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Abstract

One of the goals of software engineering is to provide what is necessary to write
relevant, legible, useful descriptions of the systems to be developed, which will be
the basis of successful developments. This goal was addressed both from informal
approaches (providing in particular visual notations) and formal ones (providing
a formal sound semantic basis). Informal approaches are often driven by a soft-
ware development method, and, while formal approaches sometimes provide a user
method, it is usually aimed at helping to use the proposed formalism when writing
a specification. Our goal here is to provide a companion method that helps the user
to understand the system to be developed, and to write the corresponding formal
specifications. We also aim at supporting visual presentations of formal specifica-
tions, so as to “make the best of both formal and informal worlds”. We developed
this method for the (logical-algebraic) specification languages Casl (Common Al-
gebraic Specification Language, developed within the joint initiative CoFI) and for
an extension for dynamic systems Casl-Ltl, and we believe it is general enough to
be adapted to other paradigms.

Another challenge is that a method that is too general does not encompass the
different kinds of systems to be studied, while too many different specialized meth-
ods result in partial views that may be difficult to integrate in a single global one.
We deal with this issue by providing a limited number of instances of our method,
fitted for three different kinds of software items, while keeping a common “meta”-
structure and way of thinking. More precisely, we consider here that a software item
may be a simple dynamic system, a structured dynamic system, or a data structure,
and we show here how to support property-oriented (axiomatic) specifications. We
are thus providing support for the “building-bricks” tasks of specifying software
artifacts that in our experience are needed for the development process.

Our approach is illustrated with a lift case study.

Key words: Specification method, formal specification, algebraic-logical
specification, visual notation, Casl, Casl-Ltl
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1 Introduction

1.1 Aims and Scope

One of the goals of software engineering is to provide paradigms, languages,
notations (together with a companion user method) to write relevant, legible,
useful descriptions of the systems to be developed, which will be the basis of
successful developments. This goal has been explored both from informal and
formal approaches, while informal notations may put emphasis on varieties
of attractive graphics, formal approaches offer the serious basis of notations
with a formally described semantics. In both cases, one problem may be that
the companion user method is not available to start with, and when it is
available another problem is that, while it helps to use the proposed notation,
it does not always help to understand the system to be developed. Another
difficulty when struggling with these issues is that systems under study may
be quite different in nature (or may include parts that are so), thus different
notations and methods may be needed. To define a homogeneous approach,
general enough to encompass different issues, but still carrying meaningful
and precise guidelines and concepts, is also a goal.

On the one hand, many formalisms and some formal specification methods
were developed (see [3] for the distinction between formalism and method),
e.g., algebraic specifications and associated methods [2]. On the other hand,
we can witness the success of development methods without or with a very
limited grounding in sound formal theories, as those based on UML [25], e.g.,
RUP [26]. Clearly, there is a need to accommodate both worlds, for instance
some recent works try to give a precise semantics to UML ([28, 29]), and
the need for UML based rigorous methods has emerged. There are obvious
differences between the two kinds of approaches (formal/informal):

• not very friendly notation, sometimes based on exotic mathematical sym-
bols/very friendly visual notation;

• rather rigid with a lot of overhead notation/flexible adaptable notation;
• need time and background to learn the used technique/short time to learn

the method;
• mainly simple toy case studies considered/developed having in mind the

real common applications;
• user manuals explaining how to use the various constructs are available/

software development methods based on them are available.

Our attempt is to make the best of both worlds by trying to propose methods
for the basic specification/modelling 1 blocks needed in a development process

1 Notice that “to specify/specifications” are the terms used in the formal commu-
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that have all the good properties of those commonly used (friendly notation
based on simple intuitive visual metaphors, easy to understand and to learn,
considering real applications, . . . ), and that are also formally grounded, i.e.,
their specification/model artifacts have a direct counterpart in a formal specifi-
cation language, and thus a formal semantics, based on well defined underlying
formal models.

Here, we present a first proposal for those methods formally grounded on the
algebraic specification language Casl and its extension Casl-Ltl [9, 24, 27].
Such techniques result in producing specifications/models having a precise
structure at the conceptual level, which can, then, be presented either in a
visual way or as formal Casl-Ltl specifications.

Our previous experiences (see, e.g., [14]) suggested that the various activities
in a development process are based on the “building-bricks” tasks of specifying
software items of different nature at different levels of abstractions. We assume
that a “software item” may be either

• a simple dynamic system (just a dynamic interacting entity in isolation,
e.g., a sequential process) or

• a structured dynamic system (a community of mutually interacting entities,
simple or in turn structured), or

• a data structure (or data type).

For each case, we give a specification method by giving the abstract structure
of the relative specifications with the related visual presentation and the cor-
responding formal Casl-Ltl specification. Here, we consider only property
oriented specification methods, whereas in [15] we also describe model ori-
ented ones. Our approach is quite systematic, and provides enough guidelines
so as to prevent the “empty page syndrome” of someone who would not know
where to start with, and also to cover a wide range of features and properties
one should not forget.

We could show, see [15], that our specification blocks are general and powerful
enough to be used as basis for a development method based on M. Jackson
problem frames [21], and we applied them to three of the most relevant prob-
lems presented by Jackson, as well as to the requirement phase for a medium-
sized Internet-based auction system.

Although in this paper, the target formal language of our methods is Casl-Ltl

they could be used with other target languages which follow the property
oriented paradigm e.g., UML class diagram (with OCL constraints) and/or
sequence diagrams and/or activity diagrams.

nity, whereas in the practical world the corresponding ones are “to model/models”.
For example, we have Casl specifications and UML models.

3



To introduce a specification method we follow the conceptual schema of [3]
that we briefly present in Sect. 2.1; furthermore the specification methods pre-
sented here are all specializations for particular varieties of items of a general
method that we present in Sect. 2.2. The sections 3, 4 and 5, devoted re-
spectively to simple dynamic systems, structured dynamic systems, and data
structures, have the same structure. First, the considered items are described,
then, their specification technique is presented, followed by an illustration on
an example, and the Casl-Ltl or Casl view. In Sect. 6 we draw some con-
clusions, relate our approach to other ones, and present some future works.
The remaining of our introduction is devoted to a brief presentation of the
Casl and Casl-Ltl specification languages in Sect. 1.2.

1.2 Casl, the Common Algebraic Specification Language, and Casl-Ltl

“Casl is an expressive language for the formal specification of functional
requirements and modular design of software. It has been designed by CoFI 2 ,
the international Common Framework Initiative for algebraic specification and
development. It is based on a critical selection of features that have already
been explored in various contexts, including subsorts, partial functions, first-
order logic, and structured and architectural specifications.” [1] The CoFI
project is presented in [23], and various documents are available on Casl,
in particular the Casl Reference [24] including a complete formal semantics,
and the Casl User Manual [9]. Thus, only the features of the language that
are used in our examples will be shortly presented.

As shown in the example below, a Casl specification may include the declara-
tions of sorts, operations and predicates (together with their arity), and axioms
that are first-order formulae 3 , respectively introduced by relevant keywords.
Some operations play the role of constructors, thus, “datatype declarations
may be used to abbreviate declarations of sorts and constructors.”[9] Our ap-
proach is quite systematic, and provides enough guidelines so as to prevent
the “empty page syndrome” of someone who would not know where to start
with, and also to cover a wide range of features and properties one should not
forget.

spec SpecName =
type type name ::= con name(argTypescon) | . . .

ops op name : argTypesop → resTypeop

. . .
preds pr name : argTypespr

. . .
axioms formulae

2 http://www.brics.dk/Projects/CoFI
3 with strong equality (Sect. 5.1) and a 2-valued logics
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As shown below, “large and complex specifications are easily built out of sim-
pler ones by means of (a small number of) specification building primitives . . .
Union (keyword ‘and’) and extension can be used to structure specifications
. . . Extensions, introduced by the keyword ‘then’, may specify new symbols,
possibly constrained by some axioms, or merely require further properties of
old ones . . . ”[9]

spec SpecName =
SP1 and . . . and SPj then
type type name ::= con name(argTypescon) | . . .

. . .

“In practice, a realistic software specification involves partial as well as total
functions.”[9] Partial operations or constructors are declared with a ’?’ symbol,
and the definedness of a term can be asserted in the axioms.

spec SpecName =
type type name ::= con name(argTypescon)? | . . .

ops op name : argTypesop →? resTypeop

. . .
axioms

def(con name(. . .)) ⇔ . . .

Let us note that special care is needed in specifications involving partial func-
tions. Functions, even total ones, propagate undefinedness, and predicates do
not hold on undefined arguments. Terms containing partial functions may be
undefined, i.e., they may not denote any value.

Another helpful feature of Casl is the free construct. “Free specifications
provide initial semantics and avoid the need for explicit negation . . . In models
of free specifications, it is required that values of terms are distinct except when
their equality follows from the specified axioms: the possibility of unintended
coincidence between them is prohibited.”[9]

spec SpecName =
SP1 and . . . and SPj then
free { type type name ::= con name(argTypescon ) | . . .

ops op name : argTypesop →? resTypeop

. . .
axioms . . . }

Generic specifications (also known as parametrized specifications in other
specification languages) are very useful for reuse. Their parameter specifi-
cation is usually very simple, and an instance of a generic specification is
obtained by providing an argument specification for each parameter. The fol-
lowing specification is an extension of an instance of the generic specification
FiniteSet[Elem] by Int (both are in the basic specifications library [31]).
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spec SpecName = FiniteSet[Int] . . . then . . .

