
A pattern-based approach for information systems
specification and developement

Christine Choppy Maritta Heisel
LIPN—Université Paris 13 FB Ingenieurwissenschaften

99 Av. J.-B. Clément Universität Duisburg-Essen

93430 Villetaneuse, France D-47048 Duisburg, Germany

Christine.Choppy@lipn.univ-paris13.fr Maritta.Heisel@uni-duisburg-essen.de

Abstract : Patterns such as problem frames and architectural styles are used here to support the
formal specification and the development of information systems. New problem frames specific
to information systems are proposed to describe identified sub-problems and to help the formal
specification task. Recomposition is achieved through a component based approach and an ar-
chitectural style that puts together the different components. We propose an original method to
guide this process, taking advantage of UML concepts for thefirst decomposition level, then using
patterns. These ideas are illustrated with a case study.
Keywords : information systems specification and developement, problem frames, architectural
styles, components, formal specification.

1 Motivation

It is acknowledged that the first steps of software development are essential to reach the best pos-
sible adequation between the expressed requirements and the proposed software product, and to
eliminate any source of error as much as possible. Thus, to start with, emphasis is put on a precise
and unambiguous expression of requirements. There are several possible approaches for this aim,
that have respective advantages and drawbacks. The UML notation [UML] has the advantage of
being widespread, of concepts proved satisfactory in the industrial world, of graphic notations, and
the drawback of lacking a formal semantics (which could put alimit to any methodological guide
. . .). Formal specifications alleviate this problem, and given their precise expression, lead one to
raise the questions that yield progress in the problem understanding. The remaining pitfall is the
size and/or the complexity, that makes it difficult to get a synthetic understanding, and may yield
misleadings. Patterns offer families of frequently met structures that the user is invited to “try”
(or even to adapt) on the problem to be solved, so as to benefit from “ready to wear” structuring
concepts. Patterns may thus be viewed as an elaborated mean of reusing knowledge acquired from
experience. Problem frames [Jac01] are proposed by M. Jackson to provide a global structure to
problems. Architectural styles [GS93, BCK98] bring structures of a finer granularity that are often
usable at the design level. The component based architecture [CD01] enables one to specify how
the components (that, according to structuration concepts, should be developed independently)
should eventually be integrated. It may be desirable to combine these approaches so as to benefit
from their combined advantages, so our purpose here is to present the corresponding approach we
developed for information systems. Our attention was drawnto this class of problems that covers
numerous applications because we thought that the problem frame schemas proposed by Jackson
do not present a fully convenient structuration for these. The approach that we present here may

be valid in a more general case, but we finalized it particularly for this class of problems. After
proposing problem frames that are specific for information systems (for queries and updates), we
describe our approach (Figure 1) that offers a methodological guide and indicates how to system-
atically link contributions from (i)use casesandscenarioscurrently used to express requirements,
(ii) problem framesthat allow one to identify problem structures to whichformal specifications
of the different structure parts may be associated, (iii)component architectureto recompose the
different developed components.

REQUIREMENTS
REQUIREMENTS SPECIFICATION

COMPONENTS + INTERFACES)
CODE

(USE CASES)
(PROBLEM FRAMES and

FORMAL SPECIFICATIONS)

DESIGN (ARCHITECTURE,

Figure 1: Development approach

After a recall (Section 2) of characteristics of the different concepts used in this work, we
propose (Section 3) a methodological approach guided through a sequence of successive and com-
bined steps. We illustrate this on a case study (Section 4) before conclusion.

2 Basic concepts

We provide here some notions on the used concepts that may be useful to understand our approach.
We suppose the reader is familiar with formal specifications, and the part of the Z language used
will be presented.

2.1 Use cases and scenarios

Use cases were introduced by Jacobson et al. [JCJO92] after the idea of scenarios that describe
the different possibilities for a use case. Use cases were used to describe requirements relative to a
software system while giving an overall view of it. UML [UML]provides a diagram for use cases
(an example is shown in Figure 7) and indicates that it shouldbe accompanied by descriptions,
and that the sequence of activities in a use case should be documented by behaviour specification
such as interaction diagrams (for instance, sequence diagrams in Figures 8 and 9).

