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Subshifts

Consider bi-infinite words over a finite alphabet A.

@ Subshift: the words avoiding a set F of forbidden finite words.
@ Subshift of finite type (SFT): F can be chosen to be finite.
@ Sofic subshift: letter-to-letter image of an SFT.
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Subshifts

Consider bi-infinite words over a finite alphabet A.

@ Subshift: the words avoiding a set F of forbidden finite words.
@ Subshift of finite type (SFT): F can be chosen to be finite.
@ Sofic subshift: letter-to-letter image of an SFT.

Examples: the words over A = {a, b} with

@ alternating a's and b's? SFT
@ at most one b? Sofic not SFT
@ exactly one b? Not a subshift

@ runs of b’s all of the same length? Subshift not sofic
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.

Aperiodicity and quasiperiodicty

Aperiodic word: no invariance by translation.

Example: a random bi-infinite word.

Quasiperiodic word: each pattern reoccurs uniformly.

Example: the digitization of an irrational line of the plane.

Claim: there is no sofic subshift containing only aperiodic words.
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Higher dimensions

Bi-infinite word over two letters ~ tiling of the line by two intervals.

Higher dimensional generalization:

letter tile
bi-infinite word <« tiling of RY
forbidden word <+ forbidden pattern
subshift > tiling space

Finite type, sofic, aperiodicity, quasiperiodicity etc. easily extend.

Theorem (Berger 1964)

There is a 2-dim. sofic tiling space with only quasiperiodic tilings.
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Motivation

Model quasicrystals by sofic quasiperiodic tilings.
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Planar n — d tilings

Vectors Vi, ..., vV, € RY ~stiles T i = {3 NV | Ai, € [0,1]}.

Definition (n — d tiling)

A n — d tiling is a “face-to-face” tiling of RY by such tiles.

It naturally /ifts onto a d-dim. “stepped surface” of R” via Vi — ¢&;.
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Planar n — d tilings

Vectors Vi, ..., vV, € RY ~stiles T i = {3 NV | Ai, € [0,1]}.

Definition (n — d tiling)

A n — d tiling is a “face-to-face” tiling of RY by such tiles.

It naturally /ifts onto a d-dim. “stepped surface” of R” via Vi — ¢&;.

Definition (Planar tiling)
A n — d tiling is said to be planar if it lifts into E + [0, t]", where
@ E is a d-plane of R"” called the slope;

@ t > 1 is chosen to be minimal and called the thickness.
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Examples

A rhombille tiling in Saint-Etienne de Marmoutier (Alsace).



Examples

Michael Baake's place & chocolates: Ammann-Beenker tilings.



Settings
°

Examples

A homemade Penrose tiling (oak & pinewood).
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Definition (Grassmann coordinates)

The Grassmann (projective) coordinates of a d-plane of R" are the
d x d minors Gj, i, of a matrix whose columns generate this plane.
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Grassmann coordinates

Definition (Grassmann coordinates)

The Grassmann (projective) coordinates of a d-plane of R" are the
d x d minors Gj, i, of a matrix whose columns generate this plane.

They are the non-zero (g)—tuples satisfying the Pliicker relations

Gilv- J1, = E G’la Jid 117 -Jd
—_—

1=p=d swap ip and jq

The frequency of Tj,_;, in a planar tiling is proportional to |Gj,._j,|.

d
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Definition (Local rules)

A d-plane E of R" admits local rules if there is t > 1 and a finite
set of patterns s. t. the set of n — d tilings with no such pattern

@ contains at least one planar tiling of slope E and thickness 1;

@ contains only planar tilings of slope E and thickness at most t.
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Local rules

Definition (Local rules)

A d-plane E of R" admits local rules if there is t > 1 and a finite
set of patterns s. t. the set of n — d tilings with no such pattern

@ contains at least one planar tiling of slope E and thickness 1;

@ contains only planar tilings of slope E and thickness at most t.

Local rules are strong if t = 1, weak otherwise (Levitov 1988).

Local rules are colored if tiles come in (finitely many) different colors.
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Algebraic obstruction

Theorem (Le 1995)

If a slope admits weak uncolored local rules, then it is algebraic.
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°

Algebraic obstruction

Theorem (Le 1995)

If a slope admits weak uncolored local rules, then it is algebraic.

Theorem (Bédaride-F. 2017)

Effective characterization in the 4 — 2 case.

Effective characterization in the n — d case:
@ achieved under planarity and genericity assumptions;

@ work in progress otherwise (N-folds, relaxed Penrose. . .).
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Definition (Window)
Window of a planar tiling of slope E: orth. proj. of [0,1]” on E*.
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Window and patterns

Definition (Window)
Window of a planar tiling of slope E: orth. proj. of [0,1]” on E*.

Provide a complementary insight on planar tilings:

Tiling Window
vertex &~ projected integer point
all the vertices <+ dense points (genericity)
pointed pattern <« convex subregion
pointed tiling point
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Definition (Coincidence)

A coincidence of a planar n — d tiling, this is n — d + 1 unit faces

of Z" of dim. n— d — 1 with a common intersection in the window.
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Uncolored local rules
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Definition (Coincidence)

A coincidence of a planar n — d tiling, this is n — d + 1 unit faces

of Z" of dim. n— d — 1 with a common intersection in the window.
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Definition (Coincidence)

A coincidence of a planar n — d tiling, this is n — d + 1 unit faces

of Z" of dim. n— d — 1 with a common intersection in the window.
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Definition (Coincidence)

A coincidence of a planar n — d tiling, this is n — d + 1 unit faces

of Z" of dim. n— d — 1 with a common intersection in the window.
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Uncolored local rules

A coincidence of a planar n — d tiling, this is n — d + 1 unit faces
of Z" of dim. n— d — 1 with a common intersection in the window.