“Casl is the heart of a family of languages. Some tools will make use of
well-delineated sub-languages of Casl . . . while extensions of Casl are be-
ing defined to support various paradigms and applications.”[1] One of these
extensions is Casl-Ltl [27], which was designed for the dynamic systems
specification by giving a Casl view to LTL, the Labelled Transition Logic
([4, 17]).

LTL, and thus Casl-Ltl, is based on the idea that a dynamic system is con-
sidered as a labelled transition system (shortly lts), and that to specify it one
has to specify the labels, the states and the transitions of such system. Re-
call that an lts is a triple (State,Label,→), where →⊆ State × Label × State.
Casl-Ltl offers a special construct to declare an lts, by stating that two given
sorts correspond respectively to its states and labels, and that a standard ar-
row predicate corresponds to its transition relation →.

dsort St label Lab stands for
sorts St, Lab

pred −−→ : St × Lab × St
The sort St is said dynamic, because any of its elements, say d , represents a
dynamic system, whose behaviour is modelled by the transition tree associ-
ated with d . The root of such tree is decorated with d , and if the tree has a

node decorated with d and d
l

−−→ d ′, then it has a node decorated with d ′,
and an arc from d to d ′ decorated with the label l associated with the tran-
sition from from d to d ′. Moreover, in such tree the order of the branches is
not considered, and two identical decorated subtrees with the same root are
considered as a unique subtree.

The Casl formulae built by using the transition predicates allow to express
some properties on the behaviour of the dynamic elements, but they are not
sufficient. For example, by using them we cannot state liveness properties;
whereas they, and other kinds of quite relevant properties, may be expressed
by using some temporal logic. Thus, Casl-Ltl (as LTL) includes the temporal
combinators of the temporal logic of [17], which is many-sorted, first-order,
branching-time, CTL-style, and with edge formulae.

The temporal formulae of Casl-Ltl are anchored to terms of dynamic sort
and express some properties about the elements represented by them. Such
formulae have the form in any case(dt , π) or in one case(dt , π) stating that
any path (at least one path) starting from dt satisfies the condition expressed
by the path formula π. A path starting form a dynamic element is a sequence of
concatenated transitions from such element, and represents one of its possible
behaviours. A path formula may require that

• the first state/label of the path satisfies some condition
[ x • cond ] and < y • cond >;

• from some point on the path satisfies a condition expressed by another path
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formula eventually π1

• the path satisfies a condition expressed by another path formula (π1 ) until
some point where it satisfies a second condition (π2 ) π1 until π2

• the path satisfies a condition expressed by another path formula in any
point always π1

• the path satisfies a complex condition, by combining other path formulae
by means of the Casl first-order combinators, e.g., ¬ , ∧ , ∨ , ⇒ and ∀ .

2 A framework for specification methods

2.1 Specification Methods

To easily present the various specification methods introduced in this paper,
we follow the conceptual schema proposed in [3]. In the picture below we re-
port all the ingredients of a generic method using an object-oriented visual
notation 4 , and after briefly present them, using as an example the loose alge-
braic specification of abstract datatypes [2] (the parts related to the example
will be written within [ square brackets ]).

presents

1* 1..*

semantics

**

modelling

Item FormalModel Specification Presentation DocumentationGuidelines

*

viewedAs

Items In our opinion a specification method to be effective should consider a
quite precise set of items to be specified. Such items should be introduced
using the natural language, since clearly they cannot be formally defined.

[ Datatypes ]
Formal models of the items Formal models, intended as mathemati-

cal structures, are the formal counterparts of the items, introduced before.
Each specification method uses a particular set of formal models.

[ Many-sorted Σ -algebras with predicates ]
Modelling A precise and rigorous, but not formal, description of how the

formal models are associated with the items. [ The elements of the carri-
ers model the values of the datatype, whereas the interpretations of the
predicates and of the operations model the datatype operations ]

Specifications In a very general way a specification is a description of an item
at some level of abstraction, intended at a given step of the development
process. A specification is a way to define a class of formal models: all those
modelling the item at a given step of the development process.

4 Precisely, it is a simple subset of UML 1.3 [25]. Recall that boxes represent classes,
and arrows oriented associations.
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[ A specification is a pair consisting of a signature Σ and of a set of
first-order formulae over Σ ]

Semantics The semantics links a specification with its formal models.
[ The semantics of (Σ ,AX) is the class of the Σ -algebras satisfying all

formulae in AX ]
Presentations We mean by presentation a way to display a specification

artifact for some particular purpose; for example, we can have a presentation
for the human users, or using a special notation to be handled by a tool. A
specification method may be equipped with different kinds of presentations.
Each presentation should be associated with a unique specification.

[ A specification (Σ ,AX) may presented using the Casl language or
visually as suggested in Sect. 5 ]

Guidelines This part consists of the guidelines for steering and helping the
task of producing in the best possible way the specifications of the items.
The guidelines are understandably driven by the preceding parts of the
method, but note the fundamental role played by modelling, if we want
seriously to provide professional guidelines. [ See Sect. 5 ]

Documentation We refer to documenting the specification task for use in
evolution and maintenance.

We make the following assumptions on the items, visually summarized below 5 .

Item

parts
*

Constituent feature
Definition

Specification*
partsSpec

features

FormalModel

has

*

*

features

CFmodelling CFsemanticsConstituent feature
Formal Model

*

Variety
1..* *

isA

Constituent feature

• Items are classified in some variety (e.g., functional modules/datatypes,
reactive systems, real-time systems, distributed systems, . . . ), and the items
considered by a method should be all of the same variety.

• Items are structured, and their subparts are items. Such structure is rep-
resented by the association parts. Items associated by parts may be of the
same variety (homogeneous structure) or of different varieties (e.g., imper-
ative programs made out from procedures).

[ A datatype may be structured, and in this case its parts are other
datatypes, e.g., integers are the part of lists of integers ]

• Items are characterized by their constituent features. We assume that an
item is made by various constituent features/ingredients that are orthogo-
nal/nonoverlapping, and that may be classified in different kinds.

[ The constituent features of a datatype are its predicates and its opera-
tions, and thus they are of two kinds ]

5 The white diamond represents the UML aggregation (subobjects containment).
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The above assumptions on the items require that

• the “modelling” (that is how the items are associated with the formal mod-
els) should be extended to describe how the constituent features of the
various kinds correspond to elements/features of the formal models;

• the formal models have (as described by the association has) the formal
counterparts of the constituent features;

• the specification language should support the separate specifications of the
parts and should offer means to define the constituent features;

• the guidelines should provide help to find the parts and the constituent
features of an item.

There are various specification styles. The most quoted distinction is between
property-oriented (or axiomatic) and constructive (or model-oriented). For
what concerns the semantics of property-oriented specifications, the basic way
to define it is as follows: “a model belongs to the semantics of a specification if
and only if all formulae of the specification are valid on it”. The methodological
ideas supporting this specification style are:
we describe the item at a certain moment in its development by expressing all
its “relevant” properties by sentences provided by the formalism (formulae).

2.2 A General Property-oriented Specification Method (GPSm)

Now we introduce a General Property-oriented Specification method (GPSm)
following the conceptual schema introduced in the Sect. 2.1, by specializing
and enriching three ingredients (Guidelines, Presentation and Documentation)
of a generic method using property-oriented specifications; these modifications
are reported and commented below.

Exhaustive Search Guidelines The guidelines for GPSm are as follows.
The first steps are to find the parts and to specify them, and to find the con-
stituent features, followed by the search of the properties. GPSm is based on
an exhaustive technique for finding all possible relevant properties of an item
by examining it from all possible points of view, that is from the viewpoints of
all its constituent features. The general idea is to find the properties of a given
item by filling the spreadsheet in Fig. 1, whose columns and rows are indexed
with the constituent features of that item, say CF1 , . . . , CFn . A cell with
index CFi :CFi contains the properties about the constituent feature CFi , and
a cell with index CFi :CFj contains the properties expressing the relationships
between CFi and CFj .

Because the constituent features are of different kinds, it is sensible to assume
that the properties filling the various cells follow particular schemas depending
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..... CF n

CF1

CFn

.....

CF1

Fig. 1. Properties spreadsheet

on the kinds of the two indexing features and on the formulae offered by the
chosen specification language. Thus, we need schemas for the cells indexed by:

CF:CF with CF of kind K, for each K, the properties about a constituent
feature of kind K considered by itself;

CF:CF′ with CF and CF′ of kind K, for each K, the properties about the
relationships between two different constituent features of kind K;

CF:CF′ with CF of kind K and CF′ of kind K′, for each K 6= K′, the properties
about the relationships between a constituent feature of kind K and another
one of kind K′.