2.2 Problem Frames

A problem frame [Jac01] is a schema that intuitively defines aproblem class defined in terms of its
context, its domains characteristics, its interfaces and its requirements. The system to be developed
is represented by the “machine”.

~

RW!C1

Display

Display
C

C
C3

Y4

Real world

world
Real

IM!E2

machine
Information

Information Display

US!E3 User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

Workpieces

Figure 2: Problem frames diagrams

For each problem frame a diagram is set up (Figure 2). Plain rectangles denote application
domains (that already exist), rectangles with a double vertical stripe denote the machine domains

to be developed, and requirements are denoted with a dashed oval. They are linked together
by lines that represent interfaces, also called shared phenomena. Jackson distinguishes “causal”
domains that comply with some laws, lexical domains that aredata physical representations, and
biddable domains that are people. Jackson defines five basic problem frames, and we present
here two of them (Figure 2). The “Information Display” problem frame offers a structure for
applications devoted to the display of real world physical data. The “C” indicates that the “Real
World” domain is causal, andRW!C1 indicates that the phenomenaC1 is controlled by the Real
World. The dashed line represents a reference to requirements, and the arrow indicates that it
is a constraining reference. The “Workpieces” problem frame is used for tools that allow a user
to create and edit a class of graphical or textual objects that may be copied or printed. The “X”
indicates that the “Workpieces” domain is lexical. In orderto use a problem frame, one should
provide an instance for its domains, interfaces and requirements.

2.3 Architectural styles

Architectural styles [GS93, BCK98] are software architecture patterns that are characterized by
• a set of components (e.g., data repository, processes, . . .)that realize some functions when

executed
• a topological display of the components showing their relationships when executed
• a set of semantic constraints,
• a set of connectors for communication, coordination or cooperation

Client

Client

Client

Client Client

Client

Repository

Notation

Component Computational Component/Object

Bidirectional Data Flow

Passive Data Component

Figure 3: Data centered architectural style

Among the main architectural styles, the “repository” style (Figure 3), that is data centered and
where different clients access shared data, is quite convenient for information systems.

2.4 Component based software engineering

In the architectural styles domain, the word “component” denotes a piece of software that per-
forms computations. It is not required that this software piece should comply with any specific
constraints.

However, some years ago, a new domain emerged for component based software engineering
[Szy99]. The basic idea there is to build software from existing software pieces, that are embedded
and somewhat independent. These software pieces are called“components”, and in this context
components should comply with the following requirements:

• All services given and required by a component are accessible uniquely through well defined
interfaces.

• A component adheres to acomponent model. This model specifies among others syntactic
conventions for the interface definitions and the way components communicate. It is used

to guarantee the interoperability of several components adhering to the same component
model. Existing component models areJavaBeans[Sun97],Enterprise Java Beans[Sun01],
Microsoft COM+ [Mic02], and theCORBA Component Model[Obj02].

• Components are deployed under binary format. The source code may not be available to a
component client (i.e. the agent composing systems from components). This is the reason
why the component specification should contain all information necessary to use it.

In the component based software engineering approach, architectural principles play an es-
sential role because the system composition from components is achieved according to a given
architecture. The two domains thus are strongly related.

Our aproach consists in decomposing a complex information problem into subproblems that
are all described using problem frames. For each subproblem, a software should be developed, and
the overall system consists in an appropriate combination of these subproblem solving softwares.

We propose to realise the subproblem solving softwares as components together with inter-
faces derived from the interfaces derived from those definedfrom problem frames instances. The
combination is done througha component architecture, as proposed for instance by Cheesman and
Daniels [CD01].

3 The proposed approach description

We propose specific problem frames for information systems (queries and updates problem frames),
then we describe our development approach that takes advantage both of the structuring concepts
brought by the problem frames and by the architectural styles, as well as of the components inte-
gration concepts, together with a solid basis provided by formal specifications.

