Consequently 

Js((e 1, x))-s'((e2, x))j < 2C (7.17) 

for all x ~ iR 3 and j =  3, 4, 5, 6. This implies that both st(x ) and s'j(x) is uniformly 
bounded on ]Ra for all j. We have proven that the functions wj (x ) - (% x) are 
bounded on R a for j = 3, 4, 5, 6. The proof for j = 1,2 is quite analogous. 

The existence of the weak LR for icosahedral quasicrystals is established. 
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8. Concluding Remarks 

The results of this work give strong evidence that strong LR for a planar 
quasicrystal exist only if it is generated by some quadratic irrationalities. To prove 
this rigorously one has to exclude the "exceptional" case 2 of Propositions 5, 6. 
Moreover, one can believe that quasicrystals in an arbitrary dimension d can have 
strong LR only when they are generated by irrational numbers which are roots of 
polynomials of power not more than d. 

It is interesting to note that all the quasicrystals found in experiments are based 
on quadratic irrationalities. There are four types of symmetry among the 
quasicrystalline materials known so far: 

a) icosahedral symmetry based on the field ~]//5) [1]; 

b) pentagonal symmetry based on the same field Q([/~) [17]; 

c) dodecagonal symmetry based on the field ~(~/3) E18]; 

d) octagonal symmetry based on the field ~([/~) [19]. 
One can speculate that the reason for the absence of quasicrystals with other 

irrationalities is that only quadratic irrationalities provide local rules. 
Several problems on quasicrystalline tilings not yet studied should be 

mentioned. The first of them is the relationship between strong LR and weak LR. It 
is more or less clear from Theorems 1, 2, 3 which planar quasicrystals cannot have 
strong LR and which have weak LR. But which of them have strong LR? The 
example by de Bruijn and the counterexample by Beenker show that the problem 
is rather difficult. Nevertheless some work should be done to find a generalization 
of de Bruijn's method for other quadratic irrationalities. 

Another interesting problem concerns the properties of quasicrystals which 
have weak LR, but do not have strong LR. Weak LR leave some arbitrariness in 
the tiling. How large is this freedom? One can expect that there are of order 
exp (aS), ~ > 0, different tilings of a large region of the area S and the ground state of 
such quasicrystals has nonzero entropy per a unit area. Has this any physical 
consequences? 

It is very interesting also to reach some more understanding of properties of 
three-dimensional quasicrystals. The analogues of Theorem 3 and Propositions 5, 
6 should be found. Which three-dimensional quasicrystals have strong LR? 
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Note added in proof. In a recent paper Burkov shows that weak local rules are absent for a two- 
dimensional quasicrystal having 8-fold symmetry (see the next paper in this issue). In this Note I 
would like to comment on the relation of Burkov's result and Theorem 3. Grid functions for the 
quasicrystal studied by Burkov are given by 

fl(x) = x l ,  f2(x) = ~(X1 -It- X2), f3(X) = X2, f4(x) = 2(X2 -- XO, (N.I) 
)~=1/1/2, x=(xl,x2)eR 2. 

One can check that SI-conditions are satisfied for all triplets of functions f~ (i = 1,2, 3, 4). The 
corresponding triplets of integer numbers in (5.30) are 

(ml, m2,m3)=(1,0,--1), (nl, nz, n3)=(O,l,1), (N.2) 
~x,pz, p3)=(l, 1,0), (q~,qz, q3)=(1, 0, --1). 

However Eqs. (5.30) with m j, nj, pj, qj from (N.2) are not independent, i.e. they correspond to Case 2 
of Proposition 5. In accordance with this proposition the solutions of Eqs. (5.30) form a one- 

parametric set (N.1), where 2 is not 1/~/-2 but an arbitrary real number. This set of functions is used 
in Burkov's work. Absence of local rules does not contradict Theorem 3 since Eqs. (5.30) are not 
independent. Moreover, it confirms our expectation (see the note after Proposition 6). 

What about other 8-fold symmetric quasicrystals? Let us show that Burkov's result is not 
generic, i.e. there exist 8-fold symmetric quasicrystals having local rules. Consider 8 grid functions 
f~ e ~2) ,  (i = 1 ..... 8) such that fl ,  f2, f3, f~ are given by (N.I) while other functions are defined as 

f5=#f~+f2 ,  f6=#f2+f3 ,  fT=#f3+f4 ,  f s = # f , - f ~ ,  (N.3) 
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where # = # ' +  #"V2E Q(~/2), (#', #"~ 2g). Note that the grid pattern generated by the functions 
f1 .. . . .  fs  has octagonal symmetry. Taking f l  = xl, f2 = x2 as a basis of (Rz) ' one can express all f~ 
(i = 1 .... .  8) as 

f~(x) = afl(x) + bfz(x), a, b e Q(]/2), (N.4) 

Choose four functions f t ,  f3, fz, f5 and write SI-conditions for them. SI-eonditions are satisfied by 
the triplets of integers given as 

1) triplet (fl,  fa, f2)--(ml, rn2, m3)=( 1, --1,0); 

2) triplet (f~,f3, fs)--(nl ,  nz, n 3 ) = ( l , -  i - -#" ,  #'); 

3) triplet (L, fz, fs)--(Px, P2, P3)=( 0, 1, 1); (N.5) 

4) triplet (f3, f2, fs)--(ql ,  q2, q3)=(# ', 2#", 2#"(t +#,,)_#,2). 

One can check that Eqs. (5.30) with mj, n~, pj., qj (/= 1, 2, 3) taken from (N.5) are independent 
whenever # '~0 ,  #"=~0. This suggests to apply Theorem 3. Simple calculations show that 
conditions (6.19), (6.34) are satisfied for the triplets (N.5) when # ' +  0, # "4  0. Thus Theorem 3 is 
applicable and we find that weak local rules exist for the tiling based on the grids f l ,  f3, f2, fs. 

As for functions f4, f6, fT, fs, they can be expressed as rational linear combinations 

fk = a,f~ + bkf3 + Ckf2 + dkfs, (N.6) 

where ak, b,, % dk ~ Q, k = 4, 6, 7, 8. So the tiling corresponding to j~, ..., fs can be considered as a 
"decoration" of that corresponding to f~, f3, f2, fs- By this reason weak LR exist for eight grids 
L . . . . .  fs.  

We see that the example by Burkov is not a typical one. Weak local rules are absent for 8-fold 
symmetric quasicrystals only when the grids are very specially chosen. For a generic set of grids 
having 8-fold symmetry weak LR do exist. 

In conclusion I would like to thank S. E. Burkov for giving me an opportunity to become 
aware of his work before publication. 