Note that the relationships between two different constituent features, say CF
and CF′, appear in two different cells (i.e., in CF:CF′ and in CF′:CF), thus
we have computed this relationship twice, but in the first case the emphasis/
viewpoint is on CF, and in the second case on CF′. The method requires
then to check that the contents of the two cells are consistent. In the case
of a negative answer, we found some inconsistency in the specification that
must be eliminated. Usually, this activity helps detect some problematic or
misunderstood aspects of the specified item. In general, depending on the
considered particular instance of the GPSm, there may be other overlappings
among the content of the cells of the spreadsheet; these repetitions should be
made explicit and used for proposing further checks on the consistency of the
produced specification.

Note also how the spreadsheet filling technique results in producing a quite
structured navigable set of properties, which should be suitable to support
evolution. For example, if the ideas about the specified item change, and such
changes result in adding/removing constituent features, then the properties
may be easily modified, in such case we have just to add/delete some specific
rows/columns of the spreadsheet.

Cell Contents Presentation As regards the presentation of the produced
specifications, GPSm should provide a nice way to present the various kinds
of properties used in the cells of the spreadsheet. The properties found filling
the spreadsheet, then need some rearrangement to yield a specification nicer
to read (e.g., by dropping the duplicate properties).
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Cells Filling Documentation The documentation of the specification pro-
cess should make recoverable the spreadsheet filling, the justifications of the
consistency of the overlapping cells, and a justification for any empty cell.

3 Specification of Simple Systems

3.1 Simple System Item

Following the framework presented in Sect. 2.1 we describe the simple system
items structure. Here the word system denotes a dynamic entity of whatever
kind, and so evolving along the time, without any assumption about other
aspects of its behaviour; thus it may be a communicating/nondeterministic/
sequential/. . . process, a reactive/parallel/concurrent/distributed/. . . system,
but also an agent or an agent system. A simple system is a system without
any internal components cooperating among them.

In our approach we assume that simple systems are seen formally as labelled
transition systems (shortly lts), see Sect. 1.2. The “modelling” is as follows.
The states of an lts modelling a simple system represent the relevant intermedi-

ate situations in the life of the system, and each transition s
l

−−→ s ′ represents
the capability of the system in the state/situation s of evolving into the state/
situation s ′; the label l contains information on the conditions on the external
environment for the capability to become effective, and on the transformation
induced on this environment by the execution of the transition, i.e., l fully
describes the interaction of the system with the external environment during
this transition.

To design an effective and simple specification method we assume that the
labels have the standard form of a set of elementary interactions, where each
elementary interaction intuitively corresponds to an elementary (that is not
further decomposable) exchange with the external environment. We also as-
sume that the elementary interactions are of different types, and that each
type is characterized by a name and by some arguments (elements of some
data structures).

To keep the specification level abstract, we do not completely describe the
states of the lts modelling the simple system, but we just list what we should
be able to observe on them, by means of elementary observations on the states
(state observers). A state observer is characterized by a name, some arguments
and by the observed value (elements of some data structures) 6 .

6 If the observed value is a boolean, then a state observer may be specified with a
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*

*

*

State observer definition

name: String
argTypes:Sequence(Type)
resultType: Type

Data structure specification

Elementary interaction definition

name: String
argTypes:Sequence(Type)

Simple system specification

name: String

parts

s-features e-features

Property

pr
op

er
tie

s

*

Fig. 2. Simple system specification

s-features

Name

e-features....
Data1

Data r

Fig. 3. Visual presentation of a simple system: parts and constituent features

The above considerations lead us to choose as constituent features of the
simple systems the elementary interaction types (just elementary interactions
from now on) and the state observers. Moreover, to define them we use values
of various data structures; they are the “parts” of the simple systems. We
summarize the parts and features of simple systems in the following picture.

Simple system Data structure
parts

features

1..*

*

State observerElementary  interaction

Constituent  feature

3.2 The specification of simple systems

Fig. 2 shows the structure (by means of a UML class diagram) of a specification
of a simple system. There Type stands for a type of values defined by one of the
parts data structures. Fig. 3 shows how to visually depict the parts and the
constituent features of a simple system specification, where DATA1 , . . . , DATAr

are the parts, s-features describe state observers written as name(argTypes):

resultType, and e-features describe elementary interactions as NAME(argTypes).

predicate. For simplicity sake (and by lack of space), this case will not be considered
in this paper.
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All the properties about a simple system correspond to properties on the lts
modelling it, and thus on its labels, states and transitions. Recalling our as-
sumptions on the form of the states and labels, these properties may only relate
the values observed by the various state observers on a state, express which
are the admissible sets of elementary interactions building a label, and relate
the source state, the label and the target state of a transition. Our method,
based on Casl-Ltl, offers appropriate ways to present these properties shown
below.

Label properties: ei(arg) incompatible with ei ′(arg ′) if cond(arg,arg ′)

where ei and ei ′ are two elementary interactions and cond is a property of
their arguments. It means that under some condition, if the two elementary
interactions are different, then they are incompatible, i.e., no label may
contain both. 7

State properties: cond
where cond is a condition in which some state observers appear. It means
that for any state the values returned by those state observers must satisfy
this condition.

State properties may include also special atoms, listed below, expressing
properties on the paths (concatenated sequences of transitions) leaving/
reaching the state, that is on the future/past behaviour of the system from
this state.
• in any case eventually eIn happen

It means that any path starting from the state will contain a transition
whose label contains the elementary interaction described by eIn.

• in any case sometime eIn happened

Similarly, it means that any path reaching the state will contain a transi-
tion whose label contains the elementary interaction described by eIn.

These atoms may also be built by in one case (instead of in any case, with
the meaning there exists at least one path such that . . . ), or next (instead
of eventually, with the meaning “the label of the first transition of the
path contains . . . ”), or before (instead of sometime, with the meaning
“the label of the last transition of the path contains . . . ”).

Transition properties: cond
where cond is a condition in which state observers applied to the source
and target states (named respectively source and target state observer) and
atoms of the form “eIn happen” appear. It means that a transition tr

= x
l

−−→ y satisfies cond, where source state observers are evaluated on
the source state x of tr, target state observers are evaluated on the target
state y of tr, and atoms of the form “eIn happen” hold iff the elementary
interaction described by eIn belongs to the label l of tr.

The source state observers are denoted by “non primed” so identifiers
and the target state observers are denoted by “primed” so ′ identifiers.

7 Then, it is not necessary to express that they are different.
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Two elementary interactions

incompat2: Set(LabelProp)

Elementary interaction

incompat1: Set(LabelProp)
pre-cond1: Set(TransitionProp)
post-cond1: Set(TransitionProp)
vital1: Set(StateProp)

State observer

value1: Set(StateProp)
how-change: Set(TransitionProp)
change-vital: Set(StateProp)

Elementary interaction 
and state observer

pre-cond2: Set(TransitionProp)
post-cond2: Set(TransitionProp)
vital2: Set(StateProp)

Two state observers

value2: Set(StateProp)

Cell  schema

Fig. 4. Simple system cell schemas

Since the constituent features of simple systems are of two kinds, elementary
interactions and state observers, following Sect. 2.2 we have to consider five
kinds of cells:
- properties on an elementary interaction,
- properties on a state observer
- relationship between two elementary interactions,
- relationship between two state observers,
- relationship between an elementary interaction and a state observer.

Fig. 4 describes the schemas for these cells, and we present two schemas in
Fig. 5 and 6 (the others are in the Appendix A). There, arg stands for generic
expressions of the correct types, possibly with free variables, and cond(arg)
for a generic condition where the free variables of arg may appear.

3.3 Example: Specification of a Lift plant

As an example, we give the specification of a lift plant, considered as a simple
system. The lift plant may communicate the status of some of its components
by means of sensors (the position of cabin and of the doors at the floors, the
working status of the motor), and its components may be influenced by means
of orders (open/close the door at a given floor, stopping/making moving up/
down the motor). Moreover, the users may enter or leave the cabin, and a
sensor is able to communicate if some user is inside the cabin.