3.1 Problem frames for information systems

The main tasks for operation systems are the updates of the database information, and the queries
to obtain some pieces of information. Usually several queries may be done simultaneously, while
a lock forbids that any operation should be done at the same time as an update. In the problem
frames we propose for information systems, we use a domain for the database (DBM or DataBase
Model) that, when an update is done, will be constrained (that is, the values updates should comply
with the requirements) relatively to the update rules, and will not be constrained when queries are
performed. Thus, we shall distinguish these two cases.

UPDATE RULESUPDATE MACHINE
Y6

Y5UM!E1

UM!Y3

UU!E4 E4

DBM!Y2

UPDATE USER

FEEDBACK OUTPUT X

B

XDBM (DataBase Model)

Figure 4: Update machine

Update The schema we propose for update in Figure 4 may be seen as an adaptation and an
extension of the “workpieces” problem frame (Figure 2).1 We identify domain components that

1Note that the schema we propose is also close to the “Commanded Information” frame that Jackson offers as a
variant of the “Information Display” frame with a user wheredomains are causal (and not lexical), and with a simple

are a database model (“X” indicates that it is a lexical domain, that is passive), a user (“B” indicates
it is a “biddable” domain) who emits update commands , and a feedback output towards the user.
Requirements are expressed through update rules, and the machine that performs the updates is to
be designed. The identified interfaces take into account thefact that an update operation may be
preceded by a query to check that its preconditions are satisfied :
• E4 (also inUU!E4) user command with an update
• E1 (in UM!E1) query or update phenomena controlled by the machine
• Y2 (in DBM!Y2) information messages relative to the database state (and history)
• Y3 (in UM!Y3) output messages controlled by the machine and informing either of the success
or of the failure reasons of the user command
• Y5 user command effects on the database, according to the update rules, and expressed in terms
of data values
• Y6 user command effects on the output messages, according to the update rules, and expressed
in terms of data values.
Let us note that the interfaces labelled byY5 andY6 display arrows that express constraints to-
wards the database model, and the user output.

X

X

B

Y6

Y5

E4

DBM!Y2

QUERY MACHINE OUTPUT

QUERY USER

QM!Y3

QU!E4

QUERY RULES

DBM (DataBase Model)

Figure 5: Query machine

Query The problem frame we propose for queries in Figure 5 may be considered as an adaptation
and an extension of the “information display” problem frame(Figure 2). The domain components
identified are a database model, a user emitting queries commands, and an output towards the user.
Requirements are expressed through queries rules, and the machine performing the query is to be
designed. The identified interfaces are the following :
• E4 (also inQU!E4) user command for the query
• Y2 (in DBM!Y2) information message on the database state (and history)
• Y3 (in QM!Y3) output message controlled by the machine, that is either ananswer the user query
or an error message
• Y5 information on the database state in relationship with the user command (according to the
query rules), expressed by data values
• Y6 effects of the user command on data appearing on output messages (according to the query
rules).
Let us note that, in this schema, only the interface labelledby Y6 exhibits a constraining arrow
towards the produced output. Thus, the two schemas are very close, but we think it is important to
distinguish them since only the update operation requests alock on the database, and it is useful
to have this information especially when the two schemas arecomposed together.

interface between the machine and the “Real World”.

3.2 Development method

For a given class of systems, we propose a methodological guide for a combined use of the con-
cepts presented in Section 2 together with formal specifications.

Criteria for the considered systems The goal of the systems we consider is the management of
data. Their environment is a “business domain”, that is an organisation created by human beings,
that does not comply with physics laws. There are no sensors or actuators, nor any computer
means to ensure the correspondance between the real world and its model. It is the responsibility
of human beings to inform the system of the real world state changes.

Step 0 If the considered system complies with these criteria, thena use case diagram should be
drawn, and a real world model should be given (e.g., through aclass diagram). This model will be
shared by the different machines. To this end, the usual object oriented analysis method is used,
e.g., first identify the actors that communicate with the system but are not part of the system. Then
identify the different use cases. Each use case should be specified by a description of the sequence
of actions that pertain to it. In this paper we use sequence diagrams to describe scenarios.

