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Abstract. The use of patterns is a promising way of developing high-quality
software in a systematic way. Patterns can be used in different phases of the soft-
ware lifecycle. Problem frames are patterns for representing simple software de-
velopment problems, and architectural patterns are patterns for representing the
coarse-grained structure of a piece of software. In a recentpaper, we have defined
architectural patterns corresponding to Jackson’s problem frames.
To make use of problem frames, complex problems have to be decomposed into
simple ones. The corresponding architectural patterns then provide solution struc-
tures for these simple problems. Now the question arises howto combine the so-
lutions structures of the simple subproblems to obtain a solution structure for the
complex problem. The present paper addresses this question.
Different subproblems of a complex problem can be related invarious ways. They
can be independent of each other, they can exclude each other, or they may have
to be solved in a specific order. Such information can be used to combine the so-
lutions structures of the subproblem to a solution structure of the overall problem.
In this paper, we present a pattern-based software development process using
problem frames and the corresponding architectural patterns. In decomposing a
complex problem into simple subproblems, the relationships between the sub-
problems are recorded explicitly. Based on this information, we give guidelines
how to derive the software architecture for the overall problem from the software
architectures of the simple subproblems.

1 Introduction

Pattern-orientation is a promising approach to software development. Patterns provide
structuring concepts that are of invaluable help for problem understanding and system
design, and are a means to reuse software development knowledge on different levels
of abstraction. They classify sets of software developmentproblems or solutions that
share the same structure.

Patterns were introduced on the level of detailed object oriented design [10], and
are now defined for different activities.Problem Frames[13] are patterns that classify
software developmentproblems. Architectural styles(or “architectural patterns”) are
patterns that characterize software architectures [19]. Patterns for further development



phases includedesign patterns, frameworks, andidiomsor “code patterns”. Using pat-
terns, we can hope to construct software in a systematic way,making use of a body of
accumulated knowledge, rather than starting from scratch.

It is acknowledged that the first steps of software development are essential to reach
the best possible match between the expressed requirementsand the proposed software
product, and to eliminate any source of error as early as possible. Therefore, we propose
to use patterns starting from the requirements elicitationphase of the software develop-
ment life-cycle, as advocated by Fowler [9] or Sutcliffe et al. [20, 21]. M. Jackson [13]
proposes the concept ofproblem framesfor presenting, classifying and understanding
software development problems. A problem frame is a characterization of a class of
problems in terms of their main components and the connections between these com-
ponents. Once a problem is successfully fitted to a problem frame, its most important
characteristics are known.

Gaining a thorough understanding of the problem to be solvedis a necessary pre-
requisite for solving it. However, when using problem frames, one can even hope for
more than just a full comprehension of the problem at hand. Since problem frames are
patterns, they represent problem structures that occur repeatedly in practice. Hence, it is
worthwhile to look for solution structures that match the problem structures represented
by problem frames.

The construction of the solution of a software development problem should begin
with the decision on the main structure of the solution, i.e., a decision on the software
architecture. We exploit the knowledge gained in representing a problem as an instance
of a problem frame in taking that decision. In [5], we define architectural patterns cor-
responding to Jackson’s problem frames, taking into account the characteristics of the
problems fitting to the given problem frame. The structure provided by an architectural
pattern constitutes a concrete starting point for the process of constructing a solution to
a problem that is represented as an instance of a problem frame.

Different subproblems of a complex problem can be related invarious ways. They
can be related sequentially, by alternative or they can be independent (parallel). Such
information can be used to combine the solutions structuresof the subproblem to a
solution structure of the overall problem.

In this paper, we present a pattern-based software development process using prob-
lem frames and the corresponding architectural patterns. In decomposing a complex
problem into simple subproblems, the relationships between the subproblems are recor-
ded explicitly. Based on this information, we give guidelines on how to derive the
software architecture for the overall problem from the software architectures and the
component specifications of the simple subproblems.

Throughout this work, we use object-oriented notations, mostly from UML 2.0 [23].
Although our pattern-based software development process does not strictly depend on
object-orientation, it works particularly well in an object-oriented setting.

The rest of the paper is organized as follows: after introducing the basic concepts
of our work in Section 2, we briefly introduce the architectural patterns we developed
for the various problem frames in Section 3. Then, we discussrelated work in Section
4. Our pattern-based software development process is presented in Section 5 and illus-
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trated by a case study in Section 6. In Section 7, we conclude with a discussion of our
approach and directions for future research.

2 Basic Concepts

The patterns used in our development process are problem frames and architectural pat-
terns. As a notation for our architectural patterns, we use composite structure diagrams
of UML 2.0. In the following, we give brief descriptions of these three ingredients of
our work.1

2.1 Problem Frames

Jackson [13] describes problem frames as follows:

“A problem frame is a kind of pattern. It defines an intuitively identifiable prob-
lem class in terms of its context and the characteristics of its domains, interfaces
and requirement.”

Solving a problem is accomplished by constructing a “machine” and integrating it
into the environment whose behavior is to be enhanced.

For each problem frame a diagram is set up (see left-hand sideof Fig. 1). Plain rect-
angles denote application domains (that already exist), rectangles with a double vertical
stripe denote the machine domains to be developed, and requirements are denoted with
a dashed oval. They are linked together by lines that represent interfaces, also called
shared phenomena.

The following problems fit to theRequired Behaviourproblem frame:

‘There is some part of the physical world whose behaviour is to be controlled
so that it satisfies certain conditions. The problem is to build a machine that
will impose that control.’

The corresponding frame diagram is shown on the left-hand side of Figure 1. The “C” in
the frame diagram indicates that theControlled domainmust be causal. The machine is
always a causal domain (so an explicit “C” is not needed). The notation “CM!C1” means
that the causal phenomenaC1 are controlled by the Control machineCM. The dashed
line represents a requirements reference, and the arrow shows that it is aconstraining
reference.

