Composing architectures based on architectural
patterns for problem frames

Christine Chopp}, Denis Hatebur3, and Maritta Heisél

L LIPN, Institut Galilee - Université Paris XIll, Francemail:
Christine.Choppy@lipn.univ-paris13.fr
2 Universitat Duisburg-Essen, Fachbereich Ingenieummisshaften, Institut fir Medientechnik
und Software-Engineering, Germany, email: maritta.h@smi-duisburg-essen.de
3 Institut fiir technische Systeme GmbH, Germany, emaibtbur@itesys.de

Abstract. The use of patterns is a promising way of developing highityua
software in a systematic way. Patterns can be used in diffpleses of the soft-
ware lifecycle. Problem frames are patterns for represgrdimple software de-
velopment problems, and architectural patterns are patfer representing the
coarse-grained structure of a piece of software. In a rquzrer, we have defined
architectural patterns corresponding to Jackson’s pnolfilames.

To make use of problem frames, complex problems have to teng@zsed into
simple ones. The corresponding architectural pattermsghmvide solution struc-
tures for these simple problems. Now the question arisesbh@ambine the so-
lutions structures of the simple subproblems to obtain at&wi structure for the
complex problem. The present paper addresses this question

Different subproblems of a complex problem can be relatediious ways. They
can be independent of each other, they can exclude each otlikey may have
to be solved in a specific order. Such information can be usedrnbine the so-
lutions structures of the subproblem to a solution strgctiiithe overall problem.
In this paper, we present a pattern-based software develupprocess using
problem frames and the corresponding architectural pettén decomposing a
complex problem into simple subproblems, the relatiorshiptween the sub-
problems are recorded explicitly. Based on this infornmtise give guidelines
how to derive the software architecture for the overall ppobfrom the software
architectures of the simple subproblems.

1 Introduction

Pattern-orientation is a promising approach to softwakekd@ment. Patterns provide
structuring concepts that are of invaluable help for problanderstanding and system
design, and are a means to reuse software development ldgawa different levels
of abstraction. They classify sets of software developrpenblems or solutions that
share the same structure.

Patterns were introduced on the level of detailed objeented design [10], and
are now defined for different activitieBroblem Frame$13] are patterns that classify
software developmemiroblems Architectural stylegor “architectural patterns”) are
patterns that characterize software architectures [Iiefns for further development

phases includdesign patterndrameworksandidiomsor “code patterns”. Using pat-
terns, we can hope to construct software in a systematicwaking use of a body of
accumulated knowledge, rather than starting from scratch.

Itis acknowledged that the first steps of software developme essential to reach
the best possible match between the expressed requireamehtise proposed software
product, and to eliminate any source of error as early asiges$herefore, we propose
to use patterns starting from the requirements elicitgtizase of the software develop-
ment life-cycle, as advocated by Fowler [9] or Sutcliffe k{20, 21]. M. Jackson [13]
proposes the concept pfoblem framedor presenting, classifying and understanding
software development problems. A problem frame is a charaetion of a class of
problems in terms of their main components and the connectetween these com-
ponents. Once a problem is successfully fitted to a problemd, its most important
characteristics are known.

Gaining a thorough understanding of the problem to be salvednecessary pre-
requisite for solving it. However, when using problem franene can even hope for
more than just a full comprehension of the problem at hamiteSproblem frames are
patterns, they represent problem structures that occaategly in practice. Hence, it is
worthwhile to look for solution structures that match theldem structures represented
by problem frames.

The construction of the solution of a software developmeoblem should begin
with the decision on the main structure of the solution, aedecision on the software
architecture. We exploit the knowledge gained in repréisgr@t problem as an instance
of a problem frame in taking that decision. In [5], we definehétectural patterns cor-
responding to Jackson’s problem frames, taking into adctiencharacteristics of the
problems fitting to the given problem frame. The structumjoted by an architectural
pattern constitutes a concrete starting point for the m®oé constructing a solution to
a problem that is represented as an instance of a problene fram

Different subproblems of a complex problem can be relatadiious ways. They
can be related sequentially, by alternative or they can degandent (parallel). Such
information can be used to combine the solutions structaféhe subproblem to a
solution structure of the overall problem.

In this paper, we present a pattern-based software develofpnocess using prob-
lem frames and the corresponding architectural pattemdetomposing a complex
problem into simple subproblems, the relationships betvtiee subproblems are recor-
ded explicitly. Based on this information, we give guidebnon how to derive the
software architecture for the overall problem from the wafe architectures and the
component specifications of the simple subproblems.

Throughoutthis work, we use object-oriented notationsstigédrom UML 2.0 [23].
Although our pattern-based software development process dot strictly depend on
object-orientation, it works particularly well in an objeariented setting.

The rest of the paper is organized as follows: after intrauythe basic concepts
of our work in Section 2, we briefly introduce the architeatypatterns we developed
for the various problem frames in Section 3. Then, we disceissed work in Section
4. Our pattern-based software development process ismessm Section 5 and illus-

trated by a case study in Section 6. In Section 7, we conclutteandiscussion of our
approach and directions for future research.

2 Basic Concepts

The patterns used in our development process are problemesrand architectural pat-
terns. As a notation for our architectural patterns, we eseposite structure diagrams
of UML 2.0. In the following, we give brief descriptions ofdhe three ingredients of
our work.!

2.1 Problem Frames
Jackson [13] describes problem frames as follows:

“A problem frame is a kind of pattern. It defines an intuitiveentifiable prob-
lem class in terms of its context and the characteristids @fdmains, interfaces
and requirement.”

Solving a problem is accomplished by constructing a “maghand integrating it
into the environment whose behavior is to be enhanced.

For each problem frame a diagram is set up (see left-hanagklg. 1). Plain rect-
angles denote application domains (that already existfiangles with a double vertical
stripe denote the machine domains to be developed, andeeugnts are denoted with
a dashed oval. They are linked together by lines that reptésterfaces, also called
shared phenomena.

The following problems fit to th&equired Behavioyproblem frame:

‘There is some part of the physical world whose behavioun ise controlled
so that it satisfies certain conditions. The problem is tddoaimachine that
will impose that control.’

