Study of the NP-completeness of the Compact Table problem
NP-completeness comes to wargaming

J.-C. Dubacq J.-Y. Moyen

Laboratory LIPN – UMR 7030
CNRS – Université Paris 13

Journées Automates Cellulaires 2008
Outline

1. **Compact table problem**
 - Random-choices tables
 - Formal description
 - Other applications

2. **NP-Completeness**
 - General case
 - Fixed amplitude case
 - Bounded number of results case

3. **Conclusion and perspectives**
Outline

1. Compact table problem
 - Random-choices tables
 - Formal description
 - Other applications

2. NP-Completeness
 - General case
 - Fixed amplitude case
 - Bounded number of results case

3. Conclusion and perspectives
Random tables

- Set of initial conditions
- Finite number of results
- → 2-D table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>α</td>
<td>α</td>
<td>α</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>γ</td>
<td>γ</td>
<td>γ</td>
</tr>
<tr>
<td>B</td>
<td>α</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>γ</td>
<td>γ</td>
<td>δ</td>
<td>δ</td>
<td>δ</td>
<td>δ</td>
</tr>
<tr>
<td>C</td>
<td>α</td>
<td>γ</td>
<td>γ</td>
<td>γ</td>
<td>γ</td>
<td>γ</td>
<td>δ</td>
<td>δ</td>
<td>δ</td>
<td>δ</td>
</tr>
<tr>
<td>D</td>
<td>α</td>
<td>α</td>
<td>β</td>
<td>β</td>
<td>γ</td>
<td>γ</td>
<td>γ</td>
<td>δ</td>
<td>δ</td>
<td>δ</td>
</tr>
</tbody>
</table>

- Dimension reduction: A: +0, B: +10, C: +20, D: +30

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| α | α | α | β | β | β | β | γ | γ | γ | α | β | β | β | γ | γ | δ | δ | δ | δ | δ |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| α | γ | γ | γ | γ | γ | γ | δ | δ | δ | α | α | β | β | γ | γ | γ | δ | δ | δ |

- Tiny font, because very long!
Some lines may overlap partially...

Known problem! This is the superword problem. NP-complete. But here, zero overlap!

However, we can also shuffle around the lines...

Example

\[\alpha \beta \beta \beta \alpha \alpha \gamma \gamma \gamma \]

- A: \(+6 \rightarrow \alpha \alpha \alpha \beta \beta \beta \beta \gamma \gamma \gamma \)
- B: \(+0 \rightarrow \alpha \beta \beta \beta \gamma \gamma \delta \delta \delta \delta \)
- C: \(+12 \rightarrow \alpha \gamma \gamma \gamma \gamma \gamma \gamma \delta \delta \delta \delta \)
- D: \(+9 \rightarrow \alpha \alpha \beta \beta \gamma \gamma \gamma \gamma \delta \delta \)

J.-C. Dubacq, J.-Y. Moyen
Some lines may overlap partially...
Known problem! This is the **superword problem**. NP-complete. But here, zero overlap!
However, we can also shuffle around the lines...

Example

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>δ</td>
<td>δ</td>
<td>δ</td>
<td>γ</td>
<td>γ</td>
<td>α</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>α</td>
<td>γ</td>
</tr>
<tr>
<td>γ</td>
<td>γ</td>
<td>γ</td>
<td>γ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A: $+6 \rightarrow \alpha\alpha\alpha\beta\beta\beta\beta\gamma\gamma\gamma$
- B: $+0 \rightarrow \alpha\beta\beta\beta\beta\gamma\gamma\delta\delta\delta$
- C: $+12 \rightarrow \alpha\gamma\gamma\gamma\gamma\gamma\gamma\delta\delta$
- D: $+9 \rightarrow \alpha\alpha\beta\beta\gamma\gamma\gamma\gamma\delta\delta$
Some lines may overlap partially...

