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Abstract

We consider the problem of partitionning a network into microgrids. We mainly
focus on the complexity results related to the different variants of this problem.
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The electric landscape in France is in deep mutation. The electric produc-
tion is changing, moving from a small number of production plants with high
electric power to a huge number of production units, each delivering a small
electric power. From a legal point of view, it is now possible since 2017 to
gather consumers and producers in a private local network called microgrid. In
such microgrids, the consumers use the electricity generated by the producers
belonging to this microgrid. The only electric exchange between a microgrid
and the outside is the one necessary to obtain the equilibrium between electric
consumption and production of the whole microgrid.

The merging of consumers and producers geographically close into micro-
grids presents several advantages. From an energetic aspect, the transporta-
tion of the electricity from producers which are geographically close to the
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consumers is more efficient. Also, there may exist local rules regulating the
production of electricity such as 100% of renewable energy. Moreover, the
partition of the whole electric network into microgrids tends to reduce the
effects of electric problems such as blackouts. Indeed, when a problem locally
appears in a microgrid, this latter can be more easily disconnected from the
rest of the network stopping the propagation of the electric problem.

A microgrid is interesting only if the exchange between this microgrid and
the outside is very small. This implies that ideally the local production should
correspond to the local consumption. Moreover, the electric network of the
microgrid must be sufficient to ensure the transportation of the electricity
from the producers to the consumers. We consider in this work the problem
of partitionning a network into microgrids under the previous requirements.
We mainly focus on the complexity results related to the different variants of
this problem.

We model the electrical network (smartgrid) with a graph whose vertices
represent the producers/consumers/relays and whose edges are the electrical
connexions. Accordingly, we associate to each vertex a weight which corre-
sponds to its consumption or production. We think of microgrids as connected
subgraphs of the smartgrid, and call a microgrid self-sufficient if its own pro-
duction matches its consumption.

The main problem we are interested in consists in partitionning the smart-
grid into a number of self-sufficient microgrids. Since this problem turns out
to be NP-complete even in very restricted classes of graphs, we will also con-
sider a variant called combinatorial in which the production and consumption
are all unitary. In this variant, we may forget the weights on the vertices and,
instead, have red vertices representing the producers and blue vertices for the
consumers.

The second problem we will study asks one to find a self-sufficient microgrid
containing a given subset of the vertex set. The weighted version of this
problem is already NP-complete when the graph is a star. Consequently, we
focus on the combinatorial version of the self-sufficient augmentation problem.
We prove that it is close to the so-called graph motif problem. Consequently,
it is NP-hard in general and polynomial for graphs of fixed treewidth.

1 Complexity results for self-sufficient partitions

In this section, we prove that the problem of partitioning a series-parallel
graph into a fixed number of self-sufficient sets is NP-complete but becomes
polynomial-time solvable in outerplanar graphs. Outerplanar graphs being a



large subclass of series-parallel graphs, these two results, Theorems 1.1 and 1.2,
establish the complexity behaviour of the self-sufficient partition prob-
lem.

We now formally describe the Self-sufficient partition problem. Given
a graph G = (V,E) and w : V → Z, a subset of vertices X of V is called
self-suficient if the graph G[X ] which X induces is connected and its own
consumption matches its production, that is, w(X) = 0.

Self-sufficient partition:
Instance: A graph G = (V,E), w : V → Z and k ∈ Z+.

Solution: A partition P = {P1, . . . , Pk} of V such that Pi is self-
sufficient for all i = 1, . . . , k.

1.1 NP-completeness

In this section, we prove the NP-completeness of Self-sufficient partition
using the well-known NP-complete problem Partition [2].

Partition:
Instance: A multiset of positive integers p1, . . . , pn.

Solution: A partition of {1, . . . , n} into two subsets S1 and S2 such
that

∑

i∈S1
pi =

∑

i∈S2
pi.