We show the parts and the constituent features of the lift plant in Fig. 7.
The elementary interactions (in the upper compartment) model the sensors
attached to the plant, and the orders that it can receive, whereas the state
observers (in the lower compartment) define the status of its components and
how many users are inside its cabin.
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—————————————————————————————————–

incompat1 (label property) Under some conditions, an instantiation of ei is in-
compatible with another elementary interaction, i.e., no label may contain both.

ei(arg1 ) incompatible with ei ′(arg2 ) if cond(arg1 ,arg2 )

pre-cond1 (transition property) If the label of a transition contains some instan-
tiation of ei, then the source state of the transition must satisfy some condition.

if ei(arg) happen then cond(arg)
where some source state observers must appear in cond(arg) and the target state
observers cannot appear in cond(arg)

post-cond1 (transition property) If the label of a transition contains some instan-
tiation of ei, then the target state of the transition must satisfy some condition.
The condition on the target state may require also the source state to be ex-
pressed.

if ei(arg) happen then cond(arg)
where some target state observers must appear in cond(arg) and the source state
observers may appear in cond(arg)

vital1 (state property) If a state satisfies some condition, then any path (sequence
of transitions) starting from it will eventually contain a transition whose label
contains an instantiation of ei. Note that in these properties in any case may
be replaced by in one case and eventually by next.

if cond(arg) then in any case eventually ei(arg) happen
—————————————————————————————————–

Fig. 5. Elementary interaction (ei) cell schema

—————————————————————————————————–

value1 (state property) The results of the observation made by so on a state must
satisfy some conditions.

cond, where so must appear in cond

how-change (transition property) If the observed value changes during a transi-
tion, then some condition on source state, target state, old and new value holds,
and some elementary interactions must belong to the transition label.

if so(arg) = v1 and so ′(arg) = v2 and v1 6= v2 then
cond(v1 ,v2 ,arg) and ei1 , . . . , ein happen

change-vital (state property) If a state satisfies some condition, then the observed
value will change in the future. Note that in these properties in any case may
be replaced by in one case and eventually by next.

if cond(v1 ,v2 ,arg) and so(arg) = v1 and v1 6= v2 then
in any case eventually so(arg) = v2

—————————————————————————————————–
Fig. 6. State observer (so) cell schema
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CABINPOSITION(Floor)
OPENDOOR(Floor), CLOSEDOOR(Floor)
DOORPOSITION(Floor, DoorPosition)
MOTORUP,  MOTORDOWN,  MOTORSTOP
MOTORSTATUS (MotorStatus)
USERINSIDE( Bool)

cabinPosition: Floor
doorPosition(Floor):  DoorPosition
motorStatus: MotorStatus
usersInside: Int

LiftPlant
Floor

MotorStatus

down   |  up   |  stop

DoorPosition

open  |  closed

Fig. 7. LiftPlant: parts and constituent features

To define the above constituent features we need some data:
- Floor: the floors among which the cabin is moving (see Sect. 5.2 for its
specification),
- MotorStatus: the possible statuses of the motor,
- DoorPosition: the possible positions of the doors at the floors.
MotorStatus and DoorPosition are two simple enumeration data structures, for
which we use an ad hoc notation, writing their constructors separated by |.

We followed the cell filling method to find all the relevant properties of the
lift plant, see [12] for the complete spreadsheet, but here we show only the
content of one cell, precisely the one indexed by MotorUp:MotorUp.

incompat1

MotorUp incompatible with MotorStop

MotorUp incompatible with MotorDown

No two motor orders may be received simultaneously
pre-cond1

if MotorUp happen then motorStatus = stop and cabinPosition 6= top

The motor up order can be executed only when the motor is stopped and
the cabin is not at the top floor

post-cond1

if MotorUp happen then motorStatus ′ = up

The motor stop order is always correctly executed
vital1

if motorStatus = stop and cabinPosition 6= top then
in one case next MotorUp happen

If the motor is stopped and the cabin is not at the top floor, the motor up
order can be received

Then, the repeated formulae have been eliminated, after having checked the
absence of contradictions, and the others have been slightly rearranged to
improve readability. The properties on the motor and the cabin are detailed
below, while the others are given in the Appendix B.

– No two motor orders may be received simultaneously.
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MotorStop incompatible with MotorDown

MotorStop incompatible with MotorUp

MotorDown incompatible with MotorUp

– The motor stop order can always be executed, and it is always correctly
executed stopping immediately the cabin.
if MotorStop happen then

motorStatus ′ = stop and cabinPosition ′ = cabinPosition

– The motor stop order can always be received.
in one case next MotorStop happen

– The motor up/down order can be executed only when the motor is stopped
and the cabin is not at the top/ground floor (while the doors may be in any
position), and it is always correctly executed.
if MotorUp happen then

motorStatus = stop and cabinPosition 6= top and motorStatus ′ = up

if MotorDown happen then
motorStatus = stop and cabinPosition 6= ground and motorStatus ′ = down

– If the motor is stopped and the cabin is not at the top/ground floor, the
motor up/down order can be received.
if motorStatus = stop and cabinPosition 6= top then

in one case next MotorUp happen
if motorStatus = stop and cabinPosition 6= ground then

in one case next MotorDown happen
– The cabin changes position only if the motor is moving up/down.

if cabinPosition 6= cabinPosition ′ then
(cabinPosition ′ = next(cabinPosition) and motorStatus = up) or
(cabinPosition ′ = previous(cabinPosition) and motorStatus = down)

– If the motor is moving up/down, then the cabin changes position.
if motorStatus = up then

in any case next cabinPosition = next(cabinPosition)
if motorStatus = down then

in any case next cabinPosition = previous(cabinPosition)
– The motor changes its status only when it receives the corresponding order.

if motorStatus = stop and motorStatus ′ = up then MotorUp happen
if motorStatus = stop and motorStatus ′ = down then MotorDown happen
if motorStatus 6= stop and motorStatus ′ = stop then MotorStop happen

The complete specification of the lift plant given following our method (see
also Appendix B) may seem long, but we think that it is quite complete and
it shows all relevant information to build the software for handling it. For
example, such specification makes clear that
– sensors never break down,
– motor and doors cannot change status by themselves as a result of some
failure, and
– the plant takes care of some security checks, such as to avoid that the motor
goes up/down when the cabin is at the top/ground floor.
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3.4 Casl-Ltl View

Here we present the Casl-Ltl [27] corresponding version of the specification
of simple systems produced following our method introduced in Sect. 3.2. Let
Spec be a specification of simple systems having the form described in Fig. 2,
and assume that

• Spec.parts = {ds1 , . . . , ds j} are the parts, and DS1 , . . . , DSj the corre-
sponding Casl-Ltl specifications;

• Spec.e-features = {ei 1 , . . . , ein} are the elementary interactions;
• Spec.s-features = {so1 , . . . , som} are the state observers.

Below we give the Casl-Ltl specification corresponding to Spec. Notice that
the constructors and the operations may be partial, and this is denoted by a
‘?’, e.g., “soi .name : St × soi .argTypes →? soi .resType”.

spec ElemInter =
free type ElemInter ::=

ei1 .name(ei1 .argTypes) | . . . | ein .name(ein .argTypes)
spec Spec.name =

FiniteSet[ElemInter] and DS1 and . . . and DSj then
dsort St label FinSet[ElemInter ]
ops so1 .name : St × so1 .argTypes → so1 .resType

. . .
som .name : St × som .argTypes → som .resType

axioms
formulae corresponding to the cell fillings, defined below case by case

Label property: eIn1 incompatible with eIn2 if cond

the corresponding formula is

¬ (eIn1 = eIn2 ) ∧ cond ∧ S
L

−−→ S ′ ⇒ ¬ (eIn1 ∈ L ∧ eIn2 ∈ L)
State property: cond

the corresponding formula is obtained by adding S (a variable of sort St) as
extra argument to each state observer appearing in cond, and by replacing
the special temporal combinators as follows:

in any case . . . in any case(S , . . .)

in one case . . . in one case(S , . . .)

eventually eIn happen eventually < L • eIn ∈ L >

next eIn happen next < L • eIn ∈ L >

sometime eIn happened sometimes < L • eIn ∈ L >

before eIn happened before < L • eIn ∈ L >

Transition property: cond

the corresponding formula is S
L

−−→ S ′ ⇒ cond ′, where cond ′ is obtained
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from cond by adding S as an extra argument to each source state observer,
by adding S ′ as an extra argument to each target state observer, and by
replacing each atom of the form “eIn happen” with “eIn ∈ L”.

The Casl-Ltl version of the specification of the lift plant given in Sect. 3.3
is available in [12].

4 Specification of Structured Systems

4.1 Structured System Items

A structured system item is a specialization of the simple dynamic system of
Sect. 3; indeed it is a simple system made by several other dynamic systems,
its subsystems, which are either simple or in turn structured. We assume that
each subsystem is uniquely identified by some identity. A situation during
the life of a structured system is fully characterized by the situations of its
subsystems, and its (global) moves just consist of the simultaneous executions
of (local) moves of some of its subsystems.

The specification method for structured systems that we present here is a
specialization of that for simple systems (see Sect. 3). Thus also structured
systems will be modelled by labelled transition systems (lts); but in this case
their states will be sets of states of those lts’s modelling the subsystems, and
their transitions will correspond to simultaneous executions of sets of subsys-
tems transitions (the latter are named their components). To represent which
are their composing subtransitions, we need to enrich the labelled transitions
with an extra part containing such information. It is not appropriate to only
extend the labels of the transitions with the information about the subsys-
tems moves. Indeed, labels should model only the system interaction with
the outside world, and in many cases the subsystems moves are completely
transparent to outside, as, e.g., two subsystems exchanging a message between
themselves. Thus, to describe a given global transition we both need its label
(that is a set of elementary interactions visible from outside) and its informa-
tion part (on the subsystem moves that may not all be visible from outside).
For simplicity sake we do not consider here the case of subsystems that may
be created and destroyed dynamically, but there are no technical problems to
handle them.

