A pattern-based approach for information systems
specification and developement

Christine Choppy Maritta Heisel
LIPN—Université Paris 13 FB Ingenieurwissenschaften
99 Av. J.-B. Clément Universitat Duisburg-Essen
93430 Villetaneuse, France D-47048 Duisburg, Germany
Christine.Choppy@lipn.univ-paris13.fr Maritta.Heigalini-duisburg-essen.de

Abstract: Patterns such as problem frames and architectural st@esad here to support the
formal specification and the development of informationtesys. New problem frames specific
to information systems are proposed to describe identifigdpsoblems and to help the formal
specification task. Recomposition is achieved through apoo@nt based approach and an ar-
chitectural style that puts together the different compdsie We propose an original method to
guide this process, taking advantage of UML concepts fofitiedecomposition level, then using
patterns. These ideas are illustrated with a case study.

Keywords : information systems specification and developement, pmldtames, architectural
styles, components, formal specification.

1 Motivation

It is acknowledged that the first steps of software develaypiraee essential to reach the best pos-
sible adequation between the expressed requirements emtdhosed software product, and to
eliminate any source of error as much as possible. Thusatovgith, emphasis is put on a precise
and unambiguous expression of requirements. There areaspossible approaches for this aim,
that have respective advantages and drawbacks. The UMLiorof@/ML] has the advantage of
being widespread, of concepts proved satisfactory in ttiestmial world, of graphic notations, and
the drawback of lacking a formal semantics (which could plirné to any methodological guide
...). Formal specifications alleviate this problem, andegitheir precise expression, lead one to
raise the questions that yield progress in the problem stat&ling. The remaining pitfall is the
size and/or the complexity, that makes it difficult to get athgtic understanding, and may yield
misleadings. Patterns offer families of frequently metictiures that the user is invited to “try”
(or even to adapt) on the problem to be solved, so as to berwfit fready to wear” structuring
concepts. Patterns may thus be viewed as an elaborated freaisiog knowledge acquired from
experience. Problem frames [Jac01] are proposed by M. dacksprovide a global structure to
problems. Architectural styles [GS93, BCK98] bring strues of a finer granularity that are often
usable at the design level. The component based architg@@01] enables one to specify how
the components (that, according to structuration concegbisuld be developed independently)
should eventually be integrated. It may be desirable to ¢oethese approaches so as to benefit
from their combined advantages, so our purpose here is $eptr¢he corresponding approach we
developed for information systems. Our attention was drithis class of problems that covers
numerous applications because we thought that the prolwlemefschemas proposed by Jackson
do not present a fully convenient structuration for theskee @pproach that we present here may

be valid in a more general case, but we finalized it partitufar this class of problems. After
proposing problem frames that are specific for informatigstesms (for queries and updates), we
describe our approach (Figure 1) that offers a methoddabgicide and indicates how to system-
atically link contributions from (iuse caseandscenarioscurrently used to express requirements,
(i) problem frameghat allow one to identify problem structures to whiclimal specifications
of the different structure parts may be associated, ¢oinponent architectureo recompose the
different developed components.

REQUIREMENTS SPECIFICATION
REQUIREMENTS (PROBLEM FRAMES and DESIGN (ARCHITECTURE, CODE
(USE CASES) FORMAL SPECIFICATIONS) COMPONENTS + INTERFACES

Figure 1: Development approach

After a recall (Section 2) of characteristics of the diffgreoncepts used in this work, we
propose (Section 3) a methodological approach guided gfrawsequence of successive and com-
bined steps. We illustrate this on a case study (Sectionféydeonclusion.

2 Basic concepts

We provide here some notions on the used concepts that maghé to understand our approach.
We suppose the reader is familiar with formal specificati@msl the part of the Z language used
will be presented.

2.1 Use cases and scenarios

Use cases were introduced by Jacobson et al. [JCJO92] ladtédea of scenarios that describe
the different possibilities for a use case. Use cases wegktosdescribe requirements relative to a
software system while giving an overall view of it. UML [UMIgrovides a diagram for use cases
(an example is shown in Figure 7) and indicates that it shbeléiccompanied by descriptions,

and that the sequence of activities in a use case should bendoted by behaviour specification

such as interaction diagrams (for instance, sequenceadiegin Figures 8 and 9).