This problem frame is appropriate forembedded systems, where the machine to be
developed is embedded in a physical environment that must becontrolled. The commu-
nication between the machine and the physical environment takes place viasensorsand
actuators. Thus, only by virtue of sensors and actuators can there be shared phenom-
ena between the machine and its environment. Sensors realize the phenomenaC2 of
the frame diagram, i.e., the phenomena controlled by the environment but observable

1 In the following, we will also use sequence diagrams and state machines. However, these no-
tations are well-known and intuitive, and we will not explain them here.
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Fig. 1. Required Behaviour Frame Diagram and Architecture

by the machine. Actuators realize the phenomenaC1 of the frame diagram, i.e., the
phenomena controlled by the machine and observable by the environment.

For example, we might want to build a machine that keeps the temperature of some
liquid between given bounds. Then, the temperature of the liquid would be a shared
phenomenon controlled by the environment. The corresponding sensor would be a ther-
mometer. Another shared phenomenon would be the state of a burner. That state would
be controlled by the machine, i.e., the machine is able to switch the burner on or off.

Jackson defines five basic problem frames, namelyRequired Behaviour, Commanded
Behaviour, Information Display, WorkpiecesandTransformation. In order to use a prob-
lem frame, one must instantiate it, i.e., provide instancesfor its domains, interfaces and
requirements.

2.2 Architectural Styles

According to Bass, Clements, and Kazman [2],

“the software architecture of a program or computing systemis the structure or
structures of the system, which comprise software components, the externally
visible properties of those components, and the relationships among them.”

Architectural styles are patterns for software architectures. A style is characterized
by [2] (i) a set of component types (e.g., data repository, process, procedure) that per-
form some function at runtime, (ii) a topological layout of these components indicating
their runtime interrelationships, (iii) a set of semantic constraints (for example, a data
repository is not allowed to change the values stored in it),and (iv) a set of connec-
tors (e.g., subroutine call, remote procedure call, data streams, sockets) that mediate
communication, coordination, or cooperation among components.

When choosing an architecture for a system, usually severalarchitectural styles
are possible, which means that all of them could be used to implement the functional
requirements. We use UML 2.0 composite structure diagrams (see Section 2.3) to rep-
resent architectural patterns as well as concrete architectures.
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2.3 Composite Structure Diagrams

Composite structure diagrams [23] are a means to describe architectures (cf. Fig. 1).
They contain named rectangles, calledparts. Theses parts are components of the soft-
ware. Each component may contain other (sub-) components. Atomic components can
be described by state machines and operations for accessinginternal data. Parts may
haveports, denoted by small rectangles, and ports may have interfacesassociated to
them. Interfaces may be required or provided. Provided interfaces are denoted using
the “lollipop” notation, and required interfaces using the“socket” notation. Figure 2
shows how interfaces in problem diagrams are transformed into interfaces in composite
structure diagrams.

P1:  {phen1, phen2}

Machine

Domain
M!P1

Machine

Part

Domain (P1)

<<interface>>
P1_if

phen1()
phen2()

Machine

Part

P1_if

=̂

Domain (P1)
P1_if

Fig. 2. Notation for Architectures

The architecture of software is multi-faceted: there exists a structural view, a process-
oriented view, a function-oriented view, an object-oriented view with classes and rela-
tions, and a data flow view on a given software architecture. We use the structural view
from UML 2.0 that describes the structure of the software at runtime. After that structure
is fixed the interfaces need to be refined using sockets, lollipops and interface classes
to describe the possible data flow. Then the corresponding active or passive class with
its data and operations can be added for each component. Thereby the process-oriented
and object-oriented views can be integrated seamlessly into the structural view. That
approach and the corresponding process are described in [12].

3 Architectural Patterns for Problem Frames

The architectural patterns we have defined for the differentproblem frames in [5] take
the characteristics of the respective problem frame into account. They are based on a
Layeredarchitecture, as shown on the right-hand side of Fig. 1.

The lowest layer is thehardware abstraction layer(HAL). This layer covers all
interfaces to the external components in the system architecture and provides access
to these components independently of the used controller orprocessor. For porting the
software to another hardware platform, only this part of thesoftware needs to be re-
placed.
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The hardware abstraction layer is used by theinterface abstraction layer(IAL).
This layer provides an abstraction of the (low-level) values yielded by the sensors and
actuators. For example, a frequency of wheel pulses could betransformed into a speed
value. Thus, in the interface abstraction layer, values forthe monitored and controlled
variables (see [17]) of the system are computed. It is possible that these variables have
to be computed from the values of several hardware interfaces. For safety-critical soft-
ware components, the interface abstraction layer will usually make use of redundant
arrangements of sensors and actuators.

The highest layer of the architecture is theApplicationlayer. This layer only has to
deal with variables from the problem diagram. Therefore, the system requirements can
be directly mapped to the software requirements of the application layer, as described
by Bharadwaj and Heitmeyer [3].

Note that the phenomenaC3 do not occur in the architecture2, because they do not
belong to the interface of the machine domain.

Thus, the architecture shown on the right-hand side of Fig. 1represents an adequate
structure for theControl machine of the left-hand side of Fig. 1. The interfaces of
the architectural patterns correspond exactly to the interfaces of the machine domains
as defined in the different frame diagrams. Hence, the architecture refines exactly the
machine to build; it neither adds nor leaves out any shared phenomena as compared to
the problem description.

Of course, our architectural patterns are not the only possible way to structure the
machine domain solving the problem that fits to a given problem frame. However, the
kind of (layered) architecture we propose has proven usefulin practice (see for example
[4, 12, 22]), and allows for combining solutions to different subproblems of complex
problems in a systematic way. It is also flexible enough to be combined with other
architectural styles. We have validated this kind of architecture in several industrial
projects, dealing for example with smart cards, protocol converters, web/mail-servers,
and real-time operating systems.

4 Related Work

A number of research activities deal with the use of patternsin the software develop-
ment process. We consider here mainly those related with theuse of problem frames,
also in relationship with architectural styles.

Aiming to integrate problem frames in a formal development process, Choppy and
Reggio [8] show how a formal specification skeleton may be associated with some prob-
lem frames. Choppy and Heisel show in [6, 7] that this idea is independent of concrete
specification languages. In that work, they also give heuristics for the transition from
problem frames to architectural styles. In [6], they give criteria for (i) helping to select
an appropriate basic problem frame, and (ii) choosing between architectural styles that
could be associated with a given problem frame.