Known problem! This is the superword problem. NP-complete. But here, zero overlap!

However, we can also shuffle around the lines...

Example

\[\delta\delta\delta\gamma\gamma\alpha\beta\beta\beta\alpha\alpha\gamma\gamma\gamma\delta\delta\gamma\gamma \]

- A: +6 \rightarrow \alpha\alpha\alpha\beta\beta\beta\beta\gamma\gamma\gamma
- B: +0 \rightarrow \alpha\beta\beta\gamma\gamma\gamma\delta\delta\delta
- C: +12 \rightarrow \alpha\gamma\gamma\gamma\gamma\gamma\delta\delta\delta
- D: +9 \rightarrow \alpha\alpha\beta\beta\gamma\gamma\gamma\delta\delta
Compact tables
Shortening the information

- Some lines may overlap partially...
- Known problem! This is the superword problem. NP-complete. But here, zero overlap!
- However, we can also shuffle around the lines...

Example

\[
\delta\delta\delta\delta\gamma\gamma\alpha\beta\beta\beta\alpha\alpha\gamma\gamma\gamma\delta\delta\gamma\gamma
\]

- A: +6 → αααββββγγγ
- B: +0 → αββγγδδδδ
- C: +12 → αγγγγγγδδδ
- D: +9 → ααββγγγγδδ
Initial motivation
Real wargames, no computers involved

- Dimension reduction is crucial (easily-readable tables)
- Size of reduced table important (easily-learnable tables)
Initial motivation
Real wargames, no computers involved

- Dimension reduction is crucial (easily-readable tables)
- Size of reduced table important (easily-learnable tables)
Initial motivation
Real wargames, no computers involved

- Dimension reduction is crucial (easily-readable tables)
- Size of reduced table important (easily-learnable tables)
If the set of initial conditions matches the set of outcomes, we get a probabilistic automaton. Efficient representation of probabilistic automata.
Outline

1. Compact table problem
 - Random-choices tables
 - Formal description
 - Other applications

2. NP-Completeness
 - General case
 - Fixed amplitude case
 - Bounded number of results case

3. Conclusion and perspectives
Compact Table problem

Instance
Alphabet \(\Sigma \), integer \(\ell \), set of words \(S \subseteq \Sigma^\ell \), integer \(k \)

Answer
YES if there exists a word \(\tau \in \Sigma^k \) such that for any word \(u \in S \), there exists a permutation \(\sigma \) and words \(v \) and \(w \) such that \(\tau = v \cdot \sigma(u) \cdot w \), NO in all other cases.

Compact table of order \(\ell \)

Instance
Alphabet \(\Sigma \), set of words \(S \subseteq \Sigma^\ell \), integer \(k \)

Answer
YES if there exists a word \(\tau \in \Sigma^k \) such that for any word \(u \in S \), there exists a permutation \(\sigma \) and words \(v \) and \(w \) such that \(\tau = v \cdot \sigma(u) \cdot w \), NO in all other cases.
Formal Descriptions of Decision Problems

Compact Table problem

<table>
<thead>
<tr>
<th>Instance</th>
<th>Alphabet Σ, integer ℓ, set of words $S \subset \Sigma^\ell$, integer k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer</td>
<td>YES if there exists a word $\tau \in \Sigma^k$ such that for any word $u \in S$, there exists a permutation σ and words v and w such that $\tau = v \cdot \sigma(u) \cdot w$, NO in all other cases.</td>
</tr>
</tbody>
</table>

Compact table of order ℓ

<table>
<thead>
<tr>
<th>Instance</th>
<th>Alphabet Σ, set of words $S \subset \Sigma^\ell$, integer k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer</td>
<td>YES if there exists a word $\tau \in \Sigma^k$ such that for any word $u \in S$, there exists a permutation σ and words v and w such that $\tau = v \cdot \sigma(u) \cdot w$, NO in all other cases.</td>
</tr>
</tbody>
</table>
Outline

