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Subshifts

Consider bi-infinite words over a finite alphabet A.

Subshift: the words avoiding a set F of forbidden finite words.

Subshift of finite type (SFT): F can be chosen to be finite.

Sofic subshift: letter-to-letter image of an SFT.

Examples: the words over A = {a, b} with

alternating a’s and b’s?

SFT

at most one b?

Sofic not SFT

exactly one b?

Not a subshift

runs of b’s all of the same length?

Subshift not sofic



Introduction Settings Uncolored local rules Colored local rules

Subshifts

Consider bi-infinite words over a finite alphabet A.

Subshift: the words avoiding a set F of forbidden finite words.

Subshift of finite type (SFT): F can be chosen to be finite.

Sofic subshift: letter-to-letter image of an SFT.

Examples: the words over A = {a, b} with

alternating a’s and b’s?

SFT

at most one b?

Sofic not SFT

exactly one b?

Not a subshift

runs of b’s all of the same length?

Subshift not sofic



Introduction Settings Uncolored local rules Colored local rules

Subshifts

Consider bi-infinite words over a finite alphabet A.

Subshift: the words avoiding a set F of forbidden finite words.

Subshift of finite type (SFT): F can be chosen to be finite.

Sofic subshift: letter-to-letter image of an SFT.

Examples: the words over A = {a, b} with

alternating a’s and b’s? SFT

at most one b? Sofic not SFT

exactly one b? Not a subshift

runs of b’s all of the same length? Subshift not sofic



Introduction Settings Uncolored local rules Colored local rules

Aperiodicity and quasiperiodicty

Aperiodic word: no invariance by translation.

Example: a random bi-infinite word.

Quasiperiodic word: each pattern reoccurs uniformly.

Example: the digitization of an irrational line of the plane.

Claim: there is no sofic subshift containing only aperiodic words.
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Higher dimensions

Bi-infinite word over two letters ∼ tiling of the line by two intervals.

Higher dimensional generalization:

letter ↔ tile
bi-infinite word ↔ tiling of Rd

forbidden word ↔ forbidden pattern
subshift ↔ tiling space

Finite type, sofic, aperiodicity, quasiperiodicity etc. easily extend.

Theorem (Berger 1964)

There is a 2-dim. sofic tiling space with only tilings.
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Higher dimensions

Bi-infinite word over two letters ∼ tiling of the line by two intervals.

Higher dimensional generalization:

letter ↔ tile
bi-infinite word ↔ tiling of Rd

forbidden word ↔ forbidden pattern
subshift ↔ tiling space

Finite type, sofic, aperiodicity, quasiperiodicity etc. easily extend.

Theorem (Berger 1964)

There is a 2-dim. sofic tiling space with only quasiperiodic tilings.
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Motivation

Model quasicrystals by sofic quasiperiodic tilings.
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Planar n→ d tilings

Vectors ~v1, . . . , ~vn ∈ Rd  tiles Ti1,...,id := {
∑
λik~vik | λik ∈ [0, 1]}.

Definition (n→ d tiling)

A n→ d tiling is a “face-to-face” tiling of Rd by such tiles.

It naturally lifts onto a d-dim. “stepped surface” of Rn via ~vi 7→ ~ei .

Definition (Planar tiling)

A n→ d tiling is said to be planar if it lifts into E + [0, t]n, where

E is a d-plane of Rn called the slope;

t ≥ 1 is chosen to be minimal and called the thickness.
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Examples

A rhombille tiling in Saint-Étienne de Marmoutier (Alsace).
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Examples

Michael Baake’s place & chocolates: Ammann-Beenker tilings.
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Examples

A homemade Penrose tiling (oak & pinewood).
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Grassmann coordinates

Definition (Grassmann coordinates)

The Grassmann (projective) coordinates of a d-plane of Rn are the
d × d minors Gi1...id of a matrix whose columns generate this plane.