The corresponding frame diagram is shown on the left-hatedafiFigure 1. TheC’ in
the frame diagram indicates that tBentrolled domaimust be causal. The machine is
always a causal domain (so an explicit'is not needed). The notatio€M!C1’ means
that the causal phenome@4 are controlled by the Control machi@M The dashed
line represents a requirements reference, and the arromssthat it is aconstraining
reference.

This problem frame is appropriate fembedded systemshere the machine to be
developed is embedded in a physical environment that musifiteolled. The commu-
nication between the machine and the physical environragastplace viaensorsand
actuators Thus, only by virtue of sensors and actuators can there érediphenom-
ena between the machine and its environment. Sensorseré¢ladizohenomen@?2 of
the frame diagram, i.e., the phenomena controlled by the@@mwment but observable

1 n the following, we will also use sequence diagrams andstaichines. However, these no-
tations are well-known and intuitive, and we will not explahem here.

Control Machine

‘ Application ‘

[3]
[Q]

<]
>
Z

‘ Sens ‘ ‘ Actu:

o

(o]

2 3R
=

Control CMIC1 Controlled c3 /" Required \\‘
machine | CD!C2 domain c " behaviour

L]
N
0]

13
=]

‘ ‘ Actu: HAL ‘

g
-3
=

[H1]

Controlled Controlled
Domain (C2) Domain (C1)

Fig. 1. Required Behaviour Frame Diagram and Architecture

by the machine. Actuators realize the phenom@deof the frame diagram, i.e., the
phenomena controlled by the machine and observable by thi@ement.

For example, we might want to build a machine that keeps thpéeature of some
liquid between given bounds. Then, the temperature of thédiwould be a shared
phenomenon controlled by the environment. The correspgredinsor would be a ther-
mometer. Another shared phenomenon would be the state gharbirhat state would
be controlled by the machine, i.e., the machine is able ttchvthe burner on or off.

Jackson defines five basic problem frames, naiRelyuired Behaviour, Commanded
Behaviour, Information Display, WorkpiecasdTransformationin order to use a prob-
lem frame, one must instantiate it, i.e., provide instarice&s domains, interfaces and
requirements.

2.2 Architectural Styles
According to Bass, Clements, and Kazman [2],

“the software architecture of a program or computing sysetine structure or
structures of the system, which comprise software compsntre externally
visible properties of those components, and the relatipgsstmong them.”

Architectural styles are patterns for software architexguA style is characterized
by [2] (i) a set of component types (e.g., data repositorycess, procedure) that per-
form some function at runtime, (ii) a topological layout bése components indicating
their runtime interrelationships, (iii) a set of semantimstraints (for example, a data
repository is not allowed to change the values stored iraityl (iv) a set of connec-
tors (e.g., subroutine call, remote procedure call, datmasts, sockets) that mediate
communication, coordination, or cooperation among corapts

When choosing an architecture for a system, usually sewachlitectural styles
are possible, which means that all of them could be used téemmgnt the functional
requirements. We use UML 2.0 composite structure diagrams $ection 2.3) to rep-
resent architectural patterns as well as concrete artinigesc

2.3 Composite Structure Diagrams

Composite structure diagrams [23] are a means to descrihétectures (cf. Fig. 1).
They contain named rectangles, calfdts Theses parts are components of the soft-
ware. Each component may contain other (sub-) componetdmié components can
be described by state machines and operations for acceagéngal data. Parts may
haveports denoted by small rectangles, and ports may have interfasssciated to
them. Interfaces may be required or provided. Providedfates are denoted using
the “lollipop” notation, and required interfaces using tisecket” notation. Figure 2
shows how interfaces in problem diagrams are transforntednterfaces in composite
structure diagrams.

Machine J <<interface>> [Machine J |
MIP1 PL_if A
= Part n Part
phen2()

P1: {phenl, phen2}

i PL_if

i PL if Domain (P1)
Domain (P1)

Fig. 2. Notation for Architectures

The architecture of software is multi-faceted: there easdtructural view, a process-
oriented view, a function-oriented view, an object-orezhtiew with classes and rela-
tions, and a data flow view on a given software architectueugé the structural view
from UML 2.0 that describes the structure of the softwareatime. After that structure
is fixed the interfaces need to be refined using socketspdqb and interface classes
to describe the possible data flow. Then the correspondingeamr passive class with
its data and operations can be added for each componenebihttie process-oriented
and object-oriented views can be integrated seamlessiytliret structural view. That
approach and the corresponding process are described]in [12

3 Architectural Patterns for Problem Frames

The architectural patterns we have defined for the diffegpesiblem frames in [5] take
the characteristics of the respective problem frame intmawct. They are based on a
Layeredarchitecture, as shown on the right-hand side of Fig. 1.

The lowest layer is théardware abstraction layefHAL). This layer covers all
interfaces to the external components in the system aothiteand provides access
to these components independently of the used controllgramessor. For porting the
software to another hardware platform, only this part of sb&tware needs to be re-
placed.

The hardware abstraction layer is used by ititerface abstraction laye(lIAL).
This layer provides an abstraction of the (low-level) valyelded by the sensors and
actuators. For example, a frequency of wheel pulses coulthheformed into a speed
value. Thus, in the interface abstraction layer, valuesifermonitored and controlled
variables (see [17]) of the system are computed. It is ptestilat these variables have
to be computed from the values of several hardware intesfdem safety-critical soft-
ware components, the interface abstraction layer will Ixgimaake use of redundant
arrangements of sensors and actuators.

The highest layer of the architecture is thpplicationlayer. This layer only has to
deal with variables from the problem diagram. Therefore sysstem requirements can
be directly mapped to the software requirements of the egipdin layer, as described
by Bharadwaj and Heitmeyer [3].

Note that the phenomer@8 do not occur in the architectuebecause they do not
belong to the interface of the machine domain.

Thus, the architecture shown on the right-hand side of Figptesents an adequate
structure for theControl machine of the left-hand side of Fig. 1. The interfaces of
the architectural patterns correspond exactly to thefates of the machine domains
as defined in the different frame diagrams. Hence, the &uthite refines exactly the
machine to build; it neither adds nor leaves out any shared@mnena as compared to
the problem description.