1 Compact table problem
 - Random-choices tables
 - Formal description
 - Other applications

2 NP-Completeness
 - General case
 - Fixed amplitude case
 - Bounded number of results case

3 Conclusion and perspectives
DNA single strand analysis

- Weights of A, C, G and T molecules are different
- Replicate an unknown DNA strand, cut it in small pieces
- Centrifugate and weight each small piece
- Infer the ACGT percentages
- Reconstruct the shortest possible single-strand DNA sequence possible with CT.
- Will not work, since it is NP-complete.
Outline

1. Compact table problem
 - Random-choices tables
 - Formal description
 - Other applications

2. NP-Completeness
 - General case
 - Fixed amplitude case
 - Bounded number of results case

3. Conclusion and perspectives

References:
J.-C. Dubacq, J.-Y. Moyen

Compact Table problem
Theorem

The Hamiltonian Path problem can be reduced to the Compact Table problem. Thus, the Compact Table problem is NP-complete.

Proof.
We define Σ to be the set $E \cup V$. Each vertex v is associated to a word τ_v of Σ^ℓ which is the set of edges adjacent to v (in no particular order) and padded (since G is not forced to be regular) by as many occurrences of v as deemed necessary. k is determined to be $n(\ell - 1) + 1$. Being in NP is straightforward.
Theorem

The Hamiltonian Path problem can be reduced to the Compact Table problem. Thus, the Compact Table problem is NP-complete.

Proof.

We define Σ to be the set $E \cup V$. Each vertex v is associated to a word τ_v of Σ^ℓ which is the set of edges adjacent to v (in no particular order) and padded (since G is not forced to be regular) by as many occurrences of v as deemed necessary. k is determined to be $n(\ell - 1) + 1$. Being in NP is straightforward.
Example of construction

Hamiltonian path $ABCDEFG$ corresponding to the word (of length $n(\ell - 1) + 1 = 22$)

$$\tau = adbBBcdheDaEgEEhijGGf$$

$\tau_A = abdf$
$\tau_B = BBbc$
$\tau_C = cdeh$
$\tau_D = Daeg$
$\tau_E = EEgi$
$\tau_F = Fhij$
$\tau_G = GGjf$
Example of construction

Hamiltonian path $ABCDEFG$ corresponding to the word (of length $n(\ell - 1) + 1 = 22$)

$$\tau = \text{adf}bBBcdeDa\text{g}EE\text{iFhjGGf}$$
NP-Completeness proof

HP exists → CT exists

Along the Hamiltonian path, edges can be collapsed, yields a word of length \(n(\ell - 1) + 1 \). *An edge is never used twice!*

CT exists → HP exists

Overlap only on edges, so \(\tau \) describes a path in \(G \). Because of length constraints, the path goes only once through each vertex.

#P-completeness remark

Transformation is not parcimonious (many possible permutations). But given an instance, number of solutions is either 0 or \((\ell - 1)^2 \prod_{1 \leq i \leq n} \frac{(\ell - 2)!}{(\ell - d(i))!}\).

Therefore, the problem is also #P-complete, even though the reduction is not (and probably cannot) be parcimonious.
NP-Completeness proof

HP exists → CT exists

Along the Hamiltonian path, edges can be collapsed, yields a word of length $n(\ell - 1) + 1$. *An edge is never used twice!*

CT exists → HP exists

Overlap only on edges, so τ describes a path in G. Because of length constraints, the path goes only once through each vertex.

#P-completeness remark

Transformation is not parcimonious (many possible permutations). But given an instance, number of solutions is either 0 or $(\ell - 1)^2 \prod_{1 \leq i \leq n} \frac{(\ell - 2)!}{(\ell - d(i))!}$.

Therefore, the problem is also #P-complete, even though the reduction is not (and probably cannot) be parcimonious.
NP-Completeness proof

HP exists \rightarrow CT exists

Along the Hamiltonian path, edges can be collapsed, yields a word of length $n(\ell - 1) + 1$. An edge is never used twice!