Technically, it means that to model structured systems we use generalized
lts, that are lts specialized by adding an information part to each transi-
tion. Thus a generalized lts is a 4-uple (State,Label, Info,→), where →⊆
Info×State×Label×State, and Info is the set of the additional information at-
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—————————————————————————————————–

a sample state of SS (s1, . . . , s5 are respectively the states of A, . . . , E)

A:s1 B:s2 C:s3 D:s4 E:s5

a sample transition of SS (global transition/move) labelled by {X, Y}

{ e,f } { g,e } { h } { X,Y }

A:s1 B:s2 C:s3 D:s4 E:s5

A:s1’ B:s2’ C:s3’ D:s4 E:s5

info:

- its composing local transitions/moves

s1 s1’
{ e,f }

s2 s2’
{ g,e}

s3 s3’
{ h }

- its local interactions (the subsystems D and E do not take part in the global

move) A.e     A.f    B.g    B.e    C.h
- its (global) elementary interactions (i.e., of SS towards the outside result-

ing from the subsystem moves) X Y

- its (additional) information info = {  (A, e),   (A,f),  (B,g),  (B,e),   (C,h)  } 
—————————————————————————————————–
Fig. 8. Example of a structured system SS, with five subsystems, A, B, C, D and E

tached to the transitions. A generic transition is usually written info : x
l

−−→ y .
The additional information for the generalized lts modelling the structured sys-
tems, which must represent the composing subtransitions, will be sets of pairs
made by a subsystem identity (the subsystem performing the subtransition)
and by an elementary interaction (belonging to the label of the subtransition).
We name these pairs local elementary interactions, shortly local interactions
from now on. We exemplify the concepts introduced so far in Fig. 8.

To take into account the role played by the subsystems in the moves of the
structured systems, we consider also the local interactions as their constituent
features. Structured systems have also a new kind of parts, the composing sub-
sytems, which may be either simple or in turn structured. Structured systems
have special state observers returning the states of the subsystems, which are
denoted by the subsystem identities themselves (we do not need to declare
them, since they are implicitly determined by the subsystem declarations.)
Notice that, however, we need also other state observers. Indeed, our spec-
ifications are usually at a quite abstract level and we may want to observe
something on the structured system states without knowing which subsys-
tems (and in which way) contribute to this observation. An example may be
an observer checking if there is an error in the system, when we do not know
anything about the error situations of the single subsystems.

We summarize the parts and the constituent features of structured systems in
Fig. 9.
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subSyst-parts

Simple system Data structure
d-parts

Elementary interaction

features

1..*

State  observer

*

Structured system

1..*

Local  interaction

Constituent  feature

Fig. 9. Structured system item

*

**

State observer definition

Elementary interaction 
definition

Structured system specification

name: String

d-partss-features

e-features
1..*

subsyst-Specs
1..*

subsystems

Subsystem

id: Ident
type: StringProperty

properties
*

System 
specification

Data structure specification

Fig. 10. Structured system specification

Configuration

Name

Syst 1

Syst p

....
Data1

Data r

....
s-features

e-features

Fig. 11. Visual presentation of a structured system: parts and constituent features

4.2 Specification of structured systems

We assume that a structured system may have many subsystems of the same
type (i.e., whose specification is the same), and that they are identified by ele-
ments of a special data structure IDENT (standard identifiers). Thus to specify
the subsystem parts it is sufficient to give the subsystem specifications, and
for any subsystem its identity and its type, i.e., the name of its specification.
The local interactions are implicitly determined after we have given the sub-
systems, and so they do not need to be explicitly specified. The form of a
specification of a structured system is then summarized in Fig. 10.

Fig. 11 presents how to visually depict the parts and the constituent features
of a structured system specification. In this picture Syst1 , . . . , Systp are the
names of the subsystem specifications, given apart, and Configuration is a visual
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Elementary interaction

incompat1: Set(LabelProp)
pre-cond1: Set(TransitionProp)
post-cond1: Set(TransitionProp)
vital1: Set(StateProp)
loc-glob1: Set(TransitionProp)

Two elementary 
interactions

State observer

Elementary interaction 
and state observer

Cell  schema

Elementary interaction 
and  local interaction 

loc-glob2: Set(TransitionProp)

Local interaction and 
state observer

pre-cond2: Set(TransitionProp)
post-cond2: Set(TransitionProp)
vital2: Set(StateProp)

Two local interactions

synchr2: Set(TransitionProp)

Local interaction

synchr1: Set(TransitionProp)
pre-cond3: Set(TransitionProp)
post-cond3: Set(TransitionProp)
vital3: Set(StateProp)
loc-glob3: Set(TransitionProp)

Two state observers

Fig. 12. Structured system cell schemas

presentation of which are the subsystems 8 . A subsystem is represented by a
rounded box containing its identity and type, that is the name of the corre-

sponding specification. We use the notation ID1: SysT ...... IDn: SysT
constraint on n

to represent a set of subsystems of type SysT made by n elements with n
satisfying some constraint. In the particular case where there is just a unique
element of a type we can drop the subsystem identity and write only the type
name; thus the subsystem will be named as the type.

Structured systems have a new kind of constituent features, the local inter-
actions, so we have new types of cells to be filled; moreover local interactions
should be considered also when defining the schemas for the cells already used
for simple systems. The state observers corresponding to subsystem states
should be considered as the others, with the corresponding cells.

To model structured systems, we upgraded lts’s to generalized lts, which dif-
fer for the additional information part of the transitions (the set of the local
interactions). Now, we consequently upgrade the properties on the transitions
(see Sect. 3.2) with new atoms “locIn happen” (where locIn is a local inter-
action) which express that locIn belongs to the set of the local interactions
of that transition. More precisely, locIn happen holds on a transition of a

generalized lts “inf : x
l

−−→ y” iff locIn ∈ inf. The new properties will allow us
to take into account the local interactions when expressing the properties of
the various cells.

In Fig. 12 we present the schemas for the cells needed to specify a structured
system; there the undetailed “boxes” refer to Fig. 4 of Sect. 3.2, as well as
the slots that are not redefined here. Clearly, for the parts already defined
in Sect. 3.2, here we must consider also the local interactions together with

8 As in Fig. 3 of Sect. 3.2 DATAi are the parts, s-features are state observers de-
scriptions, and e-features elementary interactions descriptions.
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—————————————————————————————————–

synchr1 (transition property) Under some condition, an instantiation of sid.ei is/
is not synchronized (i.e., executed simultaneously) with another local interaction,
i.e., one is a component of a global transition iff the other also is/is not so; clearly
the two local interactions are performed by different subsystems.

if sid.ei(arg) happen and cond(arg,locIn) then locIn happen
or
if sid.ei(arg) happen and cond(arg,locIn) then not locIn happen

loc-glob3 (transition property) If an instantiation of sid.ei is a component of a
global transition, then, under some condition, the label of this global transition
must contain some elementary interaction, or vice versa.

if sid.ei(arg) happen and cond(arg,eIn) then eIn happen
or
if eIn happen and cond(arg,eIn) then sid.ei(arg) happen

pre-cond3 , post-cond3 , vital3 defined as the homonymous slots for simple sys-
tem, but where the elementary interaction is replaced by the local interaction.

—————————————————————————————————–
Fig. 13. Local interaction (sid.ei) cell schema

—————————————————————————————————–

synchr2 (transition property) Under some condition, an instantiation of sid 1 .ei1
is/is not synchronized with an instantiation of sid 2 .ei2 , i.e., one is a component
of a global transition iff the other also is/is not so; clearly the two instantiations
are performed by different subsystems.

if sid1 .ei1 (arg1 ) happen and cond(arg1 ,arg2 ) then sid2 .ei2 (arg2 ) happen
or
if sid1 .ei1 (arg1 ) happen and cond(arg1 ,arg2 ) then

not sid2 .ei2 (arg2 ) happen

—————————————————————————————————–
Fig. 14. Two local interactions (sid 1 .ei1 ,sid2 .ei2 ) cell schema

elementary interactions in the state and transition properties. The schemas
for the new cells are reported in Fig. 13 and 14, and in Appendix C.

4.3 Example: Specification of a Lift System

The lift system consists of the lift plant, see Sect. 3.3 and of the automated
software controller; and, thus it is a structured system. Here we use our method
to express its relevant properties, which are mainly about how its subparts
influence each other. The produced specification may be considered as a precise
definition of the requirements on the controller, stating precisely how it will

23



affect and interact with the lift plant.

LiftSystem

LP: LiftPlant CN: Control ControlLiftPlant

CALL(Floor)

The above picture shows the parts and the constituent features of the lift
system. The subsystems are the plant and the controller, and both of them are
simple systems; whereas the used data structures are those of the subsystems
and so we do not repeat them. The specification of the lift plant, LiftPlant,
has been given in Sect. 3.3 and that of the controller is here; the elementary
interaction Call corresponds to receive a call for a floor.

Control
CABINPOSITION(Floor)
OPENDOOR(Floor), CLOSEDOOR(Floor)
DOORPOSITION(Floor, DoorPosition)
MOTORUP,  MOTORDOWN,  MOTORSTOP
MOTORSTATUS (MotorStatus)
USERINSIDE( Bool)
CALL(Floor)

Floor

MotorStatus

down   |  up   |  stop

DoorPosition

open  |  closed

Notice that this specification has no properties, because in this case the re-
quirements concern only the effects of the controller on the lift plant, and not
its precise behaviour.