2 In the following, we use the word “architecture” instead of “architectural pattern” for reasons
of readability. It is clear, however, that the components shown in the architectural diagrams
have to be instantiated in order to obtain a concrete software architecture.
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In [7], a proposal for the development of information systems is given using update
or query problem frames. A component-based architecture reflecting the repository ar-
chitectural style is used for the design and integration of the different system parts.

The approach developed by Hall, Rapanotti et al. [11, 18] is quite complementary to
ours, since the idea developed there is to introduce architectural concepts into problem
frames (introducing “AFrames”) so as to benefit from existing architectures. In [11], the
applicability of problem frames is extended to include domains with existing architec-
tural support, and to allow both for an annotated machine domain, and for annotations
to discharge the frame concern. In [18], “AFrames” are presented corresponding to the
architectural styles Pipe-and-Filter and Model-View-Controller (MVC), and applied to
transformation and control problems.

Let us also mention Lavazza and Del Bianco [15] who do not use architectures, but
provide a description of commanded and required behavior problem frames in UML-
RT, focusing on active objects or “capsules” communicatingthrough ports (defined by
protocols). Moreover, they provide a real time version of OCL, called OTL.

Barroca et al. [1] extend the problem frame approach withcoordinationconcepts.
This leads to a description ofcoordination interfacesin terms ofservicesandevents
(referred to respectively here as actuators and sensors) together with required properties,
and the use ofcoordination rulesto describe the machine behavior.

5 Software Development Process

In the following, we describe a pattern-based software development process. That pro-
cess is based on problem frames [13] and the corresponding architectural patterns that
we propose in [5]. We mostly use concrete object-oriented notations (often taken from
UML [23]) to express the results of the different steps of theprocess. In principle, the
process could be carried out using other notations, but the procedures we give below on
how to execute the steps would have to be adjusted in that case.

The novelty of the process is that the relationships betweenthe subproblems are
expressed explicitly, and that these relationships are exploited when generating a global
software architecture for the overall problem. Although Jackson [13] gives some hints
on how to decompose problems into subproblems, there is no general procedure for
constructing the solution of the overall problem from the solutions of the subproblems.
The current paper proposes an approach on how to achieve thatcomposition.

Our pattern-based software development process using problem frames and archi-
tectural patterns proceeds as follows: first, a context diagram showing the problem con-
text is set up (for an example, see Figure 3). Then, the overall problem is decomposed
into subproblems that should fit to existing problem frames.This decomposition can
be achieved in various ways, for example by use-case decomposition, or by projection,
as proposed by Jackson [13]. The decomposition results in a set of problem diagrams
(that should be instantiated frame diagrams whenever possible) and the information
how the different subproblems are related, expressed e.g. as a grammar. For each sub-
problem, a specification for the machine domain must be derived, thus addressing the
frame concern. Each machine domain corresponding to a subproblem is then structured
by instantiating the architectural patterns we have proposed in [5]. The instantiated pat-
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terns must afterwards be merged to obtain the architecture of the machine solving the
overall problem. It ts the main contribution of the present paper to show how that com-
position can be performed in a systematic way, making use of the relations between
the subproblems that were expressed during problem decomposition. Finally, the com-
ponents of the combined architecture must be specified in more detail, and it must be
shown that the combined architecture fulfils the specifications of all subproblems.

The process consists of twelve steps that we explain one by one. The steps that are
the most important for the task of constructing the overall solution structure from the
subproblem solution structures are Steps 3, 9, and 10.

1. Collect requirements and domain knowledge.
Input An informal description of the task.
Procedure The requirements (optative statements) have to be expressed, as well

as knowledge about the environment in which the machine (i.e. the software
system to be developed) has to operate (indicative statements). Whereas the
requirements have to be achieved by constructing the machine, the domain
knowledge expresses facts that are true no matter how the machine is built.
(For a more details, see [24].)

Output A set R of requirements, and a setD of domain knowledge statements.
These can be expressed in natural language, or in semi-formal or formal nota-
tions.

Validation The statements contained inR andD must be non-contradictory.
2. Draw a context diagram.

Input An informal description of the task.
Procedure We must identify all domains that are relevant to the problemat hand,

and the phenomena that are shared by different domains.
Output A context diagram containing all relevant domains and shared phenomena.

(For a more details, see [13].)
Validation The results of Steps 1 and 2 must be consistent, i.e., all domains and

phenomena mentioned inR andD must be contained in the context diagram,
and all domains and phenomena of the context diagram must be related to some
element ofR or D.

3. Decompose the problem into simple subproblems, and express the relations be-
tween the different subproblems. If possible, the subproblems should fit to known
problem frames (or variants).

Input Results of Steps 1 and 2.
Procedure There are different possibilities to decompose a complex problem into

subproblems. Jackson [13] proposes a parallel decomposition using projection,
but a decomposition by use-cases (for an example, see [7]) ora top-down de-
composition are also possible. Subproblems refer to related sets of require-
ments, and they should only constrain a single domain (otherwise, the sub-
problem is not simple but needs further decomposition).
The following relationships between subproblems are possible: parallel sub-
problems are largely independent of one another, and the composed machine
will have to treat the problems in parallel.Sequentialsubproblems have to be
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treated one after the other.Alternativeproblems are exclusive. Only one of
them will have to be treated at a given time.
However, composing the solution of the overall problem fromthe solutions of
the subproblems doesnot mean to develop an independent program for each
subproblem and then compose these programs. Instead, the solutions to the
subproblems will contain common components that have to be identified and
then merged accordingly (cf. Steps 9 and 10). This is the challenge of the com-
position problem.

Output A set of problem diagrams, being mostly instantiated frame diagrams,
and an expression of the subproblem relationships. To express subproblem re-
lationships, different means of expression are appropriate, for example pro-
cess algebra-like notations, grammars, high-level sequence charts, or sequence
charts using combined fragments (the latter two introducedin UML 2.0).