Of course, our architectural patterns are not the only ptessiay to structure the
machine domain solving the problem that fits to a given probieme. However, the
kind of (layered) architecture we propose has proven ugefufactice (see for example
[4,12,22]), and allows for combining solutions to diffetesubproblems of complex
problems in a systematic way. It is also flexible enough to dmkined with other
architectural styles. We have validated this kind of aesttiire in several industrial
projects, dealing for example with smart cards, protocoleoters, web/mail-servers,
and real-time operating systems.

4 Related Work

A number of research activities deal with the use of patteribe software develop-
ment process. We consider here mainly those related withigheof problem frames,
also in relationship with architectural styles.

Aiming to integrate problem frames in a formal developmeantpss, Choppy and
Reggio [8] show how a formal specification skeleton may be@ated with some prob-
lem frames. Choppy and Heisel show in [6, 7] that this idead&pendent of concrete
specification languages. In that work, they also give hé&asigor the transition from
problem frames to architectural styles. In [6], they giviéera for (i) helping to select
an appropriate basic problem frame, and (ii) choosing betvegchitectural styles that
could be associated with a given problem frame.

2 In the following, we use the word “architecture” instead af¢hitectural pattern” for reasons
of readability. It is clear, however, that the componentswshin the architectural diagrams
have to be instantiated in order to obtain a concrete soéaerhitecture.

In [7], a proposal for the development of information systésngiven using update
or query problem frames. A component-based architecttdiectmg the repository ar-
chitectural style is used for the design and integratiomefdifferent system parts.

The approach developed by Hall, Rapanotti et al. [11, 18)ii'eqcomplementary to
ours, since the idea developed there is to introduce anthred concepts into problem
frames (introducing “AFrames”) so as to benefit from exgtimchitectures. In [11], the
applicability of problem frames is extended to include domeavith existing architec-
tural support, and to allow both for an annotated machinealopand for annotations
to discharge the frame concern. In [18], “AFrames” are praskcorresponding to the
architectural styles Pipe-and-Filter and Model-View-@olter (MVC), and applied to
transformation and control problems.

Let us also mention Lavazza and Del Bianco [15] who do not udaitactures, but
provide a description of commanded and required behavirlpm frames in UML-
RT, focusing on active objects or “capsules” communicatimgugh ports (defined by
protocols). Moreover, they provide a real time version oflO€alled OTL.

Barroca et al. [1] extend the problem frame approach witbrdinationconcepts.
This leads to a description @bordination interfacesn terms ofservicesand events
(referred to respectively here as actuators and sensgeghier with required properties,
and the use ofoordination rulego describe the machine behavior.

5 Software Development Process

In the following, we describe a pattern-based software ldgveent process. That pro-
cess is based on problem frames [13] and the correspondihgestural patterns that
we propose in [5]. We mostly use concrete object-orientddtiums (often taken from
UML [23]) to express the results of the different steps of phecess. In principle, the
process could be carried out using other notations, butriteepures we give below on
how to execute the steps would have to be adjusted in that case

The novelty of the process is that the relationships betvikersubproblems are
expressed explicitly, and that these relationships arb#gd when generating a global
software architecture for the overall problem. Althougbk¥mn [13] gives some hints
on how to decompose problems into subproblems, there is nergeprocedure for
constructing the solution of the overall problem from thiitons of the subproblems.
The current paper proposes an approach on how to achieveoting@bsition.

Our pattern-based software development process usindggpndbames and archi-
tectural patterns proceeds as follows: first, a contextrdiaghowing the problem con-
text is set up (for an example, see Figure 3). Then, the dyanathlem is decomposed
into subproblems that should fit to existing problem franiégss decomposition can
be achieved in various ways, for example by use-case decitigpo or by projection,
as proposed by Jackson [13]. The decomposition results &b af problem diagrams
(that should be instantiated frame diagrams whenever lgegsind the information
how the different subproblems are related, expressed £ ajgeammar. For each sub-
problem, a specification for the machine domain must be déyithus addressing the
frame concern. Each machine domain corresponding to achilgpn is then structured
by instantiating the architectural patterns we have pregas[5]. The instantiated pat-

terns must afterwards be merged to obtain the architecfitteeanachine solving the
overall problem. It ts the main contribution of the preseapr to show how that com-
position can be performed in a systematic way, making uséeféelations between
the subproblems that were expressed during problem dectigoo Finally, the com-
ponents of the combined architecture must be specified ir metail, and it must be
shown that the combined architecture fulfils the specificetiof all subproblems.

The process consists of twelve steps that we explain one dyTdre steps that are
the most important for the task of constructing the ovemlllison structure from the
subproblem solution structures are Steps 3, 9, and 10.

1. Collect requirements and domain knowledge.

Input An informal description of the task.

Procedure The requirements (optative statements) have to be expghessavell
as knowledge about the environment in which the machinetfieesoftware
system to be developed) has to operate (indicative statsjnédhereas the
requirements have to be achieved by constructing the mecttie domain
knowledge expresses facts that are true no matter how thhinears built.
(For a more details, see [24].)

Output A set R of requirements, and a sét of domain knowledge statements.
These can be expressed in natural language, or in semidforrfamal nota-
tions.

Validation The statements containediiand D must be non-contradictory.

2. Draw a context diagram.

Input An informal description of the task.

Procedure We must identify all domains that are relevant to the probdgmmand,
and the phenomena that are shared by different domains.

Output A context diagram containing all relevant domains and shahenomena.
(For a more details, see [13].)

Validation The results of Steps 1 and 2 must be consistent, i.e., all ohsnaad
phenomena mentioned iR and D must be contained in the context diagram,
and all domains and phenomena of the context diagram mustdied to some
element ofR or D.

3. Decompose the problem into simple subproblems, and sxyhe relations be-
tween the different subproblems. If possible, the submmmisishould fit to known
problem frames (or variants).

Input Results of Steps 1 and 2.