2.2 Problem Frames

A problem frame [Jac01] is a schema that intuitively definpsoblem class defined in terms of its
context, its domains characteristics, its interfaces g quirements. The system to be developed
is represented by the “machine”.

coal EIE1 A
RWICL ea -._C3 WPIY2 | Workpieces ~._ y4
world [g] el . X -
Information / Display Editor ,’/,Cflommand\\‘
machine \. Realworld L effects
IMIE2 Display |+ Y4 USIE3 user |-~ E8
[C] Bl
Information Display Workpieces

Figure 2: Problem frames diagrams

For each problem frame a diagram is set up (Figure 2). Plaitamgles denote application
domains (that already exist), rectangles with a doubleocarstripe denote the machine domains

to be developed, and requirements are denoted with a dasta&d ©hey are linked together
by lines that represent interfaces, also called sharedgphemna. Jackson distinguishes “causal”
domains that comply with some laws, lexical domains thatdatea physical representations, and
biddable domains that are people. Jackson defines five baditep frames, and we present
here two of them (Figure 2). The “Information Display” prebi frame offers a structure for
applications devoted to the display of real world physiciad The €’ indicates that the “Real
World” domain is causal, anBW C1 indicates that the phenomef4 is controlled by the Real
World. The dashed line represents a reference to requitsmand the arrow indicates that it
is a constraining reference. The “Workpieces” problem famused for tools that allow a user
to create and edit a class of graphical or textual objectisntfzey be copied or printed. TheX*
indicates that the “Workpieces” domain is lexical. In ortieruse a problem frame, one should
provide an instance for its domains, interfaces and remérgs.

2.3 Architectural styles

Architectural styles [GS93, BCK98] are software architeetpatterns that are characterized by
e a set of components (e.g., data repository, processesthat. jealize some functions when
executed
e atopological display of the components showing their ieteships when executed
e a set of semantic constraints,
e a set of connectors for communication, coordination or eoaion

N v L Notation

Repository = > Bidirectional Data Flow

Computational Component/Object

Passive Data Component

Figure 3: Data centered architectural style

Among the main architectural styles, the “repository” st{fFigure 3), that is data centered and
where different clients access shared data, is quite caaveior information systems.

2.4 Component based software engineering

In the architectural styles domain, the word “componentiates a piece of software that per-
forms computations. It is not required that this softwarecpi should comply with any specific
constraints.

However, some years ago, a new domain emerged for compoased Isoftware engineering
[Szy99]. The basic idea there is to build software from éxgssoftware pieces, that are embedded
and somewhat independent. These software pieces are tadleghonents”, and in this context
components should comply with the following requirements:

e All services given and required by a component are accessibtuely through well defined
interfaces

e A component adheres to@mponent modelThis model specifies among others syntactic
conventions for the interface definitions and the way comeptsrcommunicate. It is used

to guarantee the interoperability of several componenkegg to the same component
model. Existing component models de/aBean$Sun97],Enterprise Java Bear{Sun01],
Microsoft COM™ [Mic02], and theCORBA Component ModfDbj02].

e Components are deployed under binary format. The source may not be available to a
component client (i.e. the agent composing systems fronpooents). This is the reason
why the component specification should contain all infororahecessary to use it.

In the component based software engineering approachitettiial principles play an es-
sential role because the system composition from compsrisrachieved according to a given
architecture. The two domains thus are strongly related.

Our aproach consists in decomposing a complex informatioblem into subproblems that
are all described using problem frames. For each subprollesaftware should be developed, and
the overall system consists in an appropriate combinatidinese subproblem solving softwares.

We propose to realise the subproblem solving softwares @mpaoents together with inter-
faces derived from the interfaces derived from those defiroed problem frames instances. The
combination is done througihcomponent architecturas proposed for instance by Cheesman and
Daniels [CDO1].