Validation All requirements have to be captured, and each requirement must be
assigned exactly to one subproblem, otherwise the requirement must be split.
The problem diagrams must be consistent with the context diagram of Step 2.
The following operations preserve consistency:

– leave out domains (with corresponding interfaces)
– combine several domains into one domain
– divide one domain
– reduce an interface between domains
– refine phenomena
– combine (i.e., abstract) phenomena

4. Derive a specification for each subproblem.
Input Results of Steps 1–3.
Procedure Whereas requirements describe how the environment should behave

once the machine is integrated in it, the specification describes the machine and
forms the basis for its construction. Specifications are implementable require-
ments, and they are derived from the requirements using domain knowledge.
For more details, see [14].

Output A specification for each subproblem, expressed as a set of sequence dia-
grams. State invariants should be annotated for the domainsin the environment
of the machine.

Validation Specification and domain knowledge must be non-contradictory. The
specification, together with the domain knowledge, must imply that the require-
ments are fulfilled. In performing that proof, the frame concern is addressed.
The frame concern provides a structure for the correctness proof.
Additionally, the phenomena of the machine domain must be consistent with
the signals in the sequence diagrams, i.e., they must have the same name, or a
mapping must be created. All phenomena at the interfaces of the machine must
be used in at least one sequence diagram. The annotated stateinvariants must
allow to combine the sequence diagrams in the same way as the relationships
of Step 3 describe.

5. Define an architecture for each subproblem.
Input Problem diagrams resulting from Step 3.
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Procedure If a subproblem fits to a known problem frame, then a simple instanti-
ation of the pattern we gave in [5] will suffice. If a subproblem is not an exact
instance of a problem frame but a variant, then modificationsof our architec-
tural patterns will be necessary. If a subproblem is unrelated to any problem
frame, then an appropriate architecture has to be developedfrom scratch.

Output A subproblem architecture for each subproblem, expressed as a composite
structure diagram.

Validation If the architectural diagrams are instantiations of the given patterns, no
validation is necessary. Otherwise, it must be checked thatall domains of the
problem diagram are captured in the architecture and that the external inter-
face of the architecture coincides with the machine interface of the problem
diagram.

6. Specify the interface classes for all interfaces of all subproblem architectures.
Input Results of Steps 3 and 5.
Procedure For each interface contained in a subproblem architecture,the corre-

sponding operations or signals, respectively, have to be defined, and provided
and required interfaces must be distinguished.

Output A set of interface classes.
Validation All interfaces must be covered. The signals or operations inthe in-

terfaces classes must be the same as the signals in the sequence diagrams of
Step 4.

7. Specify all components of all subproblem architectures.
Input Results of Steps 4–6.
Procedure For each component, its external behavior is expressed using sequence

diagrams. For the application layer (cf. Fig. 1), it should be possible to re-use
the specifications developed in Step 4. To reuse the specifications, the interface
phenomena have to be adjusted according to the functionality of the IAL and
the HAL. Moreover, to prepare for the next step, the sequencediagrams should
be annotated with state invariants, as in Step 4.

Output A set of sequence diagrams, annotated with state information.
Validation All components must be covered. The signals in specificationmust be

defined in the interfaces classes. The sequence diagrams forthe components
together must describe the same behavior as described in Step 4.

8. Define a state machine and the used data for each architectural component.
Input Result of Step 7.
Procedure Use the state information contained in the sequence diagrams to con-

struct a state machine specifying the behavior of each architectural component.
This step may seem redundant, because we have already developed a specifi-
cation for each component using sequence diagrams. However, the sequence
diagrams only show specific scenarios and are possibly incomplete. A state
machine and the used data specify the overall behavior of thecomponent in
question and will later serve as the basis for the specification of the composed
architecture and for the implementation. An approach to construct state ma-
chines from sequence diagram is described in [16]. The sequence diagrams, on
the other hand, can be used for testing.
The local data for each component can be defined using class diagrams.
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Output A set of state machines and class diagrams.
Validation Each architectural component is covered, and each state machine is

complete, i.e., each possible input signal (as specified in Step 6) is taken into
account. Each state machine must behave as described in its corresponding
sequence diagrams.
Moreover, all referenced interface classes must be the sameas the interface
classes of the subproblem architecture of the respective component (Step 6).

9. Develop the global architecture of the machine to be developed by combination of
the subproblem architectures.
Input Relationships between subproblems as specified in Step 3, results of Steps

5 and 6.
Procedure The crucial point of this step is to decide if two components contained

in different subproblem architectures should occur only once in the global ar-
chitecture, i.e., they should be merged. To decide this question, we make use
of the information gathered when decomposing the overall problem into sub-
problems. We distinguish the following cases, where all cases but the first one
concern application components:
(a) The components are hardware (HAL) or interface abstraction layers (IAL),

establishing the connection to some hardware device.
Such components should be merged if and only if they are associated to
the same hardware device.

(b) Two application components belong to subproblems beingrelated sequen-
tially or by alternative.
Such components should be merged into one application component.

(c) Two application components belong to parallel subproblems and share
some output phenomena.
Such components should be merged, because the output must begenerated
in a way satisfying both subproblems.

(d) Two application components belong to parallel subproblems and share
some input phenomena.
If the components do not share any output phenomena, both alternatives
(merging the components, or keeping them separate) are possible. If the
components are not merged, then the common input must be duplicated.

(e) Two application components belong to parallel subproblems and do not
share any interface phenomena.
Such components should be kept separately.

Output A composite structure diagram for the global architecture,i.e. the architec-
ture of the machine solving the original problem, and a set ofinterface classes
for the global architecture.

Validation The global architecture must contain all components and interfaces of
all subproblem architectures. It must be possible to map allsignals in the ex-
ternal interfaces to the phenomena at the machine interfaces of the context
diagram developed in Step 2.

10. Define state machines for all components of the global architecture that were merged
from components of different subproblem architectures by merging their respective
state machines.
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Input Results of Steps 8 and 9.
Procedure According to the case distinction we made in Step 9, we proceed as

follows:
– Case 9a. Often, the state machines will already be equal, because they de-

scribe the same device. If not, the state machines must be merged manually.
In many cases, we only need to add the additional signals to the appropriate
states.

– Case 9b. The composition can be achieved by using composite states. The
connecting arcs between the sub-automata depend on the problem.