Procedure There are different possibilities to decompose a compleklpm into
subproblems. Jackson [13] proposes a parallel decomposiging projection,
but a decomposition by use-cases (for an example, see [@]}ap-down de-
composition are also possible. Subproblems refer to ikla¢ds of require-
ments, and they should only constrain a single domain (ofilser the sub-
problem is not simple but needs further decomposition).

The following relationships between subproblems are ptesgparallel sub-
problems are largely independent of one another, and th@asad machine
will have to treat the problems in parall@equentiakubproblems have to be

treated one after the otheklternative problems are exclusive. Only one of
them will have to be treated at a given time.

However, composing the solution of the overall problem fitbim solutions of
the subproblems doewt mean to develop an independent program for each
subproblem and then compose these programs. Instead, lth®se to the
subproblems will contain common components that have taéuetified and
then merged accordingly (cf. Steps 9 and 10). This is thdexgé of the com-
position problem.

Output A set of problem diagrams, being mostly instantiated frarnagmms,
and an expression of the subproblem relationships. To exebproblem re-
lationships, different means of expression are appraprifat example pro-
cess algebra-like notations, grammars, high-level sezpielnarts, or sequence
charts using combined fragments (the latter two introdurcééML 2.0).

Validation All requirements have to be captured, and each requiremest be
assigned exactly to one subproblem, otherwise the regemmemust be split.
The problem diagrams must be consistent with the contegralm of Step 2.
The following operations preserve consistency:

— leave out domains (with corresponding interfaces)

combine several domains into one domain

divide one domain

reduce an interface between domains

refine phenomena

— combine (i.e., abstract) phenomena

4. Derive a specification for each subproblem.

Input Results of Steps 1-3.

Procedure Whereas requirements describe how the environment shalidvie
once the machine is integrated in it, the specification dlessthe machine and
forms the basis for its construction. Specifications ard@mentable require-
ments, and they are derived from the requirements using idoknawledge.
For more details, see [14].

Output A specification for each subproblem, expressed as a set néreq dia-
grams. State invariants should be annotated for the dorimeihe environment
of the machine.

Validation Specification and domain knowledge must be non-contragicide
specification, together with the domain knowledge, mustyrtiyat the require-
ments are fulfilled. In performing that proof, the frame cemrcis addressed.
The frame concern provides a structure for the correctness.p
Additionally, the phenomena of the machine domain must besistent with
the signals in the sequence diagrams, i.e., they must hav@athe name, or a
mapping must be created. All phenomena at the interfacésohtichine must
be used in at least one sequence diagram. The annotatedthstatants must
allow to combine the sequence diagrams in the same way asl#t®nships
of Step 3 describe.

5. Define an architecture for each subproblem.

Input Problem diagrams resulting from Step 3.

Procedure If a subproblem fits to a known problem frame, then a simplams
ation of the pattern we gave in [5] will suffice. If a subprablés not an exact
instance of a problem frame but a variant, then modificatafreur architec-
tural patterns will be necessary. If a subproblem is uneelad any problem
frame, then an appropriate architecture has to be devefopdscratch.

Output A subproblem architecture for each subproblem, expressadamposite
structure diagram.

Validation If the architectural diagrams are instantiations of thegipatterns, no
validation is necessary. Otherwise, it must be checkedathdbmains of the
problem diagram are captured in the architecture and tleaéxternal inter-
face of the architecture coincides with the machine interfaf the problem
diagram.

. Specify the interface classes for all interfaces of éijpsablem architectures.

Input Results of Steps 3 and 5.

Procedure For each interface contained in a subproblem architectheecorre-
sponding operations or signals, respectively, have to baetk and provided
and required interfaces must be distinguished.

Output A set of interface classes.

Validation All interfaces must be covered. The signals or operationthénin-
terfaces classes must be the same as the signals in the segliagrams of
Step 4.

. Specify all components of all subproblem architectures.

Input Results of Steps 4-6.

Procedure For each component, its external behavior is expressed asguence
diagrams. For the application layer (cf. Fig. 1), it shoudddmssible to re-use
the specifications developed in Step 4. To reuse the speitifisathe interface
phenomena have to be adjusted according to the functigrdlthe IAL and
the HAL. Moreover, to prepare for the next step, the sequdisggams should
be annotated with state invariants, as in Step 4.

Output A set of sequence diagrams, annotated with state informatio

Validation All components must be covered. The signals in specificatioat be
defined in the interfaces classes. The sequence diagrarttseefaomponents
together must describe the same behavior as describedar Ste

. Define a state machine and the used data for each architezdmponent.

Input Result of Step 7.

Procedure Use the state information contained in the sequence diagtamon-
struct a state machine specifying the behavior of eachtathral component.
This step may seem redundant, because we have already pgedelspecifi-
cation for each component using sequence diagrams. Howtbeesequence
diagrams only show specific scenarios and are possibly iplaie A state
machine and the used data specify the overall behavior ofdhgonent in
question and will later serve as the basis for the specifinaif the composed
architecture and for the implementation. An approach tcstoit state ma-
chines from sequence diagram is described in [16]. The segudiagrams, on
the other hand, can be used for testing.

The local data for each component can be defined using clagsadis.

10

Output A set of state machines and class diagrams.

Validation Each architectural component is covered, and each stathimeais
completei.e., each possible input signal (as specified in Step @kisrt into
account. Each state machine must behave as described ioriespgonding
sequence diagrams.

Moreover, all referenced interface classes must be the santlee interface
classes of the subproblem architecture of the respectivgponent (Step 6).
9. Develop the global architecture of the machine to be dpel by combination of
the subproblem architectures.

Input Relationships between subproblems as specified in Stepgdig®f Steps
5and 6.

Procedure The crucial point of this step is to decide if two componemtstained
in different subproblem architectures should occur onlgeoim the global ar-
chitecture, i.e., they should be merged. To decide thistoqpresve make use
of the information gathered when decomposing the overalblem into sub-
problems. We distinguish the following cases, where alésdnit the first one
concern application components:

(@) The components are hardware (HAL) or interface abstratzyers (IAL),
establishing the connection to some hardware device.
Such components should be merged if and only if they are Egedco
the same hardware device.