Scenarios exhibit arrows from an actor towards the system. These arrows correspond to oper-
ations available for the actor. In the system realisation, each of these operations will be part of an
interface corresponding to the considered use case (see step 3 description). The different use cases
identification provides a natural decomposition frameworksupporting the next step work.

Step 1 For each use case, a problem frame instance is drawn, and if the use case implies a state
change in the model, then the update machine will be used, otherwise the query machine will
be used. It may be the case that additional decomposition is needed, and/or that another kind of
problem frame should be used (as, for instance, the “translation frame” [Jac01] that may be applied
for data processing, computations). The instance of the domainsUPDATE USER andQUERY
USER (see figures 4 and 5) uses the information elicited at step 0 : each available operation for an
actor becomes a command and, consequently an element of the domainUPDATE USER orQUERY
USER. At the end of this step, for each use case, an instance of a problem frame is established.

Step 2 Now, to each problem frame instance, the corresponding formal specification should be
associated. To this end, the method (proposed in [CR00] and developed in [CH03b]) that consists
in associating to each element of the problem frame diagram aspecification module is applied.
The data types used should also be specified. We use here the Z specification language [Spi92] so
as to take advantage of its built-in state notion.

At the end of this step, a Z specification, formally describing the problem frame instances
(corresponding to each use case) is established. This specification describes precisely the different
domains and the machine to be realised. The work achieved at this step benefits from the rigor
brought by formal specifications, and from questions raisedso as to specify the requested elements,
thus bringing finer grain precisions on the requested realisation.

Step 3 Resulting from step, for each subproblem, the specificationof a machine is given. Each
machine corresponds to a use case, sharing the same databaseDBM, and is realised by a compo-
nent. We now propose a method to integrate the components realised following their specification
obtained at the preceding step. Figure 6 shows the componentarchitecture that we propose to
put together the different machines. This architecture is an instance of the “repository” archi-
tectural style (Figure 3) where the shared data are inDatabase, and the clients are the different
UseCase_JMgr components.

IUseCase_NMgt
UseCase_NMgr

<<comp spec>>

Usage (dependency)

Interface

Notation

IUseCase_1Mgt

<<comp spec>>

UseCase_1Mgr

Information
System

<<comp spec>>
...

IUseCase_N

IUseCase_1

<<comp spec>>

Database
IUC_NIUC_1

ICommon

...

Figure 6: Component architecture for the global system

There is a component for each machine and for the global system, as well as for the database.
The global systemInformation Systemprovides an interfaceIUseCase_J for each use caseJ to its
environment. Following a convention used by Cheesman et Daniels [CD01], the components that
correspond to submachine problems are namedUseCase_JMgr. In order to realise an interface
IUseCase_J, it is necessary to use the componentUseCase_JMgr via its interfaceUseCase_JMgt,
as indicated by the arrows denoting dependencies.

All UseCase_JMgr components communicate with the database that puts an interfaceIUC_J
at eachUseCase_JMgr component’s disposal. In order to avoid repetitions in theIUC_J interfaces,
operations that are used by more than oneUseCase_JMgr component are put in anICommon
interface.

Operations that constitute the interfacesUseCase_JMgt correspond to interfaces of the differ-
entUpdate Machines andQuery Machines developed at Step 1. Operations of interfacesIUseCase_J
correspond to commands available to the corresponding problem users. Interface operationsUseCase_JMgt
must provide the elements required for the realisation of the interfacesIUseCase_J operations.
This condition checks that all subproblems solutions are enough to solve the problem started with.

In order to specify in more detail the different component communication, it is possible to use
collaboration diagrams (as, for instance, in the Cheesman et Daniels approach [CD01]).