3 The proposed approach description

We propose specific problem frames for information systequsrfes and updates problem frames),
then we describe our development approach that takes adpahoth of the structuring concepts
brought by the problem frames and by the architectural stys well as of the components inte-
gration concepts, together with a solid basis provided byné&b specifications.

3.1 Problem frames for information systems

The main tasks for operation systems are the updates of takad® information, and the queries
to obtain some pieces of information. Usually several gagemay be done simultaneously, while
a lock forbids that any operation should be done at the same ds an update. In the problem
frames we propose for information systems, we use a domathéadatabase (DBM or DataBase
Model) that, when an update is done, will be constrained (ghéhe values updates should comply
with the requirements) relatively to the update rules, aildnwt be constrained when queries are
performed. Thus, we shall distinguish these two cases.

DBM (DataBase Model
DBM!IY2 J ()RL
UMIE T~.Y5

UUIE4 _-"E4
UPDATE USER 51

Figure 4: Update machine

Update The schema we propose for update in Figure 4 may be seen asptatamh and an
extension of the “workpieces” problem frame (Figure! 2Ve identify domain components that

!Note that the schema we propose is also close to the “Comrdanéermation” frame that Jackson offers as a
variant of the “Information Display” frame with a user whaetemains are causal (and not lexical), and with a simple

are a database modeX*indicates that it is a lexical domain, that is passive), er (8" indicates

it is a “biddable” domain) who emits update commands , ancedlfack output towards the user.
Requirements are expressed through update rules, and thenmahat performs the updates is to
be designed. The identified interfaces take into accountaitte¢hat an update operation may be
preceded by a query to check that its preconditions ardisatis

e E4 (also inUU! E4) user command with an update

e E1 (in UM E1) query or update phenomena controlled by the machine

¢ Y2 (in DBM Y2) information messages relative to the database state (siaaiy)

e Y3 (in UM Y3) output messages controlled by the machine and informihgeof the success
or of the failure reasons of the user command

¢ Y5 user command effects on the database, according to thecupdies, and expressed in terms
of data values

¢ Y6 user command effects on the output messages, according tptiate rules, and expressed
in terms of data values.

Let us note that the interfaces labelled Yy and Y6 display arrows that express constraints to-
wards the database model, and the user output.

’ DBM (DataBase Model) Rﬁ

DBM!Y2
\\\YS
| \\:/"’> 777777 T~
‘H QUERY MACHINE [MIY3 OUTPUT W‘<~X6~~f\ QUERY RULES
QUIE4 _-"E4

‘ QUERY USER E‘

Figure 5: Query machine

Query The problem frame we propose for queries in Figure 5 may bsidered as an adaptation
and an extension of the “information display” problem fragRgure 2). The domain components
identified are a database model, a user emitting queries amaignand an output towards the user.
Requirements are expressed through queries rules, anceittgma performing the query is to be
designed. The identified interfaces are the following :

e E4 (also inQU! E4) user command for the query

¢ Y2 (in DBM Y2) information message on the database state (and history)

¢ Y3 (in QM Y3) output message controlled by the machine, that is eithanawer the user query
or an error message

¢ Y5 information on the database state in relationship with ther command (according to the
query rules), expressed by data values

¢ Y6 effects of the user command on data appearing on output gess¢according to the query
rules).

Let us note that, in this schema, only the interface labedgd6 exhibits a constraining arrow
towards the produced output. Thus, the two schemas are hessy, dut we think it is important to
distinguish them since only the update operation requektskaon the database, and it is useful
to have this information especially when the two schemasamgosed together.

interface between the machine and the “Real World”.

3.2 Development method

For a given class of systems, we propose a methodologicdedar a combined use of the con-
cepts presented in Section 2 together with formal spedificat

Criteria for the considered systems The goal of the systems we consider is the management of
data. Their environment is a “business domain”, that is gamisation created by human beings,
that does not comply with physics laws. There are no sensoastaators, nor any computer
means to ensure the correspondance between the real wdritsamnodel. It is the responsibility

of human beings to inform the system of the real world stasaghs.