(b) Two application components belong to subproblems bedteded sequen-
tially or by alternative.
Such components should be merged into one application coempo

(c) Two application components belong to parallel subpmotsd and share
some output phenomena.
Such components should be merged, because the output ngesidémted
in a way satisfying both subproblems.

(d) Two application components belong to parallel submwotd and share
some input phenomena.
If the components do not share any output phenomena, bamatives
(merging the components, or keeping them separate) aréfd$ the
components are not merged, then the common input must bedigal.

(e) Two application components belong to parallel subpaisl and do not
share any interface phenomena.
Such components should be kept separately.

Output A composite structure diagram for the global architectueethe architec-
ture of the machine solving the original problem, and a séttefface classes
for the global architecture.

Validation The global architecture must contain all components aretfaxtes of
all subproblem architectures. It must be possible to magpigiials in the ex-
ternal interfaces to the phenomena at the machine interfatéhe context
diagram developed in Step 2.

10. Define state machines for all components of the globaltature that were merged
from components of different subproblem architectures bygimg their respective
state machines.

11

Input Results of Steps 8 and 9.

Procedure According to the case distinction we made in Step 9, we prbese
follows:

— Case 9a. Often, the state machines will already be equaubedhey de-
scribe the same device. If not, the state machines must lggecharanually.
In many cases, we only need to add the additional signaletaghropriate
states.

— Case 9b. The composition can be achieved by using compteiéssThe
connecting arcs between the sub-automata depend on themrob

— Case 9c. Here, the merge depends on the problem to be solted, here
will be a priority between the different subproblems thas kabe taken
into account when defining the common state machines. Asristiepwe
can note that priorities between subproblems will be neggsshen the
two subproblems constrain the same domain.

— Case 9d. The merge has to be performed manually.

Output A set of state machines.

Validation Each composed state machine is complete and covers allénputs
that can be sent by the components with an interface to thpased state ma-
chine. All sequence diagrams of all subproblems for the camept specified
in Step 7 describe the same behavior as the correspondtagisa@hine.

11. Specify operations and private data types.
12. Implement and test the software system.

As the last two steps are beyond the scope of this paper, wetddescribe them
here.

6 Case Study

We now illustrate the process by the case study of an autoneditr machine (ATM).

6.1 Requirements, Domain Knowledge — Step 1

The mission of an ATM is to provide customers with money, juied that they are
entitled to withdraw the desired amount.

R1 To use the ATM a valid pin and a bank card is required.

R2 The withdrawal should be refused when the request is bigge the balance.

R3 The card should be retracted if the customer does nothakejécted card.

R4 The account is updated when the customer takes the money.

R5 After the withdrawal was granted and the card ejectedyibieey should be taken
from the supply, put to the money case, and the case shoulgdre=d. After the
customer took the money, the money case should close, atfegitve money should
be retracted.

R6 All input phenomena should be logged.

R7 The logged input phenomena can be queried by the adraitwistr

An example of domain knowledge is that tMoney Casesendsbanknotes_removed
when theCustomettakes the banknotes.

12

Admin \W

Account display_log Money supply /
data request_log Case
accognt_balance ATM
withdraw_money take_banknotes
card_inside gmg;_ﬂ.r(]quest
no_card_inside refusE_WithdrawaI Customer
* take_banknotes_from supply ask_pin, granted_OK

put_banknote_to_case
open_case, close_case Ccard
retract_banknotes_from_case insert_card, remove_card
banknotes_removed reader retract_card, eject_card

Fig. 3. Context Diagram for ATM Problem

6.2 Context Diagram - Step 2

Figure 3 shows the structure of the ATM problem context, wisaveral domains and
the corresponding shared phenomena are identified.

6.3 Subproblems - Step 3

The ATM consists of the subproblemaithenticate RequestUpdate AccountTake
Money Take Card Log, andDisplay Log The following figures provide the problem
frame instances for these subproblems.

Figure 4 shows the problem diagram féathenticatelt is an instantiation of the
commanded behavior frame with an additional feedback pinemonAM!E6. Require-
mentR1 can be assigned to this problem diagram.

CR:C]' Card . C3
AMICZ reader

Authen-) .
tication ‘Authentication:
machine CIE5 / ut entlcatlorjl
CIE4 Customer |-~~~ E4,E5,E6
AMIE6
C1: {card.inside E4: {enter_pin}
C2: {retract_car E5: {insert_card}
C3: {card control E6: {ask_pin}

Fig. 4. Problem Diagram for Authenticate (commanded behavioawyi

13

The problem diagram foReques{shown in Figure 5) describes requireméit.
It is a variant of the commanded information frame. Thisamariis called information
display and described in [7].

ADIC7 Account .
data . C8
Request RMES | .~ | Y10/ Request '
machine Isplay \. money
CIE1l Customer Ell
C7: {account_balance} Y10: {withdrawal_possible}
C8: {account_data} E11: {enter_request}

E9: {granted_OK,
refuse_withdrawal }

Fig. 5. Problem Diagram for Request (commanded information variaformation display)

Figure 6 shows the problem diagram féake Card It is an instantiation of the
required behavior frame. Th@ustomeris additionally included to show all relevant
actions in the environment. Requiremédt can be assigned to this problem diagram.

CRIC12 | card

TCMIC13 reader ‘\\(\3\14
Take Tk
card . ake N
machine CIELS card
Customer |-~ E15
C12: {card.inside} C14: {eject, retract}
C13: {eject_card, retract_card } E15: {take_card}

Fig. 6. Problem Diagram for Take Card (required behavior)

Figure 7 shows the problem diagram fdpdate Accountwhich is a variant of the
Workpiecedrame. The requiremenit4 is described with this problem frame.

The problem diagram fofake MoneyFigure 8) is a variant of th®equired Be-
haviour problem frame (Figure 1), where we added @estomerand his/her connec-
tion with theMoney CaseThe requiremenk5 is described with this problem frame.