4 Case study: on line shop

An e-commerce system provides the following services:
- Clients may browse to find out whether the products they are looking for are on sale, to get
information on these products, and to order them.
- Employees take care of orders management and restocking.
- The manager may ask for sales statistics, decide to stop selling some products or to start selling
a new product.

4.1 Step 0 : use cases

The above description leads to identify the following different use cases (Figure 7) :

(i) for an actor who is a client of this shop (“Customer”), searching for information (“Browse”),
and sending orders (“Send Order”),

(ii) for an actor who is an employee, order management (“Process order”), restocking (“Refill
stock”),

(iii) for an actor who is the shop manager, taking decisions concerning the selling of products
(“Take Product Decisions”), and request of reports (“Require Management Reports”).

Employee

Manager

Customer

Browse

Send
Order

Process

Order

Refill
Stock

Product
Take

Decisions

Require
Managment

Reports
Online Shop

Figure 7: On-line shop use cases

The first two use cases will be dealt with in detail, and their possible scenarios expressed by
sequence diagrams. A customer may (Figure 8) look for products according to given criteriacr
or ask for the product propertiesp.

: BrowsingMachine : BrowsingMachine: BrowsingMachine

Customer Customer

desc_error

properties(p)

available_products(cr)

product_search(cr)

Customer

properties(p)

product_properties(p)

Figure 8: Scenarios for theBrowseuse case

A customerc send an order (Figure 9) for a given quantityq of a productp.

: OrderMachine: OrderMachine

send_order(p,q,c)

Customer Customer

error_messageorder_received

send_order(p,q,c)

Figure 9: Scenarios for theSendOrderuse case

4.2 Step 1 : problem frames instances

The different identified use cases yield

• update frame instances associated with the “Send Order”, “Process order”, “Refill stock”,
and “Take Product Decisions” use cases

• query frame instances associated with the “Browse” and “Require Management Reports”
use cases.

We provide below two examples that correspond to the “Browse” use case in Figure 10, and to the
“Process order” use case in Figure 11.

On−Line Shop

DBM (DataBase Model)

Customer

QUERY MACHINE
c

b

a d

e

c

Product Information

OUTPUT

Browsing Rules

QUERY RULES

QUERY USER

Browsing Machine

b: BM! {Collection, Description}

d: {available_products, product_properties}

e: {Collection(product), Description(product)}

a: OLS! {available_products(cr), product_properties(p)}

c: C! {product_search(cr),properties(p)}

Figure 10: Query frame instance associated with the “Browse” use case

Figure 10 shows an instance of the problem frame proposed forqueries (Figure 5), where the
interfacesc are the customerC! queries for products according to some criteriacr or to product
p characteristics, and interfacea denotes information provided by the on-line shopOLS!. Figure

a: OM! {create_order(p,q,c)}

b: OM! {acknowledge_order, send_error_message}

 OLS! {product_ok(p),quantity_ok(p,q),customer_ok(c)}

On−Line Shop

Answer

FEEDBACK OUTPUT

DBM (DataBase Model)

UPDATE USER

Customer

UPDATE MACHINE UPDATE RULES

Send Order

c

b

a d

e

c

Order Machine

c: C! {send_order(product(p),quantity(q),customer(c))}

e: A! {order_received, error_message}
d: {order_recorded, order_not_recorded}

Figure 11: Update frame instance associated with the “Send Order” use case

11 is an instance of the problem frame proposed for updates (Figure 4), where interfacesc are the
customerC! order sendings, and interfacea denotes the creation of an order by the machineOM!
and checks done by the on-line shopOLS! on the productproduct_ok(p), etc.

4.3 Etape 2 : Z specification

In the following, we formally specify the online shop in Z, that is, according to step 2 of our devel-
opment method in Section 3.2, we specify the different domains (together with their operations)
and the machine to be realized (here for theBrowseandSendOrderuse cases). We chose the Z
language because the online shop has a state that is altered by customer orders and other actions.