– Case 9c. Here, the merge depends on the problem to be solved. Often, there
will be a priority between the different subproblems that has to be taken
into account when defining the common state machines. As a heuristic, we
can note that priorities between subproblems will be necessary when the
two subproblems constrain the same domain.

– Case 9d. The merge has to be performed manually.
Output A set of state machines.
Validation Each composed state machine is complete and covers all inputevents

that can be sent by the components with an interface to the composed state ma-
chine. All sequence diagrams of all subproblems for the component specified
in Step 7 describe the same behavior as the corresponding state machine.

11. Specify operations and private data types.
12. Implement and test the software system.

As the last two steps are beyond the scope of this paper, we do not describe them
here.

6 Case Study

We now illustrate the process by the case study of an automatic teller machine (ATM).

6.1 Requirements, Domain Knowledge – Step 1

The mission of an ATM is to provide customers with money, provided that they are
entitled to withdraw the desired amount.

R1 To use the ATM a valid pin and a bank card is required.
R2 The withdrawal should be refused when the request is bigger than the balance.
R3 The card should be retracted if the customer does not take the ejected card.
R4 The account is updated when the customer takes the money.
R5 After the withdrawal was granted and the card ejected, themoney should be taken

from the supply, put to the money case, and the case should be opened. After the
customer took the money, the money case should close, otherwise the money should
be retracted.

R6 All input phenomena should be logged.
R7 The logged input phenomena can be queried by the administrator.

An example of domain knowledge is that theMoney Casesendsbanknotes removed
when theCustomertakes the banknotes.
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Fig. 3.Context Diagram for ATM Problem

6.2 Context Diagram - Step 2

Figure 3 shows the structure of the ATM problem context, where several domains and
the corresponding shared phenomena are identified.

6.3 Subproblems - Step 3

The ATM consists of the subproblemsAuthenticate, Request, Update Account, Take
Money, Take Card, Log, andDisplay Log. The following figures provide the problem
frame instances for these subproblems.

Figure 4 shows the problem diagram forAuthenticate. It is an instantiation of the
commanded behavior frame with an additional feedback phenomenonAM!E6. Require-
mentR1 can be assigned to this problem diagram.

Customer

 
Card 
reader

C!E5

Authen−
tication
machine

AM!C2
CR!C1

C3

C!E4
AM!E6

E4,E5,E6

Authentication

C1: {card inside}
C2: {retract card}
C3: {card control}

E4: {enter pin}
E5: {insert card}
E6: {ask pin}

Fig. 4. Problem Diagram for Authenticate (commanded behavior variant)
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The problem diagram forRequest(shown in Figure 5) describes requirementR2.
It is a variant of the commanded information frame. This variant is called information
display and described in [7].

Request
machine Display

Account
data

AD!C7 C8

RM!E9 Y10

Customer E11C!E11

Request
money

C7: {account balance}
C8: {account data}
E9: {granted OK,

refuse withdrawal}

Y10: {withdrawal possible}
E11: {enter request}

Fig. 5. Problem Diagram for Request (commanded information variant, information display)

Figure 6 shows the problem diagram forTake Card. It is an instantiation of the
required behavior frame. TheCustomeris additionally included to show all relevant
actions in the environment. RequirementR3 can be assigned to this problem diagram.

Customer

 
Card 
reader

Take
card
machine

CR!C12
TCM!C13 C14

C!E15

E15

Take
card

C12: {card inside}
C13: {eject card, retract card}

C14: {eject, retract}
E15: {take card}

Fig. 6. Problem Diagram for Take Card (required behavior)

Figure 7 shows the problem diagram forUpdate Account, which is a variant of the
Workpiecesframe. The requirementR4 is described with this problem frame.

The problem diagram forTake Money(Figure 8) is a variant of theRequired Be-
haviourproblem frame (Figure 1), where we added theCustomerand his/her connec-
tion with theMoney Case. The requirementR5 is described with this problem frame.
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Update
account

account
Update

machine

Customer

C!E18

Money Case

data
Account

MC!C19

Y17

E18

UAM!Y16

Y16: {update account}
Y17: {account data}

E18: {take banknotes}
C19: {banknotes removed}

Fig. 7. Problem Diagram for Update Account (Workpieces variant)

Customer

Take
money
machine

Money Supply /
Case 

MCC!C19
TMM!C20 C21

E18

C!E18 Take 
money

E18: {take banknotes}
C19: {banknotes removed}
C20: {take banknotes from supply, put banknote to case, open case, close case, re-

tract banknotes from case}
C21: {control money supply, control money case}

Fig. 8. Problem Diagram for Take Money (required behavior variant)

The problem diagram forLog (cf. requirementR6) is shown in Figure 9. The work-
pieces problem frame is instantiated. The domainsCard reader, Money case, andCus-
tomerin the problem diagram represents theUser in the problem frame.

The problem diagram forDisplay Log (shown in Figure 10) describes requirement
R7. It is a variant of the commanded information frame. This variant is called informa-
tion display and described in [7].

The dependencies between the subproblems can be summarizedusing a context-free
grammar describing the possible sequences. In the following grammar, “||” denotes par-
allel problems and “|” denotes an alternative.

< start >::= (< idle > ||Log||DisplayLog)
< idle >::= (Authenticate < authenticated > |Authenticate < idle >)
< authenticated >::= (Request < granted > |Request < refused >)
< granted >::= (TakeCard < granted no card > |TakeCard < idle >)
< refused >::= TakeCardRefused < idle >
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(Logs)

machine
Log

Data storage Y23
LM!Y23

Customer

Money case
Card reader, 

C!E5,E15,E18
C!E4,E11

CRMC!C1,C12, C19 Log input
phenomena

C22

E4,E11

Y22: {card reader money case input phenomena}
E23: {log data}

C1, C12 . . . as given in the other figures

Fig. 9.Problem Diagram for Log (Workpieces)

Admin

Admin Display
logdisplay

Display

machine
log

Data
storage
(Log) Y25

E27

DS!Y24

A!E27

DLM!C26 C26

Y24: {log data}
Y25: {logged input phenomena}
C26: {log}
E27: {request log}

Fig. 10.Problem Diagram for Display Log commanded information variant, information display)
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< granted no card >::= (UpdateAccount||TakeMoney) < idle >

The last line means that, once the card is removed and withdrawal is granted, both
UpdateAccountand TakeMoneywill take place in parallel, and then the idle state is
reached.