14

Account
UAM!Y16 -
data - Y17 -
Update .
account /! Update \‘
machine . account
MC!C19 Money Case [
CIE18]| “E18
Customer

Y16: fupdate_account}

E18: {take_banknotes}
Y17: {account_data}

C19: {banknotes_removed }

Fig. 7. Problem Diagram for Update Account (Workpieces variant)

MCCIC19 |Money Supply /
TMMIC20 Casey PRy c21
Take N
money / Take N
machine CIE18 money
Customer E18

E18: {take_banknotes}
C19: {banknotes_removed }
C20: {take_banknotes_from_supply, put_banknote_to_case, open_case, close_case, re-

tract_banknotes_from_case}
C21: {control_money_supply, control_money_case }

Fig. 8. Problem Diagram for Take Money (required behavior variant)

The problem diagram fdrog (cf. requirementz6) is shown in Figure 9. The work-
pieces problem frame is instantiated. The domé&iasd reader, Money casendCus-
tomerin the problem diagram represents thigerin the problem frame.

The problem diagram fdDisplay Log (shown in Figure 10) describes requirement
R7. Itis a variant of the commanded information frame. Thisasatris called informa-
tion display and described in [7].

The dependencies between the subproblems can be summasiizgé context-free
grammar describing the possible sequences. In the follpgiammar, {|” denotes par-
allel problems and|* denotes an alternative.

< start >::= (< idle > ||Log||DisplayLog)

< idle >:= (Authenticate < authenticated > |Authenticate < idle >)
< authenticated >::= (Request < granted > |Request < refused >)

< granted >::= (TakeCard < granted_-no_card > |TakeCard < idle >)
< refused >::=TakeCardRefused < idle >

15

Customer

C!E5,E15,E18]\5\4’E11
CIE4,E11 ’
Card reader, .
Money case C22 A
Log CRMCIC1,C12, C19 " Log input ",
machine _phenomena /
| T
LM!IY23 Data storage |-"yo3
(Logs)

Y22: {card_reader_money_case_input_phenomena}
E23: {log_data}

C1, Cl12...as given in the other figures

Fig. 9. Problem Diagram for Log (Workpieces)

Data
storage .
DS!Y24 (Log) Y25
E)igsplay DLM!C26 Admin ,,926,,’// Display \]
machine display log /
AlE27 _ ,//E27
Admin g

Y24: {log_data}

Y25: {logged.input_phenomena}
C26: {lo

g
E27: {request.log}

Fig. 10.Problem Diagram for Display Log commanded information aatj information display)

16

< granted-no_card >::= (Update Account||TakeMoney) < idle >

The last line means that, once the card is removed and witladlis granted, both
UpdateAccounand TakeMonewwill take place in parallel, and then the idle state is
reached.

6.4 Specification — Step 4

For each problem diagram, the specification is expressedduesice diagrams that are
given in the following figures.

The sequence diagram for the subprobksmhenticatés shown in Figure 11. This
diagram expresses that the card is retracted after 3 urssfatattempts. ThEustomer
is authenticated if the valid PIN is entered.

The sequence diagram for the subprobReguests shown in Figure 12. When an
authenticated customer enters a request, his/her balsmtecked and the access for
the customer is granted or refused.

sd Authentication]
Authentication
‘ Customer ‘ ‘ Card reader ‘ ‘ machine
H T T sd Request J
{idle} : : i Request
' : : ‘ Cusllomer ‘ Dls.:nay ‘ Accou:’\l data ‘ machine ‘
H insert_card ' H ' 1 1]
' I ' {authentic H H \
' ' '
i : card_inside : ated) H H |
' | ' ' '
T T T | enter_r)]
loop(0.2) J | H H r — T]
' ' ' ' '
! ' ! H H 1 select balance |}
e ask_pin H H H !
H H H ! ' account_balance 1
[e >
H enter_pin(invalid) 4 1] |
\ v \ alt H H T H
' ' '
1 1 1 | ' H |
H !
alt J 1 1 1 1 ' H {amount<=
1 1 1 ! ! ' account_
H ! H i ' H balance}
D ask_pin ' | H ! '
f T 1
' ' ' {granted} L granted_OK H
' '
H enter_pin(invalid) R | B | I J' __________ R R L _____
' v ' 1 v h v
' ' ' ' ' ' '
{idle} H retract_card 4 H H 1 {amount>
H H H | ' H account_
------- et LEELELELIEEL L L L L L | ! H 1 balance}
H H H 1 ' .
' ' ! ! ' 1
. ! '
p ask_pin ! {refused) i refuse_wi '
' H ' ! T !
H enter_pin(valid) o H H H H
' v 0 I H '
' ' ' 1 ' 1
{authenticated} H H ! ' 1 !
' ' '
' ' '
' ' '
' ' '

Fig. 12. Sequence Diagram for Request

Fig. 11. Sequence Diagram for Authenticate

The sequence diagrams for the subprobleike Cardare shown in Figures 13 and
14. The sequence is different depending on the state of thteroer. If the access is
granted, the ejected card might be retracted after a caimaénperiod, or the customer
takes the card and he/she can continue with the withdrawabgs.

17

If the access is refused, the ejected card is retracted autemer takes it. In both
cases the access is not granted, as shown in Fig. 14.

sd Take Card J sd Take Card Refused J

[customer] [Cadreader | [Take card machine [customer] [Cadreader | [Take card machine
: T T T T T

1 1
{granted} {refused}

: : ' ' ' t=now
' eject_card V- ! ! eject_card V-7
\ 1

alt 1 ' 1 alt
'
' ' '
take_card g ! 1 take_card

| |
H no_card_inside ! H H no_card_inside |
» L no_card inside
I | i h |
1 | | S [e e Ao
{granted_no_card : ! ' ! VT oM
i ! N ! ! retract_card V-7
__ e fetactcad
1 ' {trLIMITY ! ! 1
retract_card - | | no_card_inside

{idle}

1
{idle}

Fig. 13.1st Sequence Diagram for Take Carérig. 14.2nd Sequence Diagram for Take Card

The sequence diagram for the subprobldpdate Accounis shown in Figure 15.
The sequence diagram expresses that the account data atedipthen the banknotes
are removed.

The sequence diagram expresses the specificafiéor the subprobleritake Money
is shown in Figure 16. It also contains the dom@irstometo illustrate the interrelation
between the requirement, the domain knowledge and thefiaeicin:

R5 ... After the customer took the money, tieney Casehould close, otherwise the
money should be retracted.