4.3.1 Auxiliary definitions

The following (self-explanatory) basic types are needed:

[ProductCode, CustomerCode, OrderCode, ProductDescription]

For the TypeProductDescriptionwe need an error element (cf. Figure 8).
desc_error : ProductDescription

The functionmax_quantity records what quantity of a given product may be ordered at one
time. For example, our online shop would not be able to deliver 2 million copies of the book
“Problem Frames” by Michael Jackson. The function is partial, because new products may occur
on the market for which we cannot give a quantity yet.
max_quantity: ProductCode 7→ N

Our online shop has to keep track of products, customers, andorders. For easy reference, each
such item has a unique code. The uniqueness requirement is expressed in the state invariant of the
schemaOnLineShopgiven in Section 4.3.2.

Product
pcode: ProductCode
quantity : N

descr: ProductDescription

descr 6= desc_error

Customer
ccode: CustomerCode

Order
ocode: OrderCode
product : ProductCode
quantity: N

cus: CustomerCode

4.3.2 State Definition for the DomainOnlineShop

The state of the online shop is defined by the following schema, which has a slightly different name
than the name of the domain. The invariant expresses to code unicity as well as the constraints
defined by themax_quantityfunction for each product available, and the constraints that, for each
order, there exists a registered customer and a registered product in the database.

OnLineShop
products: P Product
customers: P Customer
orders: P Order

∀ p1, p2 : products| p1 6= p2 • p1.pcode6= p2.pcode
∀ c1, c2 : customers| c1 6= c2 • c1.ccode6= c2.ccode
∀ o1, o2 : orders| o1 6= o2 • o1.ocode6= o2.ocode
∀ p : products• p.pcode∈ dom max_quantity
∀ o : orders • (∃ c : customers• o.cus= c.ccode) ∧ (∃ p : products• o.product= p.pcode)

4.3.3 OnlineShopdomain basic operations

The basic operations correspond to the interface phenomenaof the domainOnlineShopof the
instantiated frame diagrams (Section 4.2).

The predicatesProductOK, CustomerOK, andQuantityOK(cf. interfacea in Figure 11) below
are intended to be used by other operations. Therefore, theyallow the state to be changed (we use
∆OnLineShopinstead ofΞOnLineShop) but they do not specify how this state is changed.

ProductOK
∆OnLineShop
pc? : ProductCode

∃ p : products•
p.pcode= pc?

CustomerOK
∆OnLineShop
cc? : CustomerCode

∃ c : customers•
c.ccode= cc?

QuantityOK
∆OnLineShop
pc? : ProductCode
quant? : N

ProductOK
quant? ≤ max_quantity pc?

The following operation belongs to the use caseSendOrder. It is a partial operation that works
only if the previously defined predicates are true.

CreateOrder
∆OnLineShop
pc? : ProductCode
quant? : N

cc? : CustomerCode
ProductOK
CustomerOK
QuantityOK
∃ o : Order | (∀ oo : orders • oo.ocode6= o.ocode) ∧ o.product= pc? ∧

o.quantity= quant? ∧ o.cus= cc?
•orders′ = orders∪ {o}

products′ = products
customers′ = customers

4.3.4 Specifying the DomainsAnswerand Customer

TheAnswerdomain contains just two elements.

Answer::= order_received| error_message

Biddable domains such as customers are specified by the commands they may give.

OrderCustomer::= order〈〈ProductCode× N × CustomerCode〉〉

4.3.5 Specifying the domainOrderMachineand taking the SendOrderuse case into account

The operations of Section 4.3.3 are used by theOrderMachine(cf. Figure 11) either to generate a
new order or to give an error message, leaving the state of theonline shop unchanged.

SendSuccess
answ! : Answer
answ! = order_received

SendError
answ! : Answer
answ! = error_message

SendOrder̂= (ProductOK∧ CustomerOK∧ QuantityOK∧ CreateOrder∧ SendSuccess)
∨ (ΞOnLineShop∧ SendError)

4.3.6 Taking into Account the Use CaseBrowse

Taking into account another use case based on the same information system leads us to specify
new operations on the domainOnlineShop.