Step 0 If the considered system complies with these criteria, these case diagram should be
drawn, and a real world model should be given (e.qg., througlass diagram). This model will be
shared by the different machines. To this end, the usuatbbjéented analysis method is used,
e.g., firstidentify the actors that communicate with theeaysbut are not part of the system. Then
identify the different use cases. Each use case should be#isddy a description of the sequence
of actions that pertain to it. In this paper we use sequeragrains to describe scenarios.
Scenarios exhibit arrows from an actor towards the systdms& arrows correspond to oper-
ations available for the actor. In the system realisatiacheof these operations will be part of an
interface corresponding to the considered use case (§e8 desscription). The different use cases
identification provides a natural decomposition framewsargporting the next step work.

Step 1 For each use case, a problem frame instance is drawn, arelusthcase implies a state
change in the model, then the update machine will be useénmite the query machine will
be used. It may be the case that additional decompositioagédead, and/or that another kind of
problem frame should be used (as, for instance, the “traosltame” [Jac01] that may be applied
for data processing, computations). The instance of theadwWPDATE USER and QUERY
USER (see figures 4 and 5) uses the information elicited at ste@6h available operation for an
actor becomes a command and, consequently an element aitteerdJPDATE USERor QUERY
USER. At the end of this step, for each use case, an instance obéepndrame is established.

Step 2 Now, to each problem frame instance, the correspondingdbsecification should be
associated. To this end, the method (proposed in [CRO0] avelaped in [CHO3b]) that consists
in associating to each element of the problem frame diagrapeaification module is applied.
The data types used should also be specified. We use here flegification language [Spi92] so
as to take advantage of its built-in state notion.

At the end of this step, a Z specification, formally descigpbthe problem frame instances
(corresponding to each use case) is established. Thidisption describes precisely the different
domains and the machine to be realised. The work achievddsastep benefits from the rigor
brought by formal specifications, and from questions rasgeals to specify the requested elements,
thus bringing finer grain precisions on the requested eg#dis.

Step 3 Resulting from step, for each subproblem, the specificaifammachine is given. Each
machine corresponds to a use case, sharing the same ddidtidsand is realised by a compo-
nent. We now propose a method to integrate the componetisect#ollowing their specification
obtained at the preceding step. Figure 6 shows the compameitecture that we propose to
put together the different machines. This architecturenisngtance of the “repository” archi-
tectural style (Figure 3) where the shared data afeatabase and the clients are the different
UseCaseJMgr components.

Notation IUseCase_1

— <<comp spec>> ()

Information
Interface System O
=
Usage (dependency) RN IUseCase N
<<comp spec>> :/ <<comp spec>> B \AQ
UseCase_1Mgr UseCaZe pNM r

il 9 |UseCase_1Mgt L 9 IUseCase_NMgt
) i ICommon
N - <<comp spec>> V:‘
Database
IUC_1 IUC_N

Figure 6: Component architecture for the global system

There is a component for each machine and for the globalrayste well as for the database.
The global systenmformation Systerprovides an interfackJseCaseJ for each use caskto its
environment. Following a convention used by Cheesman eieBa)CD01], the components that
correspond to submachine problems are natselCaseJMgr. In order to realise an interface
IUseCasel, it is necessary to use the compondseCaseJMgr via its interfaceUseCaseJMgt,
as indicated by the arrows denoting dependencies.

All UseCaseJMgr components communicate with the database that puts afeiceddC_J
at eaclJseCaseJMgr component’s disposal. In order to avoid repetitions inth€_J interfaces,
operations that are used by more than tlseCaseJMgr component are put in alCommon
interface.

Operations that constitute the interfad¢seCaseJMgt correspond to interfaces of the differ-
entUpdate Machine andQuery Maching developed at Step 1. Operations of interfdtiseCaseJ
correspond to commands available to the correspondinderrolisers. Interface operatiodseCaseJMgt
must provide the elements required for the realisation efititerfacedUseCaseJ operations.
This condition checks that all subproblems solutions aceigh to solve the problem started with.