D1 TheMoney Casesendsanknotes_removed after theCustometook the banknotes.

S5 ... After the signabanknotes_removed occurs, theMoney Casehould close, oth-
erwise the money should be retracted.

Therefore the implicatio®1 A S5 = R5 is fulfilled. This sequence occurs in parallel
to to the sequence shown in Fig. 15. This is possible, bedaatbediagrams start with
the same state invariagtantedno_card and only in Fig. 15 the state of the customer
after this sequence is constraint.

The sequence diagram for the subproblerg is shown in Figure 17. It shows that
all input signals are logged in a data storage. This sequiemu# constraint by a state
invariant and is parallel to all other sequence diagrams.

The sequence diagram for the subprobBrsplay Logis shown in Figure 17. It
shows that the stored logs can be queried by the administféiis sequence also is not
constraint by a state invariant and is parallel to all otlegpuence diagrams.

6.5 Instantiated Architectural Patterns — Step 5

For each problem diagram, an architectural pattern frons[Bistantiated.

18

sd Take Money J
‘ Customer ‘ ‘ Money supply/case ‘ ‘ Take money machine
1 1 i
{granted_no_card} B B
sd Update Account i | H
I 1 I
Update ! ! take_banknotes_from_sup !
Customer Account data Money case account B By
machine ! ! !
T T T T ! put_banknote_to_case
: i i i H H H tEnow
{9 rameijf ! ! ! ! ' open_case [
H ! H H alt 1 1 1
1 take_banknotes | 1 H H H
r T > 1 | ' .
' ' ' ' | take_banknotes | |
H H 1 banknotes_remo } | \ 1
: : 1 ved 1 H | banknotes_removed |
— L e
| ' ! . : : :
: : update_account(-amount) : H ' close_case '
' h T 1 ' i |
\ H \ N B e I ittt B e ey
H H H H | 1 | (LMY
! ! ! ! : : close_case ST
' ' ' I 1 i i
H H H H H | retract_banknotes_from_ca |
' ' se '
1 e —
' ' '
1 1 1
fidle} H :
' 1 1
I I I
Fig. 15.Sequence Diagram for Update Account

Fig. 16. Sequence Diagram for Take Money

sd Log J
Card reader, Data storage
‘ Customer ‘ ot ‘ o ‘ Log Machine
H H H H
ait H H H 1
1 1 H 1
H H enter_pin H)
! ! 1 log(enter pin) !
______ A S F
1 1 1
i enter request | W sd Display Log
H log (enter_request . Data .
______ U J AN S Admin (ﬁ:;;; Storage Dieplay Log
L
1 H ! . . (Log) ©
L msertoad) 1 ; i | i i
; 1 | 1 i i i
! card_inside ! L L requestlog »
H H N ' 1 1 1
H ! log(card_inside) | H H ! select_log '
______ H [R TR ' ! '
1 h] i i 1
' ' ']] log_data 4
' ! !] . pmmmEem—- L]
! ! ! 1 | — H
1 no_card_inside . ' \ display_log)
i T ol H h T ,
! H H 1 1 1 1
H 1\ Jog(no_card_inside) |] 1] '
H I E— : i i H
______ H e A S
1 1 1
! take_banknotes 4 : :
1 '
H 1 banknotes_removed 1
: : »
: : : iog : Fig. 18. Sequence Diagram for Display Log
: : 1 {banknotes_removed) 1
! ! ! !

Fig. 17.Sequence Diagram for Log

The architecture for the subproblefuthenticatas shown in Fig. 19. It consists
of an Authentication Applicationa Card In 1AL, a Card Out IAL the corresponding
HAL components, and blser Interface The architecture for the subprobldRequest
is shown in Fig. 20. It consists of Request Applicatigra User Interfaceand aData

19

‘ Authentication Application
1

1 il
EAIEe” co ic "
L {} 1
‘Card Out IAL ‘ ‘Card In IAL ‘
1 il
User iCZ' o
Interface N 0
‘Card Out HAL ‘ ‘Card In HAL ‘

1

I

LT
Customer (E4, E6)

[H

Card Reader (C2)

(1

Card Reader (C1)

Request Application
1

iEQ”, E11”

LT

User
Interface

1

1

Ter

LT
Data

Storage
(Account
Data)

L

LT
Customer (E9, E11)

from Customer (E5)

Fig. 19. Architecture for Authenticate Fig. 20. Architecture for Request

Storage The architecture for the subproblefake Card(see Fig. 21) consists of the
hardware abstraction layer and the interface abstractiper Ifor the Card, and dake
Card Application The architecture for the subprobletdgdate Accounts shown in

Update Account Application ‘
‘ Take Card Application ‘ 5 {5
N 1 inG icm"
ECB _Flz - Money_S‘e.IAL
‘Card out IAL ‘ ‘Card In 1AL ‘ Data
il i Storage
icwy imz (Account
{1 {1 Data) Money Se.HAL
‘Card Out HAL ‘ ‘Card In HAL ‘ E
1 1
] L .
11 LT Money Supply/
Card Reader (C13) Card Reader (C12) Case (C19)
from Customer (E15) Sensor from
Customer (E18)

Fig. 21. Architecture for Take Card
Fig. 22. Architecture for Update Account

Fig. 22. The architecture for the subproblefiake Moneyis shown in Fig. 23. The
architecture for the subproblehog consists of d.og Applicationand all components
that handle input phenomena. It is shown in Fig.25. The gchire for the subproblem
Display Logconsists of @isplay Log ApplicationaUser Interfacdor the administra-

tor, and aData Storagecontaining the logs. (see Fig. 24).