6.4 Specification – Step 4

For each problem diagram, the specification is expressed by sequence diagrams that are
given in the following figures.

The sequence diagram for the subproblemAuthenticateis shown in Figure 11. This
diagram expresses that the card is retracted after 3 unsuccessful attempts. TheCustomer
is authenticated if the valid PIN is entered.

The sequence diagram for the subproblemRequestis shown in Figure 12. When an
authenticated customer enters a request, his/her balance is checked and the access for
the customer is granted or refused.

Fig. 11.Sequence Diagram for Authenticate

Fig. 12.Sequence Diagram for Request

The sequence diagrams for the subproblemTake Cardare shown in Figures 13 and
14. The sequence is different depending on the state of the customer. If the access is
granted, the ejected card might be retracted after a certaintime period, or the customer
takes the card and he/she can continue with the withdrawal process.
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If the access is refused, the ejected card is retracted or thecustomer takes it. In both
cases the access is not granted, as shown in Fig. 14.

Fig. 13.1st Sequence Diagram for Take CardFig. 14.2nd Sequence Diagram for Take Card

The sequence diagram for the subproblemUpdate Accountis shown in Figure 15.
The sequence diagram expresses that the account data are updated when the banknotes
are removed.

The sequence diagram expresses the specificationS5 for the subproblemTake Money
is shown in Figure 16. It also contains the domainCustomerto illustrate the interrelation
between the requirement, the domain knowledge and the specification:

R5 ... After the customer took the money, theMoney Caseshould close, otherwise the
money should be retracted.

D1 TheMoney Casesendsbanknotes removed after theCustomertook the banknotes.
S5 ... After the signalbanknotes removed occurs, theMoney Caseshould close, oth-

erwise the money should be retracted.

Therefore the implicationD1 ∧ S5 ⇒ R5 is fulfilled. This sequence occurs in parallel
to to the sequence shown in Fig. 15. This is possible, becauseboth diagrams start with
the same state invariantgrantedno card and only in Fig. 15 the state of the customer
after this sequence is constraint.

The sequence diagram for the subproblemLog is shown in Figure 17. It shows that
all input signals are logged in a data storage. This sequenceis not constraint by a state
invariant and is parallel to all other sequence diagrams.

The sequence diagram for the subproblemDisplay Logis shown in Figure 17. It
shows that the stored logs can be queried by the administrator. This sequence also is not
constraint by a state invariant and is parallel to all other sequence diagrams.

6.5 Instantiated Architectural Patterns – Step 5

For each problem diagram, an architectural pattern from [5]is instantiated.
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Fig. 15.Sequence Diagram for Update Account

Fig. 16.Sequence Diagram for Take Money

Fig. 17.Sequence Diagram for Log

Fig. 18.Sequence Diagram for Display Log

The architecture for the subproblemAuthenticateis shown in Fig. 19. It consists
of an Authentication Application, a Card In IAL, a Card Out IAL, the corresponding
HAL components, and aUser Interface. The architecture for the subproblemRequest
is shown in Fig. 20. It consists of aRequest Application, a User Interfaceand aData
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Card In IAL

Card In HALCard Out HAL

Card Out IAL

User
Interface

 from Customer (E5)
Card Reader (C2) Card Reader (C1)Customer (E4, E6)

E4’’  E6’’

C2’ 

C2’’ 

C1’

C1’’

Authentication Application

Fig. 19.Architecture for Authenticate

Data
Storage
(Account 
Data)

User
Interface

Request Application

E9’’, E11’’ C7

Customer (E9, E11)

Fig. 20.Architecture for Request

Storage. The architecture for the subproblemTake Card(see Fig. 21) consists of the
hardware abstraction layer and the interface abstraction layer for the Card, and aTake
Card Application. The architecture for the subproblemsUpdate Accountis shown in

Card In IAL

Card In HALCard Out HAL

Card Out IAL

Card Reader (C13) Card Reader (C12)
 from Customer (E15)

Take Card Application

C13’ 

C13’’ C12’’ 

C12’ 

Fig. 21.Architecture for Take Card

Data
Storage
(Account 
Data)

Update Account Application

Money Se.HAL

Money Se.IAL

Case (C19)
Sensor from

Customer (E18)

Money Supply/

C19’

C19’’Y16

Fig. 22.Architecture for Update Account

Fig. 22. The architecture for the subproblemsTake Moneyis shown in Fig. 23. The
architecture for the subproblemLog consists of aLog Applicationand all components
that handle input phenomena. It is shown in Fig.25. The architecture for the subproblem
Display Logconsists of aDisplay Log Application, aUser Interfacefor the administra-
tor, and aData Storagecontaining the logs. (see Fig. 24).

6.6 Interface Classes – Step 6

As we use very abstract phenomena for the case study, the IAL and the HAL are triv-
ial, and we obtain their interface phenomena simply by renaming the external phe-
nomena. Phenomena controlled by the machine become provided interfaces, and phe-
nomena controlled by the environment become required interfaces of the complete ma-
chine. A provided interface class is e.g.C19 (see Figs. 7 and 22) with the method
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Money Se.HAL

Money Se.IAL Money Ac.IAL

Money Ac.HAL

Money Supply/

Actuator
Case (C19) Case (C20)
Sensor from

Customer (E18)

Money Supply/

Take  Money Application

C19’ C20’

C19’’ C20’’

Fig. 23.Architecture for Take Money

DataUser
Storage
(Logs)

Interface
(Admin)

Admin (E27)
Admin Display (C26)/

Display Log Application

C26’’  E27’’ Y24

Fig. 24.Architecture for Display Log

Data
Storage
(Logs)

Card In IAL

Card In HAL

User
Interface

Money Se.HAL

Money Se.IAL

Card Reader
Case (C19)

Money Supply/
(C1, C12)

Log Application

Customer (E4, E6, E11)

E4’’, E6’’, E11’’Y23

C1’, C12’ C19’

C19’’C1’’, C12’’

Fig. 25.Architecture for Log

banknotes removed(). The interfaces of the application components are e.g.C19” with
the methodbanknotes removed”() or e.g.Y16 with the methodupdate account(amount:
Integer).