In order to specify in more detail the different componernthoaunication, it is possible to use
collaboration diagrams (as, for instance, in the CheesmBraiels approach [CDO01]).

4 Case study: on line shop

An e-commerce system provides the following services:

- Clients may browse to find out whether the products they @okihg for are on sale, to get
information on these products, and to order them.

- Employees take care of orders management and restocking.

- The manager may ask for sales statistics, decide to stiipgssbme products or to start selling
a new product.

4.1 Step O: use cases

The above description leads to identify the following diffiet use cases (Figure 7):
(i) for an actor who is a client of this shop (“Customer”), sa#ang for information (“Browse”),
and sending orders (“Send Order”),

(i) for an actor who is an employee, order management (‘€ssorder”), restocking (“Refill
stock™),

(i) for an actor who is the shop manager, taking decisiomscerning the selling of products
(“Take Product Decisions”), and request of reports (“RegiManagement Reports”).

Process
Order

Browse
Employee
Send Customer
Order
Take
Product
Decisions
Manager Require

Managment
Reports
Online Shop

Figure 7: On-line shop use cases

The first two use cases will be dealt with in detail, and thesgible scenarios expressed by
sequence diagrams. A customer may (Figure 8) look for ptsdarcording to given criteriar
or ask for the product propertigs

Customer ! Customer ! Customer !
| | | | | |
i product_search(cr) i i properties(p) i i properties(p) i
3 : : : : :
3 available_products(cr) 3 i product_properties(p) 3 i desc_error 3

Figure 8: Scenarios for tHerowseuse case

A customerc send an order (Figure 9) for a given quantityf a productp.

Customer Customer

send_order(p,q,c) send_order(p,q,c)

order_received error_message

Figure 9: Scenarios for theéendOrdewuse case

4.2 Step 1: problem frames instances

The different identified use cases yield

e update frame instances associated with the “Send OrderdcdRs order”, “Refill stock”,
and “Take Product Decisions” use cases

e query frame instances associated with the “Browse” and tiRedgVanagement Reports”
use cases.

We provide below two examples that correspond to the “Bréwse case in Figure 10, and to the
“Process order” use case in Figure 11.

On-Line Shop ‘\
a DBM (DataBase Model) RN d
‘ ‘ ‘ Browsing Machine {bg{ Product Information ‘<* R r/:/ /Browsing Rules; i:/
QUERY MACHINE OUTPUT L T ‘é[fE’R’y’ﬁQ[és‘,
c .-~ ¢
Customer
QUERY USER
a: OLS! {available_products(cr), product_properties(p)} d: {available_products, product_properties}
b: BM! {Collection, Description} e: {Collection(product), Description(product)}

c: C! {product_search(cr),properties(p)}
Figure 10: Query frame instance associated with the “Brdwse case

Figure 10 shows an instance of the problem frame proposeglmies (Figure 5), where the
interfacesc are the customeE! queries for products according to some crit@iaor to product
p characteristics, and interfaeedenotes information provided by the on-line si@pS! . Figure

On-Line Shop ‘
ASS
a DBM (DataBase Model) “~od

Order Machine | ———— Answer <---8---=" sendorder >

UPDATE MACHINE FEEDBACK OUTPUT -7 UPDATE RULES
Cc Phd Cc

‘ Customer ‘
UPDATE USER

a: OM! {create_order(p,q,c)} d: {order_recorded, order_not_recorded}
OLS! {product_ok(p),quantity_ok(p,q),customer_ok(c)} e: Al {order_received, error_message}
b: OM! {acknowledge_order, send_error_message} c: C! {send_order(product(p),quantity(q),customer(c))}

Figure 11: Update frame instance associated with the “SeddrOuse case

11 is an instance of the problem frame proposed for updatgar@4), where interfaces are the
customelC! order sendings, and interfaeedenotes the creation of an order by the maci@ie
and checks done by the on-line shApS! on the producpr oduct _ok(p) , etc.

4.3 Etape 2 : Z specification

In the following, we formally specify the online shop in Zattis, according to step 2 of our devel-
opment method in Section 3.2, we specify the different doséiogether with their operations)
and the machine to be realized (here for Brewseand SendOrderuse cases). We chose the Z
language because the online shop has a state that is altecedtbmer orders and other actions.