They are the non-zero
(n
d

)
-tuples satisfying the Plücker relations

Gi1,...,idGj1,...,jd =
∑

1≤p≤d
Gi1,...,idGj1,...,jd︸ ︷︷ ︸
swap ip and jq

.

The frequency of Ti1...id in a planar tiling is proportional to |Gi1...id |.
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Local rules

Definition (Local rules)

A d-plane E of Rn admits local rules if there is t ≥ 1 and a finite
set of patterns s. t. the set of n→ d tilings with no such pattern

contains at least one planar tiling of slope E and thickness 1;

contains only planar tilings of slope E and thickness at most t.

Local rules are strong if t = 1, weak otherwise (Levitov 1988).

Local rules are colored if tiles come in (finitely many) different colors.
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Algebraic obstruction

Theorem (Le 1995)

If a slope admits weak uncolored local rules, then it is algebraic.

Theorem (Bédaride-F. 2017)

Effective characterization in the 4→ 2 case.

Effective characterization in the n→ d case:

achieved under planarity and genericity assumptions;

work in progress otherwise (N-folds, relaxed Penrose. . . ).
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Window and patterns

Definition (Window)

Window of a planar tiling of slope E : orth. proj. of [0, 1]n on E⊥.

Provide a complementary insight on planar tilings:

Tiling Window

vertex ↔ projected integer point
all the vertices ↔ dense points (genericity)
pointed pattern ↔ convex subregion
pointed tiling ↔ point
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Coincidences and slope

Definition (Coincidence)

A coincidence of a planar n→ d tiling, this is n − d + 1 unit faces
of Zn of dim. n− d − 1 with a common intersection in the window.
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Coincidences and slope

Definition (Coincidence)

A coincidence of a planar n→ d tiling, this is n − d + 1 unit faces
of Zn of dim. n− d − 1 with a common intersection in the window.

A slope with uncolored local rules is characterized by coincidences.
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Coincidences and slope

Definition (Coincidence)

A coincidence of a planar n→ d tiling, this is n − d + 1 unit faces
of Zn of dim. n− d − 1 with a common intersection in the window.

A coincidence ↔ an algebraic equation on Grassmann coordinates.
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Subperiods and planarity

Definition (Subperiod)

A subperiod of a d-plane is a vector with d + 1 integer entries.

Corresponds to a coincidence where two parallel faces overlap.

Suitably projected in Rd+1: period of planar d + 1→ d tiling.

Integer points are dense in a line parallel to a window’s facet.

Line of points exits or enters the window ↔ “worm” of flips.

Forcing planarity by forbidden patterns requires subperiods. . .
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Computability obstruction (↔)

Theorem (F.-Sablik, 2012–2017)

A slope admits weak colored local rules iff it is computable.

Includes algebraic slopes (i.e., all the previously known cases).

Holds for effectively closed sets of slopes (e.g., all the slopes).
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Trial and error (→)

Consider colored tiles and a set of forbidden colored patterns.

Valid pattern of radius r → candidate slope within precision ε.

Wrong candidate ↔ pattern which cannot be indefinitely extended.

Algorithm to compute the slope within precision ε:

1 adjust r to have precision ε/2;

2 form all the valid patterns of radius r ;

3 try to extend each pattern indefinitely (in parallel);

4 stop when the remaining candidates all agree.
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Subaction (←)

Theorem (Aubrun-Sablik 2013)

Any 1-dim. effective subshift of can be obtained as the lines of a
2-dim. sofic subshift (i.e., a tiling by Wang tiles).

Effective: a Turing machine enumerates the forbidden words.

Idea of the proof:

repeat the same infinite word on every line;

run Turing machines which enumerate forbidden words;

do it everywhere and synchronize this!
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Quasisturmian words (←)

A planar tiling can be seen as several intertwined 2-dim. subshifts.
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Quasisturmian words (←)

Lines are Sturmian words, but is the 2-dim. subshift sofic?
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Quasisturmian words (←)

The subaction theorem ensures that the one with equal lines does.
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Quasisturmian words (←)

Bounded fluctuations ⇒ sofic subshift containing the original one.
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