The lift system interacts with its outside world only by receiving from the users
calls for a given floor; thus it has a unique elementary interaction Call. No
state observer different from those observing the states of the two subsystems
is needed, and so the other compartment is empty. We followed the cell filling
method to find all the relevant properties of the lift system reported below,
see [12] for the complete spreadsheet.

The calls for a floor are received by the controller.
Call(f ) happen iff CN.Call(f ) happen
Any received call for a given floor will be eventually satisfied in any case
if Call(f ) happen then in any case eventually

LP.cabinPosition = f and LP.motorStatus = stop and
LP.doorPosition(f ) = open

In any case eventually the lift system will be able to receive a call for a given floor
in any case eventually in one case Call(f ) happen

All the remaining properties state that local interactions with the same name
of the lift plant and of the controller are synchronized. We give just an example
of such properties, the one concerning stopping the motor.

LP.MotorStop happen iff CN.MotorStop happen
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4.4 Casl-Ltl View

Here we present the Casl-Ltl corresponding version of our specification of
structured systems introduced before in Sect. 4.2. The only difference with
the case of the simple system of Sect. 3.4 is that now we use generalized
lts, however Casl-Ltl offers also a special construct to declare that three
sorts correspond to the states, the labels and the additional information of a
generalized lts together with a standard arrow predicate corresponding to the
transition relation.

dsort St label Lab info I stands for
sorts St, Lab, I
pred : −−→ : I×St×Lab×St

Let Spec be a specification of structured systems having the form described
in Fig. 10, and assume that

• Spec.d-parts = {ds1 , . . . , ds j} are the data parts, and DS1 , . . . , DSj the
corresponding Casl-Ltl specifications;

• Spec.subsyst-Specs = {ssp1 , . . . , sspk} are the subsystem specifications,
SSP1 , . . . , SSPk are the corresponding Casl-Ltl specifications, and
ElemInter1 , . . . , ElemInterk are the specifications of their elementary
interactions;

• Spec.e-features = {ei1 , . . . , ein} are the (global) elementary interactions;
• Spec.s-features = {so1 , . . . , som} are the state observers;
• Spec.subsystems = {ss1 , . . . , ssr} are the subsystems.

Below we give the Casl-Ltl specification corresponding to Spec, where
ElemInter has been defined as in Sect. 3.4.

spec LocalInter =
ElemInter1 and . . . and ElemInterk and Ident then
free type SubElemInter ::= (ElemInter1 ) | . . . | (ElemInterk )
free type LocalInter ::= < , > (Ident,SubElemInter)

spec Spec.name =
FiniteSet[ElemInter] and FiniteSet[LocalInter] and
DS1 and . . . and DSj and SSP1 and . . . and SSPk then
dsort St label FinSet[ElemInter ] info FinSet[LocalInter ]
ops so1 .name : St × so1 .argTypes → so1 .resType %% state observers

. . .
som .name : St × som .argTypes → som .resType
ss1 .id : St → ss1 .type %% observers of the subsystem states
. . .
ssr .id : St → ssr .type

axioms
formulae corresponding to the cell fillings, see below
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For the properties on structured systems we have used a new kind of transition
properties, and so here we give how to transform them in Casl-Ltl. Similarly
to what was done in Sect. 3.4, a transition property cond is transformed into

inf : S
L

−−→ S ′ ⇒ cond’, where cond’ is obtained from cond by adding S
as an extra argument to each source state observer, by adding S ′ as an extra
argument to each target state observer, and by replacing each atom of the form
“eIn happen” with eIn ∈ L, and each atom of the form “locIn happen” with
locIn ∈ inf.

The Casl-Ltl version of the specification of the lift system given in Sect. 4.3
can be found in [12].

5 Specification of Data Structures

5.1 Data Structure Items and Specifications

A data structure consists of a set of values, some constructors for denoting
them, some operations and predicates. The constructors, the operations and
the predicates may also have arguments of other types, thus a data structure
may have other data structures as subparts. Constructors and operations may
be total (always defined), or partial. Constructors and operations may be
constants (considered as 0-ary operations), and constants are always total.

In our setting the data structures are seen formally as many sorted algebras,
or structures, and the modelling is quite trivial: the carriers model the set of
values, and functions (of course of different kinds) model constructors, oper-
ations and predicates. Thus, data structures may be characterized by their
constructors, operations and predicates, and so they will have three corre-
sponding kinds of constituent features. Below we summarize the constituent
features and parts of the data structures.

Data structure

parts

features

1..*

*

Operation

Constituent feature

Constructor Predicate

The specification method for data structures we propose is a specialization
of GPSm introduced in Sect. 2.2. The form of the resulting specifications
is reported in Fig. 15. The parts and the constituent features are visually
presented as shown in Fig. 16, where DATA1 , . . . , DATAr are the parts, c-features

describe constructors as name(argTypes) (name(argTypes)? if partial), p-features
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Data structure specification

name: String

*

Data structure specification

parts

* *

Constructor definition

name: String
argTypes:Sequence(Type)

c-features

Property

properties
*

Predicate definition

name: String
argTypes:Sequence(Type)

p-features
*

Operation definition

name: String
argTypes:Sequence(Type)
resType: Type

o-features

Fig. 15. Data Structure Specification

p-features

Name

c-features

o-features

....

Data1

Data r

Fig. 16. Visual presentation of a data structure: parts and constituent features

describe predicates as name(argTypes), and o-features describe operations as
name(argTypes): resType (name(argTypes):? resType if partial).

The properties correspond to first-order formulae and are determined using
the cell filling approach. The constituents of data structures are of three kinds,
constructors, predicates and operations, and so we have to consider nine kinds
of cells; and we present their schemas in Fig. 17, and the details in Fig. 18
and 19, and in Appendix D. Let us note that, as regards constructors and
operations, the properties to be described should in particular address both
definedness and the values denoted/returned.

In Casl, “=” is the strong equality, characterized by the fact that t = t ′ iff
either both terms are defined and denote the same value or both are undefined.
Thus a property t = t ′ in the case t is defined implicitly requires also that t ′

must be defined. In order to avoid the undefined case, the premises of many
properties used in the cell schemas require the definedness of all the elements
involved in the property, thus their form is

if ( and t is a term appearing in cond def(t)) then cond.

Because properties having the above form may be quite long, they are usually
written in a more compact way as:

when all defined cond
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Constructor

def1: Set(FOProp)
ident1: Set(FOProp)
valueOn1: Set(FOProp)
truthOn1: Set(FOProp)

Two constructors

ident2: Set(FOProp)

Two operations

value-value2: Set(FOProp)

Operation

def2: Set(FOProp)
value1: Set(FOProp)
valueOn3: Set(FOProp)
truth-value1: Set(FOProp)
value-value1: Set(FOProp)

Constructor 
 and operation

valueOn2: Set(FOProp)

Cell  schema

Predicate

truth1: Set(FOProp)
truthOn3: Set(FOProp)
truth-truth2: Set(FOProp)
truth-value3: Set(FOProp)

Constructor  and  
predicate

truthOn2: Set(FOProp)

Operation  and  
predicate

truth-value2: Set(FOProp)

Two predicates

truth-truth1: Set(FOProp)

Fig. 17. Data structure: cell schemas

—————————————————————————————————–

ident2 Values represented by con1 are/are not identified with values represented
by con2

when all defined cond

where cond includes atoms of the form con1 (arg1 ) = con2 (arg2 ) or
not con1 (arg1 ) = con2 (arg2 )

—————————————————————————————————–
Fig. 18. Two constructors (con1 ,con2 ) cell schema

—————————————————————————————————–

truth-value2 Relationships between the truth of pr and the values returned by
op

when all defined cond

where cond includes atoms of the form pr(arg 1 ) and of the form op(arg2 )
—————————————————————————————————–

Fig. 19. Operation (op) and predicate (pr) cell schema

5.2 Example: Specification of Floor

We specify the Floor data structure used in the lift related examples (Sect. 3.3
and 4.3).

_ above _(Floor,Floor)

Floor

ground,  top

next(Floor): ? Floor
previous(Floor): ? Floor

The above picture shows that the constructors are ground and top, the pred-
icate is above, and the (partial) operations are next and previous. Moreover,
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Floor does not use any other data structure, thus there are no parts. The
properties given below were worked out using our cell filling approach, then
redundant properties were removed and the result was reorganized, see [12]
for the complete presentation of the cell contents.

– There exists a ground and a top floor, and they are different.
ground 6= top

– above is total order over the floors with top as maximum and ground as
minimum.
top above ground

not exists f s.t. ground above f or f above top

f1 = f2 or f1 above f2 or f2 above f1
not f above f

if f1 above f2 then not f2 above f1
if f1 above f2 and f2 above f3 then f1 above f3

– next returns the floor immediately above a given one, if it exists, i.e., there
is no floor between f and next(f ).
not def(next(top))
def(next(ground)) and next(ground) 6= ground

def(next(f )) iff top above f

when all defined next(f ) above f and
(not exists f1 • (next(f ) above f1 and f1 above f )) and
next(previous(f )) = previous(next(f )) = f

– Properties on previous are similar to those of next, and are given in Ap-
pendix E.