CT exists \rightarrow HP exists

Overlap only on edges, so τ describes a path in G. Because of length constraints, the path goes only once through each vertex.

#P-completeness remark

Transformation is not parcimonious (many possible permutations). But given an instance, number of solutions is either 0 or $(\ell - 1)^2 \prod_{1 \leq i \leq n} \frac{(\ell - 2)!}{(\ell - d(i))!}$. Therefore, the problem is also #P-complete, even though the reduction is not (and probably cannot) be parcimonious.
1 Compact table problem
- Random-choices tables
- Formal description
- Other applications

2 NP-Completeness
- General case
- Fixed amplitude case
- Bounded number of results case

3 Conclusion and perspectives
Amplitude $\ell > 2$
Work is already done

Theorem

The Compact Table problem of order $\ell > 2$ is NP-complete.

Proof.

Our reduction reduces HP of degree ℓ to CT of order ℓ. Since HP is still NP-complete with degree 3, done.
Theorem

The Compact Table problem of order $\ell > 2$ is NP-complete.

Proof.

Our reduction reduces HP of degree ℓ to CT of order ℓ. Since HP is still NP-complete with degree 3, done.
The Compact Table problem of order $\ell = 2$ is in P.

Proof.

Consider the results as vertices, initial conditions are edges. One can see easily that giving the smallest word containing all lines of the table is akin to describe a graph containing all edges of the graph. Details about unconnected components are in the paper.
Theorem

The Compact Table problem of order $\ell = 2$ is in P.

Proof.

Consider the results as vertices, initial conditions are edges. One can see easily that giving the smallest word containing all lines of the table is akin to describe a graph containing all edges of the graph. Details about unconnected components are in the paper.
Theorem

CTP is solvable in linear time in case there are only two possible results.

Proof.

Use a sequence of m_1 times the first result “0” followed by m_2 times the second result “1”, where m_1 is the largest number of “0” for any initial condition and m_2 is the largest number of “1”.

- Limited amplitude+limited outcomes, trivial (finite number of words).
- 2 results: CT method not efficient (prob. success enough)
2-results case
Everything is so easy now

Theorem

CTP is solvable in linear time in case there are only two possible results.

Proof.

Use a sequence of m_1 times the first result “0” followed by m_2 times the second result “1”, where m_1 is the largest number of “0” for any initial condition and m_2 is the largest number of “1”.

- Limited amplitude+limited outcomes, trivial (finite number of words).
- 2 results: CT method not efficient (prob. success enough)
2-results case
Everything is so easy now

Theorem

CTP is solvable in linear time in case there are only two possible results.

Proof.

Use a sequence of m_1 times the first result “0” followed by m_2 times the second result “1”, where m_1 is the largest number of “0” for any initial condition and m_2 is the largest number of “1”.

- Limited amplitude+limited outcomes, trivial (finite number of words).
- 2 results: CT method not efficient (prob. success enough)
3-results case
Unfinished fun on triangles

Number of possible words of amplitude \(\ell \): \(\left(\frac{\ell + k - 1}{\ell} \right) \).

Proof.
Number of occurrences of each result, including 0, in bijection with words on \(\{x, y\} \) of length \(\ell + k - 1 \) with \(k - 1 \) \(y \) letters separating runs of \(x \) (run \(i \) is the number of occurrence of result \(i \)).

Superword of size \(\left(\frac{\ell + k - 1}{\ell} \right) + \ell - 1 \) containing all permutations? \(\rightarrow \) Open problem.

- 3 outputs, amplitude 1: \(abc \).
- Amplitude 2: \(caabbcc \).
- \(\ell = 3 \): \(abcccaaabbcc \).
- \(\ell = 4 \): \(abacbcbccccaaabbbbc \).
- Recurrence? 4-results? Beyond?
Number of possible words of amplitude ℓ: $\binom{\ell + k - 1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on \{x, y\} of length $\ell + k - 1$ with $k - 1$ y letters separating runs of x (run i is the number of occurrence of result i).