4.3.1 Auxiliary definitions

The following (self-explanatory) basic types are needed:
[ProductCodeCustomerCoderderCode ProductDescriptioh

For the TypeProductDescriptionwe need an error element (cf. Figure 8).
| desc error : ProductDescription

The functionmax quantity records what quantity of a given product may be ordered at one
time. For example, our online shop would not be able to delenillion copies of the book
“Problem Frames” by Michael Jackson. The function is phrtiacause new products may occur
on the market for which we cannot give a quantity yet.
| max quantity: ProductCode+ N

Our online shop has to keep track of products, customerspitails. For easy reference, each
such item has a unique code. The uniqueness requiremenireserd in the state invariant of the
schemaOnLineShomiven in Section 4.3.2.

— Product Order
pcode: ProductCode ’Tcgjliasztocrggt%memode ocode: OrderCode
quantity: N product: ProductCode
descr: ProductDescription quantity: N
descr+£ desc error cus: CustomerCode

4.3.2 State Definition for the DomainOnlineShop

The state of the online shop is defined by the following schevhéch has a slightly different name
than the name of the domain. The invariant expresses to audityuas well as the constraints
defined by thenax quantityfunction for each product available, and the constrairds, flor each
order, there exists a registered customer and a registenddgi in the database.

— OnLineShop
products: P Product
customers P Customer
orders: P Order

V' p1, P2 : products| p; # pe e p;.pcode# py.pcode

V ¢y, Cy : customerg ¢; # Cy e C;.ccode# c,.ccode

V01,0 : Orders| 0; # 0o e 0;.0code# 0y.0code

Vp: productse p.pcodec dom max quantity

Vo :orderse (3c: customerse 0.cus= c.ccodg A (3 p: productse o.product= p.pcode

4.3.3 OnlineShopomain basic operations

The basic operations correspond to the interface phenowiettee domainOnlineShopof the
instantiated frame diagrams (Section 4.2).

The predicateRroductOK CustomerOKandQuantityOK(cf. interfacea in Figure 11) below
are intended to be used by other operations. Therefore altay the state to be changed (we use
AOnLineShopnstead of=0nLineShopbut they do not specify how this state is changed.

— QuantityOK

— ProductOK————— — CustomerOK——— :
AOnLineShop AOnLineShop AOnLineShop
pc? : ProductCode cc? : CustomerCode pc? :fl?r'oguctCode
dp : productse Jc: customers %K
p.pcode= pc? c.ccode= cc? .
quant’ < max quantity p¢

The following operation belongs to the use c&smdOrder It is a partial operation that works
only if the previously defined predicates are true.

—— CreateOrder.
AOnLineShop

pc? : ProductCode

quant : N

cc? : CustomerCode

ProductOK

CustomerOK

QuantityOK

Jo: Order| (Voo: orderse 00.0code## 0.0codg A o.product= pc? A

o.quantity= quant’ A o.cus= cc?

e orders = ordersu {o}

products = products

customers= customers

4.3.4 Specifying the Domain®\nswerand Customer

The Answerdomain contains just two elements.
Answer::= order_received| error_message

Biddable domains such as customers are specified by the codsrttzey may give.
OrderCustomer:= order{(ProductCodex N x CustomerCodg

4.3.5 Specifying the domairOrderMachineand taking the SendOrdeuse case into account

The operations of Section 4.3.3 are used by@gerMachine(cf. Figure 11) either to generate a
new order or to give an error message, leaving the state airtlvee shop unchanged.

— SendSuccess—— — SendError
answ : Answer answ : Answer
answ = order_received answ = error_message

SendOrder= (ProductOK A CustomerOKA QuantityOKA CreateOrderA SendSuccegs
V (E0nLineShop\ SendErroy

4.3.6 Taking into Account the Use Cas8rowse

Taking into account another use case based on the same atfonmnsystem leads us to specify
new operations on the domabmlineShop

A BrowseCustometan either look for products fullfilling certain critefizor s/he can inspect
the description of a given product.