5.3 Casl View

Here we present the Casl 9 corresponding version of our specification of data
structures introduced in Sect. 5.1.

Let Spec be a specification of data structures having the form described in
Fig. 15, and assume that

• Spec.parts = {ds1 , . . . , ds j} are the parts, and DS1 , . . . , DSj the corre-
sponding Casl specifications;

• Spec.c-features = {con1 , . . . , conn} are the constructors;
• Spec.o-features = {op1 , . . . , opm} are the operations;
• Spec.p-features = {pr 1 , . . . , pr p} are the predicates.

Below we give the Casl specification corresponding to Spec (some construc-
tors and operations may be partial, which is denoted by adding a ‘?’, cf.
Sect. 1.2).

9 Here we do not need to use the Casl-Ltl extension.
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spec Spec.name =
DS1 and . . . and DSj then
type Spec.name ::= con1 .name(con1 .argTypes) | . . . | conn .name(conn .argTypes)
ops op1 .name : op1 .argTypes → op1 .resType

. . .
opm .name : opm .argTypes → opm .resType

preds pr1 .name : pr1 .argTypes
. . .
prp .name : prp .argTypes

axioms
formulae corresponding to the cell fillings

The Casl formulae corresponding to the cell fillings for data structures are
quite obvious, since their abstract structure is the same, the only difference is
in the concrete syntax.

The Casl version of the specification of the floor data structure given in
Sect. 5.2 can be found in [12].

6 Conclusions, Related and Further Work

In this paper we have presented an attempt to design a basis for software
development methods that are formally grounded, shortly FG, by giving the
FG methods for the basic modelling/specification tasks. By formally grounded
we mean methods

– which have all the good properties of those commonly used (using friendly
notation based on simple intuitive visual metaphors, easy to understand
and to learn, relevant for real applications, . . . ),

– but where any used model/specification has a direct formal semantics (not
to be shown to the users) based on well defined underlying formal models,

– and also where the pragmatic characteristics of the first point have been
determined by the underlying formal foundations.

Notice that by formally-grounded we intend more than just to have a formal
semantics. We mean that the underlying concepts are reflected in the method
and used as such (although they are distilled to the potential user through
precise methodological guidelines and nice visual notations).

As a formal basis for grounding our methods we have chosen the algebraic
specification language Casl [24] and its extension for behavioural/dynamic
specifications Casl-Ltl [27]. Reasons for this choice are that from works on
algebraic specifications, “foundations have been laid down for a neat formal
treatment of requirement and design specifications, including neat semantics”
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[6]. Then, the Casl language, resulting from a common effort of the scien-
tific community in this area, “encompasses all previously designed algebraic
specification languages, has a clean, perfectly designed semantics” [6].

Our intention was to investigate if this idea is feasible, and so we proceeded
in a quite systematic way, so as to handle any possible case and to exhibit
how to produce the specifications (we do not just to give some sample FG

specifications). Our previous experiences suggested that the various activities
in a development process are based on the “building-bricks” tasks of specify-
ing/modelling software artifacts of different nature at different levels of ab-
stractions. So we designed methods for specifying/modelling data structures,
simple systems (just dynamic interacting entities in isolation, e.g., sequen-
tial processes), and structured systems (communities of mutually interacting
entities, simple or in turn structured). We also addressed two kinds of spec-
ifications, the more abstract property-oriented ones, presented here, and the
more concrete constructive ones presented in [15]. To present our specification
methods for these different cases, we have followed the conceptual schema of
[3], where the distinction between the chosen specification formalism and all
the other ingredients are explicitly presented.

To try to evaluate the strength and the applicability of our proposal we have
used three of the M. Jackson problem frames [21] as a kind of benchmark (see
[14, 15]). The result of this experiment is that all the specifications required
to cope with these problem frames (i.e., specifications concerning the problem
domain, the requirements and the design) can be given using our method. For
each case, all relevant aspects of the frame may be satisfactorily expressed,
through user friendly presentations, while the corresponding underlying formal
specifications, suitable for possible formal analysis, are available.

We have made another experiment concerning the specification of the require-
ments for an application for running Internet based lotteries [15]. The same
case study has been used by one of the authors to present a UML-based precise
method [5], quite different from the RUP [26].

In this paper we propose some methods grounded in a formal notation, with
the aim of having some of the benefits of using formal methods available within
practical usual development methods, trying to reduce the impact of all the
well-know disadvantages of their use (as exotic notation, and hard underlying
formal concepts based on complex mathematics). This approach is quite new
and so there are not, for what we know, similar approaches, except for works
by the authors, as the JTN (a formally grounded visual notation for the design
of Java targeted applications see [16]); see also [6] for further considerations
on our view of the relationships between formal and practical used methods.
However, we would like to mention works that address issues complementary to
ours, e.g., how to write readable specifications in Casl [32], avoiding semantic
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pitfalls (also addressed in the Casl reference manual [9]), how to use/combine
observability concepts for writing specifications [8], guidelines for the iterative
and incremental development of specification [10]. As regards the combination
of static and dynamic views in a specification, [18] distinguishes several layers,
[13] elaborate on how to combine these views for complex systems.

Most of the work in the literature concerning the combination of formal meth-
ods with practical ones follows different approaches. A lot of approaches match
the following pattern “take some practical more or less precise notation, e.g.,
UML, select a subset (usually small) of it, give this subset a formal semantics
either directly or by translation into some formal notation”. In many cases the
final aim is to allow to use the good verification/validation tools associated
with the chosen formalism. For example, for what concerns UML this pattern
may be found instantiated with a large variety of formalism (we just cite one
nice paradigmatic example [22], for more references look at [30]). A more re-
cent pattern is the following “select a subset of the specifications given using
some formalism and show that they correspond/can be presented as particular
UML diagrams” (e.g., see [7]). The main differences of these approaches with
ours is that they usually handle a particular kind of specifications applicable
to particular problems to be able to use tools to automatically do some checks
on the specifications.

M. Heisel introduced the interesting concept of specification development
agendas that provide a list of tasks to be done, together with validation con-
ditions to be used to check what is achieved [19].

In [20], M. Heisel and J. Souquières use this agenda concept together with a
requirement elicitation approach, using Z for formal specification, and they
also use a lift example. Their approach requires to (i) introduce the domain
vocabulary, (ii) identify relevant operations and events, (iii) state facts, as-
sumptions and requirements, (iv) then formalise them as constraints on events
traces. Their approach shows how to incrementally develop the specification,
by taking into account the requirements one by one. We can observe that the
properties they express come from the facts, assumptions and requirements,
that may be described at a detailed level, while in the work we present here
guidelines are provided to find the relevant properties through the tableau
cell description. We also introduce some help in structuration by distinguish-
ing simple and structured systems, and datatypes.

On another side, many aspects of our FG specifications methods are quite
general and not strictly related to Casl, Casl-Ltl and in general to the al-
gebraic specifications, as, for instance, the general GPSm method for property
oriented specifications. So we would like to investigate whether it is possible
to build other FG specification methods starting from different formal basis.
We think that this can be done if we choose some formalism based on other
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formal models as stream processing functions (instead of labelled transition
systems) as the one in [11]. For what concerns the general GPSm method for
property oriented specifications, we are working to see if it can be to adapted
also to produce UML models, or models on a (quite substantial) UML subset
to which a formal semantics may be given.

Clearly, to be able to promote the use our proposed FG methods we need to
develop supporting software tools. Such tools should consist of a graphical
editor helping to prepare the visual specifications, of a type checker signalling
all static errors, and of wizards implementing the proposed guidelines, this will
be really important for the GPSm method, and obviously of a part offering
the possibility to generate the underlying corresponding formal specifications.
Such tools do not pose any particular problem, and can be developed using
the current technology, only given the necessary material resources. Instead,
we do not plan the development of any specific tool for verification and or
validation, the existing tools for the underlying specifications may be used.
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A Simple system, cell schemas

—————————————————————————————————–
incompat2 (label property) If their arguments satisfy some conditions, then an

instantiation of ei1 and one of ei2 are incompatible, i.e., no label of a transition
may contain both

ei1 (arg1 ) incompatible with ei2 (arg2 ) if cond(arg1 ,arg2 )
—————————————————————————————————–

Two elementary interactions (ei 1 ,ei2 ) cell schema

—————————————————————————————————–
value3 (state property) The results of the observation made by so 1 and so2 on a

state must satisfy some conditions

cond, where both so1 and so2 must appear in cond
—————————————————————————————————–

Two state observers (so1 ,so2 ) cell schema

—————————————————————————————————–
pre-cond2 (transition property) If the label of a transition contains some instan-

tiation of ei, then the result of the observation made by so on the source state of
the transition must satisfy some condition.

if ei(arg) happen then cond(arg)
where source state observer so must appear in cond(arg) and the target state
observers cannot appear in cond(arg)

post-cond2 (transition property) If the label of a transition contains some instan-
tiation of ei, then the result of the observation made by so on the target state of
the transition must satisfy some condition.