Superword of size $\binom{\ell + k - 1}{\ell} + \ell - 1$ containing all permutations? \rightarrow Open problem.

- 3 outputs, amplitude 1: abc.
- Amplitude 2: $caabbcc$.
- $\ell = 3$: $abcccaaaabbbcc$.
- $\ell = 4$: $abacbcbbbbbaaaabbbbbc$.
- Recurrence? 4-results? Beyond?
3-results case
Unfinished fun on triangles

Number of possible words of amplitude \(\ell \): \(\binom{\ell+k-1}{\ell}\).

Proof.

Number of occurrences of each result, including 0, in bijection with words on \(\{x, y\}\) of length \(\ell + k - 1\) with \(k - 1\) \(y\) letters separating runs of \(x\) (run \(i\) is the number of occurrence of result \(i\)).

Superword of size \(\binom{\ell+k-1}{\ell} + \ell - 1\) containing all permutations? \(\rightarrow\) Open problem.

- 3 outputs, amplitude 1: \(abc\).
- Amplitude 2: \(caabbcc\).
- \(\ell = 3\): \(abcccaaabbbbc\).
- \(\ell = 4\): \(abacbcbccccccaaabbbbc\).
- Recurrence? 4-results? Beyond?
Number of possible words of amplitude ℓ: $\binom{\ell + k - 1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with $k - 1$ y letters separating runs of x (run i is the number of occurrence of result i).

Superword of size $\binom{\ell + k - 1}{\ell} + \ell - 1$ containing all permutations? \rightarrow **Open problem.**

- 3 outputs, amplitude 1: abc.
- Amplitude 2: $caabbcc$.
- $\ell = 3$: $abcccaaabbbcc$.
- $\ell = 4$: $abacbcbbccccaaaaabbbbcc$.
- Recurrence? 4-results? Beyond?
Number of possible words of amplitude ℓ: $\binom{\ell + k - 1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with $k - 1$ y letters separating runs of x (run i is the number of occurrence of result i).

Superword of size $\binom{\ell + k - 1}{\ell} + \ell - 1$ containing all permutations? → **Open problem**.

- 3 outputs, amplitude 1: abc.
- Amplitude 2: $caabbc$.
 - $\ell = 3$: $abcccaaabbcc$.
 - $\ell = 4$: $abacbcbbbbcccccaaabbcc$.
- Recurrence? 4-results? Beyond?
Number of possible words of amplitude ℓ: $\binom{\ell+k-1}{\ell}$.

Proof.

Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with $k - 1$ y letters separating runs of x (run i is the number of occurrence of result i).

Superword of size $\binom{\ell+k-1}{\ell} + \ell - 1$ containing all permutations? → Open problem.

- 3 outputs, amplitude 1: abc.
- Amplitude 2: $caabbcc$.
- $\ell = 3$: $abcccaaabbbc$.
- $\ell = 4$: $abacbcbcbbbbccaaabbbbc$.
- Recurrence? 4-results? Beyond?
3-results case
Unfinished fun on triangles

Number of possible words of amplitude ℓ: \(\binom{\ell+k-1}{\ell} \).

Proof.
Number of occurrences of each result, including 0, in bijection with words on \(\{x, y\} \) of length $\ell + k - 1$ with $k - 1$ y letters separating runs of x (run i is the number of occurrence of result i).

Superword of size \(\binom{\ell+k-1}{\ell} + \ell - 1 \) containing all permutations? → Open problem.

- 3 outputs, amplitude 1: abc.
- Amplitude 2: caabbcc.
- $\ell = 3$: abcccaaaabbbc.
- $\ell = 4$: abacbcbbccccaaaaabbbbc.
- Recurrence? 4-results? Beyond?
3-results case
Unfinished fun on triangles

Number of possible words of amplitude ℓ: $\binom{\ell + k - 1}{\ell}$.