BrowseCustomer= product search(P Product) | propertieg(ProductCodg

Accordingly, two new basic operations for querying theestatthe system have to be added
to the definition of the domai®nlineShop

— ProductSearch -
Z0nLineShop — ProductProperties

cr? : PProduct =OnLineShop

9 .

available products$: P ProductCode pe: + ProductCode o

= info! : ProductDescription
available products =

{p: products| p € cr? e p.pcodd Jp : productse p.pcode= pc? A info! = p.descr

To specify the domaiBrowsingMachingwe first define an error schema.

— ProductNotPresent
=Z0nLineShop

pc? : ProductCode

info! : ProductDescription

V p : productse p.pcode= pc?
infol = desc error

The browsing machine interface consists in the operatfnagluctSearch(cf. above) and
Propertiesdefined as follows:

Properties= ProductProperties/ ProductNotPresent

4.4 Etape 3 : recomposition

Figure 12 shows the component architecture obtained foomkine shop when building an in-
stance of the architecture in figure 6.

IBrowse

<<comp spec>> ——— ()

Online

Shop 4@
T IOrder
<<comp spec>>)k <<comp spec>> RN
M O
Order; ;gr IOrderMgt BroiNTseMgr IBrowseMat
) i ICommon
N <<comp spec>> v
Oi Online Shop 4@
|10rdering Database IBrowsing

Figure 12: On-line shop component architecture

The componenOnlineShopDatabasks specified by the schen@nLineShomjiven in para-
graph 4.3.2 and by the operations defined in this schemastPeiductOK CustomerOKQuantityOK

2In Z, predicates are identified with their extension, i.ee $let of items for which the predicate is true. Hence, a
criterion on products is identified with a set of productsjchithas typeP Product

CreateOrder AvailableProductsProductProperties

The interfacd Commoncontains the operatioRroductOK because this operation is used by
the two component®rderMgr andBrowseMgr

The interfacdOrdering contains the operatiorGustomerOK QuantityOKandCreateOrder
The interfacdBrowsingcontains the operatior®vailableProductsandProductProperties

The componen®rderMgr (corresponding t®@rderMachinein Figure 11) provides to the en-
vironment the operatiosendOrder that is defined in paragraph 4.3.5. This operation uses the
operations of the interfacé€ommonet|Ordering.

The componenBrowseMgr(corresponding t@rowsingMachinen Figure 10) provides to the
environment the operatiofoductSearclet Properties that are defined in paragraph 4.3.6. These
operations use the operations of the interfd€@smmonandIBrowsing

The operations of the interfacéBrowse and IOrder correspond to those of the interfaces
IBrowsingandlOrdering. Realising an operation of the interfad&owseet |IOrder merely con-
sists in a call of the operation bearing the same name in tagacelBrowsingor IOrdering.

5 Conclusions and perspectives

We propose here a method for the specification and the develaipof information systems. This
method is based on several kinds of patterns. The conwitsivf our approach are the following:

e We provide criteria to identify the systems for which our heet is applicable (section 3.2).
To achieve this, we identify a new kind of domain, that is ‘iness domain”. Our criteria
are clear and easy to determine.

e We conceive two new problem frames that are well suited tormétion systems. These
systems are not dealt with by the problem frames given bysgecklac01]. Information
systems are decomposed into subsystems that deal eitlheunpdates or with queries. This
decomposition is done after use cases, which is new as segactson’s work.

e Thus, our method establishes a link between object oriesmtat/sis and problem frames,
which was not shown up to now.

e The method described here integrates the method descrif€dRDO, CHO3a] where other
formal specification languages were usedh$C [BM04], CAsL-LTL [RACO03], and LO-
TOS). Here this new experience shows that this method appdievell to another language,
Z.3 Each part of the problem frame instance is formally specifigte method described in
[CHO3a] provides the validation conditions for the prodiispecification.

e Each identified subproblem is solved quite independentynfthe others (taking into ac-
count the fact that the database is shared by all subproplérhis leads us to the question
of the solutions recomposition. In order to solve this peoblwe propose a component
architecture that is an instance of the repository architatstyle.

e Altogether, our method establishes links between objeehted analysis, problem frames,
formal specifications, architectural styles, and the camepb based approach. Up to now
these different techniques were used in a more or lessésblagnner.

e Our approach provides a substantial methodological ghigideads to develop related doc-
uments.