A graph is series-parallel if it does not contain K4 as a minor. A cut vertex

is a vertex whose removal yiealds at least two connected components. When no
removal of a single vertex disconnects a graph, the latter is said 2-connected.
Loops and bridges are called trivial 2-connected graphs. The non trivial 2-
connected components of a graph are the maximal 2-connected subgraphs of
the graph, i.e., the components obtained after removing the loops and bridges.
Seriesparallel graph admit the following constructive characterization: a graph
is series-parallel if all its non trivial 2-connected components can be built,
starting from the circuit of length two, by repeatedly applying the following
operations: add a parallel edge to an existing edge; or subdivide an existing
edge, that is replace the edge by a path of length two.

Theorem 1.1 Self-sufficient partition is NP-complete even if k = 2
and G is a 2-connected series-parallel graph.

Proof. We reduce the problem to Partition. Let p1, . . . , pn be an instance



of Partition and define q = 1

2

∑n
i=1

pi. Let G = (V,E) be the graph with
n+2 vertices s, t, v1, . . . , vn and the 2n edges svi and vit for i = 1, . . . , n. Note
that G is series-parallel. Let w(s) = w(t) = −q and w(vi) = pi.

s

v1

v2

vn−1

vn

t

Let {P1, P2} be a partition of V . By construction, if s and t belong to the
same Pi, then G[V \Pi] is not connected. Hence, without loss of generality, if
G[P1] and G[P2] are both connected, then s ∈ P1 and t ∈ P2. Therefore, there
exists I ⊆ {1, . . . , n} such that P1 = {s, vi : i ∈ I} and P2 = {t, vj : j /∈ I}.
Suppose that both Pi’s are self-sufficient. Then, since w(P1) = w(P2) = 0
and w(s) = w(t) = −q, we have w({vi : i ∈ I}) =

∑

i∈I pi = q and w({vj :
j /∈ I}) =

∑

i/∈I pi = q. Therefore, {I, V \ I} is a solution of Partition.
Conversely, note that if S1, S2 is a solution of Partition, then {s, vi = i ∈ S1}
and {t, vj = j ∈ S2} are both self-sufficient and form a partition of V , hence
are a solution of Self-sufficient partition. ✷

1.2 Polynomial cases

In this section, we prove that if the desired number of self-sufficient sets of
the partition is fixed, and if the graph is outerplanar, then the problem of
self-sufficient partition can be solved in polynomial time. A graph is
outerplanar if it can be drawn on the plane so that all its vertices belong to
the external face. Equivalently, a graph is outerplanar if it contains neither
K4 nor K2,3 as a minor. Recall that series-parallel graphs are the graphs with
no K4-minor. Therefore, the following result and Theorem 1.1 establish the
complexity boundary of the self-sufficient partition problem.

Theorem 1.2 If G is 2-connected outerplanar and k is fixed, then Self-
sufficient partition is polynomial-time solvable.

Proof. Let G be outerplanar and 2-connected and k be fixed. The goal is to
find a partition of G into k self-sufficient sets of vertices. Let C be the cycle
which forms the external face of G. By the following claim, enumeration gives



an algorithm that runs in O(n2k).

Claim 1.3 If P is a self-sufficient partition of G, then there exists P ∈ P
such that the vertices of P form a subpath of C.

Proof. Suppose not, then there exists distinct P and Q in P such that C
traverses, in this order, a set of vertices XP of P , a set of vertices XQ of Q, a
set of vertices YP of P , and then a set of vertices YQ of Q. Since both G[P ]
and G[Q] are connected, we may assume that G[XP ∪ YP ] and G[XQ ∪ YQ]
contain an edge eP and eQ, respectively. But then eP and eQ are crossing, a
contradiction to the fact that G is outerplanar with external face C. ✷

Now, note that there are
(

n
2

)

subpaths of C. Let P be the vertex set of
such a path and let G′ = G \ P . The addition of P to any partition of G′

into k − 1 self-sufficient sets yields a partition of G into k self-sufficient sets.
Since reapeating this process decreases k by one, and since there are at most
(

n
2

)

≤ n2 subpaths at each step, all the solutions are enumerated in less than
(n2)k operations. In particular, if k is fixed, then this is polynomial in n. ✷

2 Self-sufficient augmentation

2.1 Weighted version

We now prove that the following problem of Self-sufficient augmenta-
tion is NP-complete by reducing Subset sum to it. Subset sum is a well-
known NP-complete problem, see [2].