if ei(arg) happen then cond(arg)
where the target state observer so ′ must appear in cond(arg) and the source state
observers may appear in cond(arg)

vital2 (state property) If the result of the observation made by so on a state
satisfies some condition, then any path (sequence of transition) starting from it
will eventually contain a transition whose label contains an instantiation of ei.
Note that in these properties in any case may be replaced by in one case and
eventually by next.

if cond(arg) then in any case eventually ei(arg) happen
where so must appear in cond(arg)

—————————————————————————————————–
Elementary interaction (ei) and state observer (so) cell schema
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B Example: Fragment of a Specification of a Lift plant

On the sensors

The sensors cannot communicate two different data simultaneously;
recall that in the property ”X incompatible with Y” it is implicitly assumed
that ”X” is different from ”Y”.
CabinPosition(f1 ) incompatible with CabinPosition(f2 )
DoorPosition(f,dps1 ) incompatible with DoorPosition(f,dps 2 )
MotorStatus(ms1 ) incompatible with MotorStatus(ms2 )
UserInside(b) incompatible with UserInside(b ′)

The sensors always communicate the correct data.
if CabinPosition(f ) happen then cabinPosition = f

if DoorPosition(f,dps) happen then doorPosition(f ) = dps

if MotorStatus(ms) happen then motorStatus = ms

if UserInside(b) happen then b= (usersInside 6= 0)

The sensors never break down,
thus they are always able to communicate the correct data.
in one case next CabinPosition(cabinPosition) happen
in one case next DoorPosition(f,doorPosition(f )) happen
in one case next MotorStatus(motorStatus) happen
in one case next UserInside(usersInside 6= 0) happen

The sensors and the devices for receiving the orders are independent,
that is they can send their data and receive the orders also simultaneously.

On the doors

No two door orders may be received simultaneously.
OpenDoor(f1 ) incompatible with OpenDoor(f2 )
OpenDoor(f1 ) incompatible with CloseDoor(f2 )
CloseDoor(f1 ) incompatible with CloseDoor(f2 )

The open door at floor f order can be executed only when the motor is stopped,
the cabin is at floor f, and the doors at all the other floors are closed
(thus also if the door at f is already open), and it is always correctly executed.
if OpenDoor(f ) happen then

motorStatus = stop and cabinPosition = f and
(for all f ′ • if f 6= f ′ then doorPosition(f ′) = closed) and
doorPosition ′(f ) = open

Whenever the open door order may be executed, it can be received
if motorStatus = stop and cabinPosition = f and

(for all f ′ • if f 6= f ′ then doorPosition(f ′) = closed) then
in one case next OpenDoor(f ) happen
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The close door at floor f order can be executed only when the motor is stopped and
the cabin is at floor f (thus also if the door at f is already open),
and it is always correctly executed.
if CloseDoor(f ) happen then

motorStatus = stop and cabinPosition = f and doorPosition ′(f ) = closed

Whenever the close door order may be executed, it can be received.
if motorStatus = stop and cabinPosition = f then

in one case next CloseDoor(f ) happen

The door at floor f can be open only when the cabin is at f.
if doorPosition(f ) = open then cabinPosition = f

The door at f becomes closed/open only if the corresponding order is executed.
if doorPosition(f ) = open and doorPosition ′(f ) = closed then

CloseDoor(f ) happen
if doorPosition(f ) = closed and doorPosition ′(f ) = open then

OpenDoor(f ) happen

On the users inside the cabin

The physical limits of the cabin is five persons.
usersInside ≥ 0 and usersInside ≤ 5

User may enter/leaving the cabin only when the cabin is stopped at a floor
with open doors.
if usersInside 6= usersInside ′ = then

exists f s.t. doorPosition(f ) = open and
cabinPosition = f and motorStatus = stop

It is assumed that in any case eventually the users will leave the cabin;
this information helps understand the typical user behaviour.
if usersInside 6= 0 then in any case eventually usersInside = 0
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C Structured system, cell schemas

—————————————————————————————————–
loc-glob1 (transition property) If a global transition is composed of some local

interactions, then, under some condition, an instantiation of ei belongs to the
label of this global transition; or vice versa, i.e., if an instantiation of ei belongs to
the label of a global transition, then, under some condition, this global transition
is composed of some local interactions.

if locIn1 , . . . , locInn happen and cond(arg,locIn1 ,. . . ,locInn ) then
ei(arg) happen

or
if ei(arg) happen and cond(arg,locIn1 ,. . . ,locInn ) then

locIn1 , . . . , locInn happen

incompat1 , pre-cond1 , post-cond1 , vital1 defined as in Sect. 3.2
—————————————————————————————————–

Elementary interaction (ei) cell schema

—————————————————————————————————–
loc-glob2 (transition property) If an instantiation of sid.ei is a component of a

global transition, then, under some condition, the label of this global transition
must contain an instantiation of ei 1 , or vice versa.

if sid.ei(arg) happen and cond(arg,arg 1 ) then ei1 (arg1 ) happen
or
if ei1 (arg1 ) happen and cond(arg,arg1 ) then sid.ei(arg) happen

—————————————————————————————————–
Elementary interaction (ei 1 ) and local interaction (sid.ei) cell schema

—————————————————————————————————–
pre-cond2 , post-cond2 , vital2 defined as the homonymous slots for simple sys-

tem, but where the elementary interaction is replaced by the local interaction.
—————————————————————————————————–

Local interaction (sid.ei) and state observer (so) cell schema
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D Data structures, cell schemas

—————————————————————————————————–
def1 Conditions on the definedness of con (required only for partial constructors)

cond, where cond includes atoms of the form def(con(arg))

ident1 Values represented by con are/are not identified with those represented by
other constructors

when all defined cond,

where cond includes atoms of the form con(arg) = con ′(arg ′) or
not con(arg) = con ′(arg ′), for some constructor con ′

valueOn1 Conditions on the values returned by the application of operations to
values represented by con

when all defined cond,

where cond includes terms of the form op(con(arg)), for some operation op

truthOn1 Conditions on the truth of predicates over the values represented by
con

when all defined cond,

where cond includes atoms of the form pr(con(arg)), for some predicate pr
—————————————————————————————————–

Constructor (con) cell schema

—————————————————————————————————–
valueOn2 Conditions on the values returned by the application of op to values

represented by con

when all defined cond, where cond includes terms of the form op(con(arg))
—————————————————————————————————–

Constructor (con) and operation (op) cell schema

—————————————————————————————————–
truthOn2 Conditions on the truth of pr over values represented by con

when all defined cond, where cond includes atoms of the form pr(con(arg))
—————————————————————————————————–

Constructor (con) and predicate (pr) cell schema

—————————————————————————————————–
value-value2 Relationships between the value returned by op1 and those returned

by op2

when all defined cond

where cond includes atoms of the form op1 (arg1 ) and of the form op2 (arg2 )
—————————————————————————————————–

Two operations (op1 ,op2 ) cell schema

40



—————————————————————————————————–
def2 Conditions on the definedness of op (required only for partial operations)

cond, where cond includes atoms of the form def(op(arg))

value1 Conditions on the values returned by op

when all defined cond, where cond includes terms of the form op(arg)

valueOn3 Conditions on the values returned by the application of op to values
represented by constructors

when all defined cond,

where cond includes terms of the form op(con(arg)), for some constructor con

truth-value1 Relationships between the value returned by op and the truth of
predicates

when all defined cond

where cond includes atoms of the form op(arg 1 ) and of the form pr(arg2 ) for
some predicate pr

value-value1 Relationships between the value returned by op and those returned
by other operations

when all defined cond

where cond includes atoms of the form op(arg 1 ) and of the form op ′(arg2 ) for
some opertion op ′

—————————————————————————————————–
Operation (op) cell schema

—————————————————————————————————–
truth-truth2 Relationships between the truth of pr 1 and that of pr 2

when all defined cond

where cond includes atoms of the form pr 1 (arg1 ) and pr2 (arg2 )
—————————————————————————————————–

Two predicates (pr 1 ,pr 2 ) cell schema
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—————————————————————————————————–
truth1 Conditions on the truth of pr

when all defined cond, where cond includes atoms of the form pr(arg)

truthOn3 Conditions on the truth of pr over the values represented by some con-
structor

when all defined cond,

where cond includes atoms of the form pr(con(arg)), for some constructor con

truth-truth2 Relationships between the truth of pr and that of other predicates

when all defined cond

where cond includes atoms of the form pr(arg) and pr ′(arg ′), for some predicate
pr ′

truth-value3 Relationships between the truth of pr and the values returned by
the operations

when all defined cond

where cond includes atoms of the form pr(arg) and of the form op(arg ′), for some
operation op

—————————————————————————————————–
Predicate (pr) cell schema

E Example: Fragment of a Specification of Floor

This example is given in Sect. 5.2 where the properties of previous given below
were skipped. previous returns the floor immediately below a given one, if it
exists, i.e., there is no floor between previous(f ) and f.

not def(previous(ground))
def(previous(top)) and previous(top) 6= top

def(previous(f )) iff f above ground

when all defined f above previous(f ) and
(not exists f1 • (f1 above previous(f ) and f above f1 )) and
next(previous(f )) = previous(next(f )) = f
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