In the future, we intend to specify in more detail the commation between the different
architecture components, for instance using communicgiatterns.

3Thus, our subject here is not to promote the use of a giverukegefor some kinds of applications.

Moreover, such a method aiming at a guided and integratediuseveral techniques and
several patterns, while presented here for informatiortesys development, should be widely
applicable when defined for other kinds of problems chareete by other problem frames.

References

[BCK98] Len Bass, Paul Clements, and Rick Kazmakoftware Architecture in Practice
Addison-Wesley, 1998.

[BM04] Michel Bidoit and Peter D. Mosse€ASL, The Common Algebraic Specification Lan-
guage - User ManualNumber 2900 in Lecture Notes in Computer Science, Tutorial
Springer-Verlag, 2004.

[CDO1] John Cheesman and John DaniklsIL Components — A Simple Process for Specifying
Component-Based Softwargddison-Wesley, 2001.

[CHO3a] Christine Choppy and Maritta Heisel. Systematnsition from problems to architec-
tural designs. Technical Report LIPN-2003-05, UniverBiagis XIIl, France, 2003. 34
pages.

[CHO3b] Christine Choppy and Maritta Heisel. Use of patsemformal development: System-
atic transition from problems to architectural designs.MnWirsing, R. Hennicker,
and D. Pattinson, editor®ecent Trends in Algebraic Development Techniques, 16th
WADT, Selected PapersNCS 2755, pages 205-220. Springer Verlag, 2003.

[CROO] Christine Choppy and Gianna Reggio. UsimgsC to Specify the Requirements and the
Design: A Problem Specific Approach. In D. Bert, C. Choppy 8&nD. Mosses, edi-
tors,Recent Trends in Algebraic Development Techniques, 14iiM\@elected Papers
LNCS 1827, pages 104-123. Springer Verlag, 2000. A complatgon is available at
ftp://ftp.disi.unige.it/person/ Reggi oG ChoppyReggi 099a. ps.

[GS93] David Garlan and Mary Shaw. An introduction to softgvarchitecture. In V. Ambriola
and G. Tortora, editorshdvances in Software Engineering and Knowledge Engineer-
ing, volume 1. World Scientific Publishing Company, 1993.

[Jac01] Michael JacksonProblem Frames. Analyzing and structuring software dgwalent
problems Addison-Wesley, 2001.

[JCJO92] I. Jacobson, M. Christerson, P. Jonnson, and Gg@al. Object-Oriented Software
Engineering: A Use-Case Driven Approachddison-Wesley, 1992.

[Mic02] Microsoft CorporationCOM™, 2002. http://www.microsoft.com/com/tech/COMPIus.asp

[Obj02] The Object Management Group (OMG)Corba Component Model, v3.@002.
http://omg.org/technology/documents/formal/compdsdiim.

[RACO03] Gianna Reggio, Egidio Astesiano, and Christine gyo CASL-LTL: A CASL exten-
sion for dynamic reactive systems — version 1.0 — summarghriieal Report DISI-
TR-03-36, Universita di Genova, Italy, 2003.

[Spi92] J. M. Spivey.The Z Notation — A Reference Manu&rentice Hall, 2nd edition, 1992.

[Sun97] Sun Microsystems. JavaBeans Specification, Version 1.011997.
http://java.sun.com/products/javabeans/docs/spat.ht

[Sun01] Sun Microsystems. Enterprise JavaBeans Specification, Version, 22001.

http://java.sun.com/products/ejb/docs.html.
Clemens SzyperskComponent Software - Beyond object oriented programmivy

dison Wesley, 1999.
UML Revision Task Force OMG UML Specificationht t p: / / www. uml . or g.

[Szy99]

[UML]