In the following tables some interface classes for the subproblem architectures are
specified.

〈〈interface〉〉 C13
retract card()
eject card()

〈〈interface〉〉 C13’
retract card’()
eject card’()

〈〈interface〉〉 C13”
retract card”()
eject card”()
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〈〈interface〉〉 E9”
granted OK”()

refuse withdrawal”()

〈〈interface〉〉 E11”
enter request”(amount: Integer)

〈〈interface〉〉 C7
select account”(): Integer

6.7 Sequence Diagrams for Components – Step 7

Because of the trivial HAL and IAL, the sequence diagrams fortheTake Money Appli-
cationcan be constructed just by replacing e.g.eject card() with eject card”().

6.8 State Machines for Components – Step 8

For each component, the required and the provided interfaces are specified. Addition-
ally, the local data of the components is defined using class diagrams. These class di-
agrams support the reuse of the specified components. As examples the class diagram
for the Request Applicationand theUpdate Account Applicationare provided in the
Figures 26 and 27.

Request_Application

account_balance: Integer;
amount: Integer

E9’’ E11’’ C7

Fig. 26.Class Diagram for Request Application

amount: Integer

Update_Account_Application

C19’’Y16

Fig. 27.Class Diagram for Update Account Application
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Each sequence diagram constructed in Step 7 can be transformed into a state ma-
chine that is associated to one class diagram. These state machines cover all signals that
can occur in their environment.

The state machine for theAuthenticate Applicationterminates if the valid pin is
entered and exits withfailed after 3 unsuccessful attempts (cf. Fig. 28) as specified in
Fig. 11.

��
��
��

��
��
��

��
��
��

��
��
��

Authentication Application

idle

card_inside’’() / ask_pin’’()

wait for pin 1

wait for pin 2

wait for pin 3

enter_pin’’(invalid) / ask_pin’’()

enter_pin’’(invalid) / ask_pin’’()

enter_pin’’(invalid) / ask_pin’’()

enter_pin’’(valid)

enter_pin’’(valid)

enter_pin’’(valid)

Fig. 28.State Machine for Authenticate Application

The state machine for theRequest Applicationis shown in Fig. 29. It is consistent
with the sequence diagrams in the Figures 12 and 14.

��
��
��

��
��
��

��
��
��

��
��
��

Request Application

authenticated

[ELSE] / refused_withdrawal’’()
refused

enter_request’’(amount) / 
account_balance:=select_account()

[amount <= account_balance] 
/ granted_OK’’()

Fig. 29.State Machine for Request Application
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The state machine shown in Fig. 30 requires a timer as defined in [12].

��
��
��

��
��
��

��
��
��

��
��
��

Take Card Application

granted / 
refused

/ eject_card’’(), start_timer(LIMIT)

no_card_inside’’() 

c_retracted
timeout() 

Fig. 30.State Machine for Take Card Application

The sequence diagram of Fig. 15 can be transformed into the state machine shown
in Fig. 31.

��
��
��

��
��
��

��
��
��

��
��
��

granted_  
no_card

update_account( − amount)
banknotes_removed’’() /

Update Account Application

Fig. 31.State Machine for Update Account Application

The state machine for ejecting the requested amount of moneyand retracting this
money if it was not taken within a certain time limit is shown in Fig. 32.

��
��
��

��
��
��

��
��
��

��
��
��

granted_  
no_card

Take Money Application

 open_case’’(), start_timer(LIMIT)
 put_banknotes_to_case’’()
/take_banknotes_from_supply’’(), 

retract_banknotes_from_case’’()
timeout’’() /

banknotes_removed’’() /
close_case’’()

Fig. 32.State Machine for Take Money Application
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Additionally there is a state machine that logs all input phenomena. This state
machine consists of one state. In the transition, for each input signal (enter pin, en-
ter request, no card inside, card inside, andbanknotes removed) the signallog with
an appropriate parameter (e.g.enter pin) is sent (cf. 33

��
��
��

��
��
��

Log Application

wait_for_i_change log(enter_request, amount)
enter_request’’(amount) /

log(no_card_inside)log(card_inside)

removed’’() /

card_inside’’ () / no_card_inside’’() /

enter_pin’’(valid_or_invalid)
log(enter_pin, valid_or_invalid)

banknotes_

log (banknotes_
removed)

Fig. 33.State Machine for Log Application

The logged data can be requested by theAdmin. This functionality is implemented
in the state machine forDisplay Log Application(cf. 34).

��
��
��

��
��
��

request_log’’() / 

request
wait for 

log_data:=select_log(),
display_log’’(log_data)

Display Log Application

Fig. 34.State Machine for Display Log Application

Also the other components must be specified with state machines. As an example
the statemachines for theUser Interfacecomponents are presented in Figures 35, 36,
and 37.
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��
��
��

��
��
��

wait_for_change

User Interface (Authentication)

enter_pin(valid_or_invalid) /
enter_pin’’(valid_or_invalid)

ask_pin’’() /
ask_pin()

Fig. 35.State Machine for Authenticate User Interface

��
��
��

��
��
��

wait_for_change

User Interface (Request)

enter_request(amount) /
enter_request’’(amount)

granted_ok’’() /
granted_ok()

refuse_withdrawal’’() /
refuse_withdrawal()

Fig. 36.State Machine for Request User Interface

��
��
��

��
��
��

wait_for_change

User Interface (Log)

enter_pin(valid_or_invalid) /
enter_pin’’(valid_or_invalid)

enter_request(amount) /
enter_request’’(amount)

Fig. 37.State Machine for Log User Interface
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6.9 Global Architecture – Step 9

The composed architecture for the ATM is shown in Figure 38. It shows that our patterns
yield appropriate architectures for subproblems fitting toproblem frames, and that these
architectures can be combined in a modular way to obtain an architecture of the overall
system according to the rules of Step 9. The following mergeshave been done:

The problemTake Moneyand the problemUpdate Accountare parallel and share
some input phenomena (cf. case 9d). We decided to merge the corresponding applica-
tion components. The problemLog is related parallel to all other subproblems, sharing
input phenomena (cf. case 9d). We decided to merge theLog Applicationcomponent
with Authenticate Application, Request Application, Update Account Applicationand
the merged application forTake Money/Update Account. The problemsAuthenticate,
Request, Update Accountand the merged problemTake Money/Update Accountare re-
lated sequentially or by alternative (cf. case 9b). Therefore the corresponding applica-
tions are also merged. We call the resulting componentMain Application. The problem
Display Logis parallel and do not share any interface phenomena (cf. case 9e). Hence,
the componentDisplay Log Applicationis not merged. All components that are IALs
or HALs (cf. case 9a) are merged with the components of the same name in the other
subproblem architectures.