Proof.
Number of occurrences of each result, including 0, in bijection with words on $\{x, y\}$ of length $\ell + k - 1$ with $k - 1$ y letters separating runs of x (run i is the number of occurrence of result i).

Superword of size $\binom{\ell + k - 1}{\ell} + \ell - 1$ containing all permutations? → Open problem.

- 3 outputs, amplitude 1: abc.
- Amplitude 2: $caabbcc$.
- $\ell = 3$: $abcccaaabbbc$.
- $\ell = 4$: $abacbcbbcbbcccaaaabbbbc$.
- Recurrence? 4-results? Beyond?
Summary and Open problems
Stuff we couldn’t do in time

Answered Questions
- Works even if words of different lengths;
- Permutations do not help;
- They may even make things harder;
- Some things remain simple.

Open Questions
- The superword problem is known to be NP-hard but approximable;
- For Compact table: not clear. Heuristics may apply, but ratio is not a constant.
- Restriction to 3 or more results: still open. 3 results may be possible (winding out from the inside to the outside).
Summary and Open problems
Stuff we couldn’t do in time

Answered Questions
- Works even if words of different lengths;
- Permutations do not help;
- They may even make things harder;
- Some things remain simple.

Open Questions
- The superword problem is known to be NP-hard but approximable;
- For Compact table: not clear. Heuristics may apply, but ratio is not a constant.
- Restriction to 3 or more results: still open. 3 results may be possible (winding out from the inside to the outside).
This slide intentionally left blank
Some details on proof in case $\ell = 2$
You probably asked for it!

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>δ</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\begin{tikzpicture}
 \node (A) at (0,0) {α};
 \node (B) at (2,0) {B};
 \node (C) at (2,-2) {C};
 \node (D) at (0,-2) {D};
 \node (E) at (1,-1) {E};
 \node (F) at (-1,-1) {F};
 \node (G) at (0,-3) {G};

 \draw (A) -- (B);
 \draw (B) -- (C);
 \draw (C) -- (D);
 \draw (D) -- (A);
 \draw (A) -- (E);
 \draw (B) -- (E);
 \draw (C) -- (E);
 \draw (D) -- (E);
 \draw (E) -- (F);
 \draw (E) -- (G);
\end{tikzpicture}
\]
We separate in A (connected components with vertices of odd degree) and the other ones (B). We want to reach $(a, b, n/2) = (1, 0, 1)$.

α Adding one edge going from one component to itself: either $[0, 0, 1]$ between two even vertices, $[0, 0, 0]$ between an even vertex and an odd vertex, $[0, 0, -1]$ between two odd vertices. There is a special case for the last one: the move could also be $[-1, 1, -1]$.

β Adding one edge between two components of A: $[-1, 0, 1]$ between two even vertices, $[-1, 0, 0]$ between an even vertex and an odd vertex, $[-1, 0, -1]$ between two odd vertices.
Some details on proof in case $\ell = 2$ (cont.)

- Adding one edge between one component of A and one of B: $[0, -1, 1]$ if the vertex in the component in A was of even degree, $[0, -1, 0]$ otherwise. There is always an even number of odd-degree vertices in a component, so a never decreases this way.

- Adding one edge between two components of B: $[1, -2, 1]$ (always).

 - If $a = 0$, then $n = 0$ and $b > 1$. The transformation $\delta \gamma^{b-2}$ leads us to the final state and is of length $b + n - 1 = b - 1$.

 - If $a > 0$, then transformation $\beta^{a-1} \gamma^b \alpha^{n-a}$ leads us to the final state and is of length $b + n - 1$.

 In each case, there is only one subcase that decreases $b + n$; there may be some choice for the exact edge to be added.