Substitutions on Stepped Surfaces

Thomas Fernique

LIRMM (Montpellier, France)

WOWA, 7 June 2006

Introduction (1/3): Sturmian words

word: concatenation of letters (finite alphabet);

complexity: number p(n) of factors of size n;

Sturmian words: aperiodic words of minimal complexity.

$$u = 1211212112112112121121 \dots \rightsquigarrow p(n) = n + 1.$$

Introduction (2/3): Stepped lines

Straight half-line (red) → stepped line (blue) → 2-letter word:

Morse&Hedlund: Sturmian words \equiv irrational slopes

Introduction (3/3): Stepped curves

funct. curve (red) \leadsto stepped curve (blue) \equiv 2-letter word:

Sturmian words: aperiodic stepped curves of minimal complexity

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- Stepped surfaces
 - Digitizations of real surfaces
 - Flips on stepped planes
- Substitutions
 - Sturmian substitutions
 - Generalized substitutions

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- Stepped surfaces
 - Digitizations of real surfaces
 - Flips on stepped planes
- Substitutions
 - Sturmian substitutions
 - Generalized substitutions

- ullet real plane normal to $ec{lpha}$
- stepped plane
- 3-letter 2-dim word

- ullet real plane normal to $ec{lpha}$
- stepped plane
- 3-letter 2-dim. word

- ullet real plane normal to $ec{lpha}$
- stepped plane
- 3-letter 2-dim, word

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- 2 Stepped surfaces
 - Digitizations of real surfaces
 - Flips on stepped planes
- Substitutions
 - Sturmian substitutions
 - Generalized substitutions

Recall: aperiodic digitizations of lines \equiv Sturmian words.

Definition (Vuillon,98)

Sturmian 2-dim. words \equiv aperiodic digitizations of planes

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- 2 Stepped surfaces
 - Digitizations of real surfaces
 - Flips on stepped planes
- Substitutions
 - Sturmian substitutions
 - Generalized substitutions

funct. surface → stepped surface → 3-letter 2-dim. word (not all):

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- 2 Stepped surfaces
 - Digitizations of real surfaces
 - Flips on stepped planes
- Substitutions
 - Sturmian substitutions
 - Generalized substitutions

Flip: adding/removing a unit cube

Theorem

Stepped surface \equiv stepped plane + flips.

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- 2 Stepped surfaces
 - Digitizations of real surfaces
 - Flips on stepped planes
- 3 Substitutions
 - Sturmian substitutions
 - Generalized substitutions

substitution: non-erasing morphism: $\sigma(u \cdot v) = \sigma(u) \cdot \sigma(v)$;

Sturmian substitution: maps Sturmian words to Sturmian words.

$$\sigma: \begin{array}{ccc} 1 \to 12 \\ 2 \to 1 \end{array} \quad \rightsquigarrow \quad \sigma(12112\ldots) = 12112121\ldots$$

→ useful for generating and classifying

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- 2 Stepped surfaces
 - Digitizations of real surfaces
 - Flips on stepped planes
- 3 Substitutions
 - Sturmian substitutions
 - Generalized substitutions

Generalized substitution: map on unit faces of \mathbb{R}^3 (Arnoux-Ito).

Theorem

Generalized substitions map stepped surfaces to stepped surfaces and stepped planes to stepped planes.

Conclusion

Penrose stepped surfaces?

Conclusion

2-letter words	\longrightarrow	stepped surfaces
Sturmian words	\longrightarrow	aperiodic stepped planes
Sturmian substitutions	\longrightarrow	generalized substitutions
complexity $n+1$	\longrightarrow	?
substitutions	\longrightarrow	?

Penrose stepped surfaces?