Data
Storage
(Account 
Data) Money Se.HAL

Money Se.IAL

Case (C19)
Sensor from

Customer (E18)

Money Supply/

Money Ac.IAL

Money Ac.HAL

Money Supply/

Actuator
Case (C20)

Card In IAL

Card In HAL

Card Reader

(E5, E15)

(C1, C12)
 from Customer 

User
Interface
(Admin)

Admin (E27)
Admin Display (C26)/

Display Log Application

Data
Storage
(Logs)

Main Application

User
Interface

Customer (E4, E6, E9, E11)

Y24 Y23

Card Out HAL

Card Reader 
(C2, C13)

C2’’ C13’’E4’’,E6’’ E9’’,E11’’C26’’ E27’’ C19’’C1’’ C12’’ C20’’

C20’C19’C2’ C13’ C1’ C12’

Card Out IA

C7 Y16

Fig. 38.Composed Architecture
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6.10 Complete State Machines for all components – Step 10

To create the complete state machines we start with the application components.

The application component state machines forTake MoneyandUpdate Accountare
merged by adding the output signalupdate account(-amount) to the transition in the
state machineTake Moneyactivated bybanknotes removed() (cf. Fig. 39).

��
��
��

��
��
��

��
��
��

��
��
��

Take Money / Update Account 

granted_  
no_card

/take_banknotes_from_supply’’(), 
 put_banknotes_to_case’’()
 open_case’’(), start_timer(LIMIT)

retract_banknotes_from_case’’()
timeout’’() /

close_case’’(),
banknotes_removed’’() /

update_account( − amount)

Fig. 39.Merged State Machine for Take Money and Update Account Application

The state machines forAuthentication Application, Request Application, andTake
Money/Update Accountmust then be merged with the state machine for theLog Ap-
plication using the same technique. This merge is presented exemplarily for the state
machineTake Money Update Account. Figure 40 shows the result of the merge.

��
��
��

��
��
��

��
��
��

��
��
��

granted_  
no_card

/take_banknotes_from_supply’’(), 
 put_banknotes_to_case’’()
 open_case’’(), start_timer(LIMIT)

retract_banknotes_from_case’’()
timeout’’() /

close_case’’(),
update_account( − amount),
log(banknotes_removed)

banknotes_removed’’() /

Take Money / Update Account / Log Application

Fig. 40.Merged State Machine for Take Money, Update Account, and LogApplication
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After merging the necessary state machines for the parallelsubproblems in the ap-
plication component, the state machines for the sequentialand the alternative subprob-
lems can be combined using composite states (see Fig. 41). The resulting state machine
exactly reflects the grammar describing the dependencies ofthe subproblems.

��
��
��

��
��
��

Authentication / 
Log Application

Request / Log
Application

Take Card / Log
Application

Take Card / Log
Application

Update Account /
Log Application

Take Money /

c_retracted

refused c_retracted

failed

Main Application

Fig. 41.State Machine for all Sequential and Alternative Problems

Then the state machines for the IALs, the HALs and theUser Interfaces must be
merged. The merged state machine for theUser Interfaceis shown in Figure 42.

7 Conclusions

In this paper we presented a (partial) development process from requirements elicitation
to detailed design. This process is based on patterns provided by problem frames and
architectural styles. The expression of the relationshipsbetween the subproblems is
used to guide the composition of the designed components. The contributions of our
approach are the following:

– Our process gives concrete guidance of how to use problem frames and architec-
tural patterns, in connection with a model-based approach to software development,
using various UML notations.

– We provide a systematic way of exploiting information on howa problem was
decomposed into subproblems for constructing the overall solution to a problem
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��
��
��

��
��
��

User Interface (merged)

wait_for_change

enter_pin(valid_or_invalid) /
enter_pin’’(valid_or_invalid)

enter_request(amount) /
enter_request’’(amount)

ask_pin’’() /
ask_pin()

granted_ok’’() /
granted_ok()

refuse_withdrawal’’() /
refuse_withdrawal()

Fig. 42.Merged State Machine for the User Interface

from the solutions of its subproblems. For top-down decomposition, this may be
simple; for use-case or parallel problem decomposition, however, it is not obvious
how to obtain the overall solution from the solutions of the subproblems.

– The process results in detailed descriptions of the software components to be im-
plemented and tested. The state machines (and data descriptions) are an appropriate
basis for implementation, whereas the sequence diagrams provide scenarios against
which the implemented software can be tested.

– Because of the extensive validation contained in our process, inconsistencies are
found before starting the implementation.

– Because of the systematic problem decomposition and solution composition, our
process can be used for large, realistic systems.

Although the work presented here is independent of any formal specification lan-
guage, if desired, it would be possible to accompany the architectural descriptions with
a formal specification development along the ideas of [6–8],and also to take into ac-
count properties as in [1] (cf. Section 4).

In the future, we intend to extend this work in several directions. First, we want
to treat complex data structures in more detail. Second, since our approach aims at a
guided and integrated use of several techniques and severalpatterns, we would like to
explore how to integrate the use of design patterns in this development. Third, we intend
to elaborate more on the later phases of software development. For example, we want
to investigate how to generate code from the outputs of our process. Finally, we aim at
tool support for our process, preferably integrating existing UML tools. Our long-term
goal is to apply our process in industrial applications.
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