A slope with uncolored local rules is character

Definition (Coincidence)

o
o
e
w0
o
c
I
(0]
b
O
c
3
S
o
=
o
)




SO R LT RCOEOR O E P u SO C R

L SIOL ORI SO R
AIE AT IS LA I NI AT
N VNS SV N N N VPN
S X OHS LOHS VS VRS KRS X
A LI LA T LT LT
e e AR
R LR AR LN SR NS
PN VA ML M VN VPN

O R S EOR BN RO SO

NN NN SNPND SNPN SN
e P PSP Y
PATI VAL PN VPV VPN SV &
ISR KM

SN
2R 27

Uncolored local rules

of Z" of dim. n— d — 1 with a common intersection in the window.

A coincidence of a planar n — d tiling, this is n — d + 1 unit faces

Definition (Coincidence)
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A coincidence <> an algebraic equation on Grassmann coordinates.
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Subperiods and planarity

Definition (Subperiod)

A subperiod of a d-plane is a vector with d + 1 integer entries.

@ Corresponds to a coincidence where two parallel faces overlap.
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Subperiods and planarity

Definition (Subperiod)

A subperiod of a d-plane is a vector with d + 1 integer entries.

@ Corresponds to a coincidence where two parallel faces overlap.
o Suitably projected in R¥*!: period of planar d + 1 — d tiling.

@ Integer points are dense in a line parallel to a window’s facet.
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Subperiods and planarity

Definition (Subperiod)

A subperiod of a d-plane is a vector with d + 1 integer entries.

Corresponds to a coincidence where two parallel faces overlap.
Suitably projected in R9t1: period of planar d + 1 — d tiling.

Integer points are dense in a line parallel to a window's facet.

Line of points exits or enters the window < “worm” of flips.
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Subperiods and planarity

Definition (Subperiod)

A subperiod of a d-plane is a vector with d + 1 integer entries.

Corresponds to a coincidence where two parallel faces overlap.
Suitably projected in R9t1: period of planar d + 1 — d tiling.
Integer points are dense in a line parallel to a window's facet.

Line of points exits or enters the window < “worm” of flips.

Forcing planarity by forbidden patterns requires subperiods. . .
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Colored local rules
.

Computability obstruction (<)

Theorem (F.-Sablik, 2012-2017)

A slope admits weak colored local rules iff it is computable.
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Computability obstruction (<)

Theorem (F.-Sablik, 2012-2017)

A slope admits weak colored local rules iff it is computable.

Includes algebraic slopes (i.e., all the previously known cases).

Holds for effectively closed sets of slopes (e.g., all the slopes).
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Trial and error (—)

Consider colored tiles and a set of forbidden colored patterns.
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Trial and error (—)

Consider colored tiles and a set of forbidden colored patterns.
Valid pattern of radius r — candidate slope within precision &.
Wrong candidate <> pattern which cannot be indefinitely extended.

Algorithm to compute the slope within precision &:
@ adjust r to have precision £/2;
@ form all the valid patterns of radius r;
© try to extend each pattern indefinitely (in parallel);

@ stop when the remaining candidates all agree.



Colored local rules
°

Subaction (+)

Theorem (Aubrun-Sablik 2013)

Any 1-dim. effective subshift of can be obtained as the lines of a
2-dim. sofic subshift (i.e., a tiling by Wang tiles).

Effective: a Turing machine enumerates the forbidden words.
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Subaction (+)

Theorem (Aubrun-Sablik 2013)

Any 1-dim. effective subshift of can be obtained as the lines of a
2-dim. sofic subshift (i.e., a tiling by Wang tiles).

Effective: a Turing machine enumerates the forbidden words.

Idea of the proof:
@ repeat the same infinite word on every line;
@ run Turing machines which enumerate forbidden words;

@ do it everywhere and synchronize this!



Quasisturmian words ()

OO TR GLROTLEY 004
CED XD XL XGOS

)-SR0 KERQ- X KLEC K K- KO- K- KO0
Y-8 BB R-E LR BB LR EELRDEE
Y QLKL EE L LR BRQ K-S QK7

A planar tiling can be seen as several intertwined 2-dim. subshifts.
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A planar tiling can be seen as several intertwined 2-dim. subshifts.



—~
$3
[}
O
=
o
=
c
B
S
—
>
+
o)
(%}
[}
>
o

A planar tiling can be seen as several intertwined 2-dim. subshifts.
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A planar tiling can be seen as several intertwined 2-dim. subshifts.
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Quasisturmian words (<)

A planar tiling can be seen as several intertwined 2-dim. subshifts.
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Quasisturmian words (<)

Lines are Sturmian words, but is the 2-dim. subshift sofic?
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Quasisturmian words (<)

The subaction theorem ensures that the one with equal lines does.
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Quasisturmian words (<)

Bounded fluctuations = sofic subshift containing the original one.
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