Self-sufficient augmentation:
Instance: A graph G = (V,E), w : V → Z and X ⊆ V .

Solution: A self-sufficient subset Y of V which contains X .

Subset sum:
Instance: A multiset of integers p1, . . . , pn and q ∈ Z.

Solution: A subset I of {1, . . . , n} such that
∑

i∈I pi = q.

Theorem 2.1 Self-sufficient augmentation is NP-complete even if G
is a star.

Proof. We reduce the problem to Subset Sum. Let p1, . . . , pn and q be an
instance of Subset Sum. Wlog, we assume that pi is nonzero for i = 1, . . . , n.



Let G = (V,E) be the graph with
n+ 1 vertices s, v1, . . . , vn and the n
edges svi for i = 1, . . . , n. Note that
G is a star. Define w by w(s) = −q
and w(vi) = pi, and let X = {s}.

s

v1 v2 vn−1vn

First, note that if
∑

i ∈ Ipi = q for some subset I of {1, . . . , n}, then
X = {s, vi : i ∈ I} is self-sufficient. Conversely, let us show that any self-
sufficient subset of V which contains s induces a solution of Subset Sum. By
construction, if G[X ] is connected for a subset X of V with s ∈ X , then X
is a set of the form X = {s, vi : i ∈ I} for some subset I of {1, . . . , n}. If
moreover w(X) = 0, then w(X \ {s}) =

∑

i∈I pi = −w(s) = q. Therefore, if
X is a solution of Self-sufficient augmentation, then the index set of
the vertices of X \ {s} is a solution of Subset Sum. ✷

2.2 Combinatorial version

Given the difficulty of the Self-sufficient augmentation problem, shown
in Theorem 2.1, we now consider the combinatorial variant of this problem.
In this version, the vertices of the graph are either producers or consumers,
and their production/consumption is not taken into acount: the goal of a
microgrid is to have as many producers as consumers.

A bicolored graph is a pair (G, π) where G = (V,E) is an undirected graph
and π = {V1, V2} is a bipartition of V representing the color of each vertex.
The vertices of V1 are colored in red and those of V2 in blue. A subgraph
G′ = (V ′, E ′) of a bicolored graph (G, π) is self-sufficient if it is connected
and V ′ contains the same number of vertices of each class of π. This is the
special case of the weighted version of self-sufficiency when w takes only +1
and −1 values.

Minimum Self-Sufficient Problem:
Instance: Given a bicolored graph (G, π), a subset W of vertex.

Solution: A subgraph G′ = (V ′, E ′) of G such that V ′ is of minimum
size and contains W .

Graph Motif Problem:
Instance: A colored graph G = (V,E), a multiset of colors M .

Solution: A subset X ⊆ V which induces a connected graph and
whose multiset of colors equals M .



2.2.1 Positive results

The minimum self-sufficient problem reduces to the graph motif problem, as
shown in the following proposition.

Proposition 2.2 The minimum self-sufficient problem reduces to the graph

motif problem.

Proof. Let (G, π) be a bicolored graph with G = (V,E) and π = {V1, V2}.
(G, π) and a vertex subset W ⊆ V define an instance of the minimum self-
sufficient problem. The associated decision problem is to determine, given a
positive integer k, whether there exists a self-sufficient subgraph G′ = (V ′, E ′)
of G such that W ⊆ V ′ and |V ′| ≤ k. We suppose, wlog that |W ∩ V1| ≤
|W ∩ V2| and set d = |W ∩ V2| − |W ∩ V1|. Any self-sufficient subgraph

will contain at least |W | + d vertices. Let ℓ = ⌊k−|W |−d
2

⌋. Any self-sufficient
subgraph will contain |W |+ d+ 2j vertices for some j ∈ {0, . . . , ℓ}.