A BrowseCustomercan either look for products fullfilling certain criteria2, or s/he can inspect
the description of a given product.

BrowseCustomer::= product_search〈〈P Product〉〉 | properties〈〈ProductCode〉〉

Accordingly, two new basic operations for querying the state of the system have to be added
to the definition of the domainOnlineShop.

ProductSearch
ΞOnLineShop
cr? : P Product
available_products! : P ProductCode

available_products! =
{p : products| p ∈ cr? • p.pcode}

ProductProperties
ΞOnLineShop
pc? : ProductCode
info! : ProductDescription

∃p : products• p.pcode= pc? ∧ info! = p.descr

To specify the domainBrowsingMachine, we first define an error schema.

ProductNotPresent
ΞOnLineShop
pc? : ProductCode
info! : ProductDescription

∀ p : products• p.pcode6= pc?
info! = desc_error

The browsing machine interface consists in the operationsProductSearch(cf. above) and
Propertiesdefined as follows:

Properties=̂ ProductProperties∨ ProductNotPresent

4.4 Etape 3 : recomposition

Figure 12 shows the component architecture obtained for theon-line shop when building an in-
stance of the architecture in figure 6.

Online
Shop

<<comp spec>>
...

IOrder

IBrowse

IBrowsingIOrdering

ICommon

...
IOrderMgt

<<comp spec>>

IBrowseMgt

<<comp spec>>

Database

<<comp spec>>
Online Shop

OrderMgr BrowseMgr

Figure 12: On-line shop component architecture

The componentOnlineShopDatabaseis specified by the schemaOnLineShopgiven in para-
graph 4.3.2 and by the operations defined in this schema, thatisProductOK, CustomerOK, QuantityOK,

2In Z, predicates are identified with their extension, i.e. the set of items for which the predicate is true. Hence, a
criterion on products is identified with a set of products, which has typePProduct.

CreateOrder, AvailableProducts, ProductProperties.
The interfaceICommoncontains the operationProductOK, because this operation is used by

the two componentsOrderMgr andBrowseMgr.
The interfaceIOrdering contains the operationsCustomerOK, QuantityOKandCreateOrder.

The interfaceIBrowsingcontains the operationsAvailableProductsandProductProperties.
The componentOrderMgr (corresponding toOrderMachinein Figure 11) provides to the en-

vironment the operationSendOrder, that is defined in paragraph 4.3.5. This operation uses the
operations of the interfacesICommonet IOrdering.

The componentBrowseMgr(corresponding toBrowsingMachinein Figure 10) provides to the
environment the operationsProductSearchetProperties, that are defined in paragraph 4.3.6. These
operations use the operations of the interfacesICommonandIBrowsing.

The operations of the interfacesIBrowseand IOrder correspond to those of the interfaces
IBrowsingandIOrdering. Realising an operation of the interfacesIBrowseet IOrder merely con-
sists in a call of the operation bearing the same name in the interfaceIBrowsingor IOrdering.

5 Conclusions and perspectives

We propose here a method for the specification and the development of information systems. This
method is based on several kinds of patterns. The contributions of our approach are the following:

• We provide criteria to identify the systems for which our method is applicable (section 3.2).
To achieve this, we identify a new kind of domain, that is “business domain”. Our criteria
are clear and easy to determine.

• We conceive two new problem frames that are well suited to information systems. These
systems are not dealt with by the problem frames given by Jackson [Jac01]. Information
systems are decomposed into subsystems that deal either with updates or with queries. This
decomposition is done after use cases, which is new as regards Jackson’s work.

• Thus, our method establishes a link between object orientedanalysis and problem frames,
which was not shown up to now.

• The method described here integrates the method described in [CR00, CH03a] where other
formal specification languages were used (CASL [BM04], CASL-LTL [RAC03], and LO-
TOS). Here this new experience shows that this method applies as well to another language,
Z.3 Each part of the problem frame instance is formally specified. The method described in
[CH03a] provides the validation conditions for the produced specification.