We define an instance (G̃, M̃) of the graph motif problem as follows. Con-
sider ℓ+1 copies of G to define G̃. Its vertices are colored in blue and red ac-
cording to the color of the vertices inG. Moreover, in each copy, all the vertices
of Ware colored in a new color, say green. Let v0 be a vertex of W . For the
jth copy of G (j ∈ {0, . . . , ℓ}), add the path Pj = v, u1, w1, . . . , uℓ−j, wℓ−j, v1
where all the vertices but v are new vertices, v being v0 in this copy of G. the
vertices u1, . . . , uj are colored in red, w1, . . . , wj in blue and v1 in green.

Let M̃ be the multiset of colors defined as follows. It contains |W | + 1
times the green color, ℓ+ d times the red color and ℓ times the blue color.

Now, let G′ = (V ′, E ′) be a solution of the self-sufficient problem and
|V ′| = |W | + d + 2j. A solution to the graph motif problem is obtained by
taking all the vertices corresponding to those of V ′ in the jth copy of G plus
the vertices of Pj .

In a solution W to the graph motif problem, all the vertices of W belong
to a same copy of G. Remove the vertices of added path in W provides a
solution to the self-sufficient problem. ✷

Proposition 2.2 implies that the polynomial cases for the graph motif prob-
lem are also polynomial cases for the minimum self-sufficient problem. Since
the graph motif problem is polynomial when there is a polynomial number of
colors and G is of bounded treewidth, we obtain the following result.

Corollary 2.3 The minimum self-sufficient problem is polynomial-time solv-

able if G has a fixed treewidth.

In particular, in contrast to the weigthed case, the minimum self-sufficient
problem is polynomial-time solvable for the graphs of treewidth 2, which are



precisely the series-parallel graphs. Due to the transformation and the com-
plexity of the graph motif problem, we obtain more precisely that the mini-
mum self-sufficient problem can be solved in O(n4w+2) where w denotes the
treewidth of G. If G is a tree, we can obtain a much more efficient algorithm.

2.2.2 Negative results

We show a NP-hardness result for the minimum self-sufficient problem. It is
similar to the one existing for the motif graph problem. The proof is based
on the one of [1]. The proof uses the Exact Cover by 3-Sets problem.

Exact Cover by 3-Sets (X3C):
Instance: A a set X = {x1, x2, . . . , x3q} and a collection S =

{s1, s2, . . . , sn} of 3-element subsets of X .

Solution: A sub-collection C ⊆ S such that every element of X is
included in exactly one subset si ∈ C.

Proposition 2.4 The minimum self-sufficient problem is NP-hard even if G
bipartite with maximum degree less than or equal to four.

Proof. We slightly modify the reduction given in Theorem 2 of [1] from X3C
to the graph motif with two colors and G bipartite with maximum degree
four. In their proof, the authors construct form an instance X,S of the X3C
problem a bipartite graph G containing 2n+q white vertices and n black ones.
The motif M to find is composed of 2n+ 3q white vertices and q black ones.

We construct from G a bipartite G′ by replacing edge s′ns
′′
n by a path

s′n, v1, v2, . . . , v2n+2q, s
′′
n, where v1, . . . , v2n+2q are new black vertices. We set W

equal to the set of white vertices. There exists a motif M in G if and only if
there exists a self-sufficient subgraph of G′. Note that in this case, we only
seek for the existence of a self-sufficient subgraph, independantly from its size.
However, it is always possible to add dummy nodes to always have a solution
and focusing on self-sufficient subgraphs with size less than or equal to a given
value. ✷
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