• Each identified subproblem is solved quite independently from the others (taking into ac-
count the fact that the database is shared by all subproblems). This leads us to the question
of the solutions recomposition. In order to solve this problem we propose a component
architecture that is an instance of the repository architectural style.

• Altogether, our method establishes links between object oriented analysis, problem frames,
formal specifications, architectural styles, and the component based approach. Up to now
these different techniques were used in a more or less isolated manner.

• Our approach provides a substantial methodological guide that leads to develop related doc-
uments.

In the future, we intend to specify in more detail the communication between the different
architecture components, for instance using communication patterns.

3Thus, our subject here is not to promote the use of a given language for some kinds of applications.

Moreover, such a method aiming at a guided and integrated useof several techniques and
several patterns, while presented here for information systems development, should be widely
applicable when defined for other kinds of problems characterised by other problem frames.

References

[BCK98] Len Bass, Paul Clements, and Rick Kazman.Software Architecture in Practice.
Addison-Wesley, 1998.

[BM04] Michel Bidoit and Peter D. Mosses.CASL, The Common Algebraic Specification Lan-
guage - User Manual. Number 2900 in Lecture Notes in Computer Science, Tutorial.
Springer-Verlag, 2004.

[CD01] John Cheesman and John Daniels.UML Components – A Simple Process for Specifying
Component-Based Software. Addison-Wesley, 2001.

[CH03a] Christine Choppy and Maritta Heisel. Systematic transition from problems to architec-
tural designs. Technical Report LIPN-2003-05, UniversitéParis XIII, France, 2003. 34
pages.

[CH03b] Christine Choppy and Maritta Heisel. Use of patterns in formal development: System-
atic transition from problems to architectural designs. InM. Wirsing, R. Hennicker,
and D. Pattinson, editors,Recent Trends in Algebraic Development Techniques, 16th
WADT, Selected Papers, LNCS 2755, pages 205–220. Springer Verlag, 2003.

[CR00] Christine Choppy and Gianna Reggio. Using CASL to Specify the Requirements and the
Design: A Problem Specific Approach. In D. Bert, C. Choppy, and P. D. Mosses, edi-
tors,Recent Trends in Algebraic Development Techniques, 14th WADT, Selected Papers,
LNCS 1827, pages 104–123. Springer Verlag, 2000. A completeversion is available at
ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio99a.ps.

[GS93] David Garlan and Mary Shaw. An introduction to software architecture. In V. Ambriola
and G. Tortora, editors,Advances in Software Engineering and Knowledge Engineer-
ing, volume 1. World Scientific Publishing Company, 1993.

[Jac01] Michael Jackson.Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, 2001.

[JCJO92] I. Jacobson, M. Christerson, P. Jonnson, and G. Overgaard.Object-Oriented Software
Engineering: A Use-Case Driven Approach. Addison-Wesley, 1992.

[Mic02] Microsoft Corporation.COM+, 2002. http://www.microsoft.com/com/tech/COMPlus.asp.

[Obj02] The Object Management Group (OMG).Corba Component Model, v3.0, 2002.
http://omg.org/technology/documents/formal/components.htm.

[RAC03] Gianna Reggio, Egidio Astesiano, and Christine Choppy. CASL-LTL: A CASL exten-
sion for dynamic reactive systems – version 1.0 – summary. Technical Report DISI-
TR-03-36, Università di Genova, Italy, 2003.

[Spi92] J. M. Spivey.The Z Notation – A Reference Manual. Prentice Hall, 2nd edition, 1992.

[Sun97] Sun Microsystems. JavaBeans Specification, Version 1.01, 1997.
http://java.sun.com/products/javabeans/docs/spec.html.

[Sun01] Sun Microsystems. Enterprise JavaBeans Specification, Version 2.0, 2001.
http://java.sun.com/products/ejb/docs.html.

[Szy99] Clemens Szyperski.Component Software - Beyond object oriented programming. Ad-
dison Wesley, 1999.

[UML] UML Revision Task Force.OMG UML Specification. http://www.uml.org.