6.6 Interface Classes — Step 6

As we use very abstract phenomena for the case study, thenAlthe HAL are triv-
ial, and we obtain their interface phenomena simply by rangrthe external phe-
nomena. Phenomena controlled by the machine become pdowvitiefaces, and phe-
nomena controlled by the environment become requiredfates of the complete ma-
chine. A provided interface class is e@19 (see Figs. 7 and 22) with the method

20

‘ Take Money Application
1

Display Log Application
(] (]

[

C19” C20”
LT
Money Se.lAL ‘ Money Ac.IAL ‘ {1
1 1
icw iCZO’ User Data
I il Interface Storage
Money AcAHAL‘ (Admin) (Logs)

Money Se.HAL
1

L

LT

(]
7

Money Supply/ Money Supply/ -
Case (C19) Case (C20) Admin Display (C26)/
Sensor from Actuator Admin (E27)

Customer (E18)

.) Fig. 24. Architecture for Display Log
Fig. 23. Architecture for Take Money

Log Application
1 1 1
Y23 iE4”, E6”, E11” C1",C12 iCIQ
LT LT LT
‘Card In IAL ‘ Money Se.|AL ‘
Data 1 il
Storage User C1, C12 icm'
(Logs) Interface 1 7
Card In HAL ‘Money SeAHAL‘
LT LT LT
Customer (E4, E6, E11) Card Reader Money Supply/
(C1,cC12) Case (C19)

Fig. 25. Architecture for Log

banknotes_removed(). The interfaces of the application components are@1g” with
the methodanknotes_removed”() or e.g9.Y16 with the methodipdate_account(amount:

Integer).
In the following tables some interface classes for the soltlpm architectures are

specified.

((inter face)) C13
retract_card()
eject_card()

((inter face)) C13’
retract_card’()
eject_card’()

((inter face)) C13”
retract_card”()
eject_card”()

21

((inter face)) E9”
granted_OK"()
refuse_withdrawal”()

((inter face)) E11"
enter_request’(amount: Integer)

((inter face)) C7
select_account”(): Integer

6.7 Sequence Diagrams for Components — Step 7

Because of the trivial HAL and IAL, the sequence diagramgHeiTake Money Appli-
cationcan be constructed just by replacing ejgct_card() with eject_card”().

6.8 State Machines for Components — Step 8

For each component, the required and the provided intexfacespecified. Addition-

ally, the local data of the components is defined using clesgams. These class di-
agrams support the reuse of the specified components. Agdesmthe class diagram
for the Request Applicatioand theUpdate Account Applicatioare provided in the

Figures 26 and 27.

Request_Application

amount: Integer
account_balance: Integer;

o AR

E9” E11” Cc7

Fig. 26.Class Diagram for Request Application

Update_Account_Application

amount: Integer

1

Y16 Cc19”

Fig. 27.Class Diagram for Update Account Application

22

Each sequence diagram constructed in Step 7 can be trarsfanto a state ma-
chine that is associated to one class diagram. These statémaa cover all signals that
can occur in their environment.

The state machine for thauthenticate Applicatioterminates if the valid pin is
entered and exits witfailed after 3 unsuccessful attempts (cf. Fig. 28) as specified in
Fig. 11.

Authentication Application)

.\
L

card_inside”() / ask_pin”()

wait for pin 1 | enter_pin”(valid)

enter_pin”(invalid) / ask_pin”()

wait for pin 2 | _enter_pin”(valid) .

enter_pin”(invalid) / ask_pin”()

enter_pin”(valid)

wait for pin 3

enter_pin”(invalid) / ask_pin”()

Fig. 28. State Machine for Authenticate Application

The state machine for tHeequest Applicatiors shown in Fig. 29. It is consistent
with the sequence diagrams in the Figures 12 and 14.

Request Application)

authenticated

enter_request”(amount) /
account_balance:=select_account()

refused
[ELSE] / refused_withdrawal”()

[amount <= account_balance]
/ granted_OK"()

®

Fig. 29. State Machine for Request Application

23

The state machine shown in Fig. 30 requires a timer as defind@].

Take Card Application)

N eject_card”(), start_timer(LIMIT)
. c_retracted
timeout() -

granted /

refused

no_card_inside”()

®

Fig. 30. State Machine for Take Card Application

The sequence diagram of Fig. 15 can be transformed into dte istachine shown

in Fig. 31.

Update Account Application)
banknotes_removed”() /

granted update_account(— amount)
noﬁcard_

Fig. 31. State Machine for Update Account Application

The state machine for ejecting the requested amount of maneyetracting this
money if it was not taken within a certain time limit is shownRig. 32.

Take Money Application)

/take_banknotes_from_supply”(),
put_banknotes_to_case”()
open_case”(), start_timer(LIMIT)

granted_
no_card
[_

banknotes_removed”() /
close_case”()

timeout”() /

@ retract_banknotes_from_case”()

Fig. 32. State Machine for Take Money Application

24

Additionally there is a state machine that logs all input rptr@ena. This state
machine consists of one state. In the transition, for eaphtisignal énter_pin, en-
ter_request, no_card_inside, card_inside, andbanknotes_removed) the signallog with
an appropriate parameter (eegter_pin) is sent (cf. 33

Log Application)

enter_pin”(valid_or_invalid)

.\\\ log(enter_pin, valid_or_invalid)

banknotes_ enter_request”(amount) /

removed”() / log(enter_request, amount)
log (banknotes_

removed)

wait_for_i_change

card_inside” ()/ no_card_inside”() /
log(card_inside) log(no_card_inside)

Fig. 33. State Machine for Log Application

The logged data can be requested byAldenin This functionality is implemented
in the state machine f@isplay Log Applicatior(cf. 34).

Display Log Application)

wait for
request

request_log”() /
log_data:=select_log(),
display_log”(log_data)

Fig. 34. State Machine for Display Log Application

Also the other components must be specified with state mashis an example
the statemachines for théser Interfacecomponents are presented in Figures 35, 36,
and 37.

25

User Interface (Authentication))

enter_pin(valid_or_invalid) /
enter_pin”(valid_or_invalid)

wait_for_change

ask_pin”() /
ask_pin()

Fig. 35. State Machine for Authenticate User Interface

User Interface (Request))

. enter_request(amount) /
wait_for_change enter_request”(amount)
refuse_withdrawal”() /
refuse_withdrawal()

granted_ok”() /
granted_ok()

Fig. 36. State Machine for Request User Interface

User Interface (Log))

enter_pin(valid_or_invalid) /
enter_pin”(valid_or_invalid)

. enter_request(amount) /
wait_for_change enter_request”’(amount)

Fig. 37. State Machine for Log User Interface

26

6.9 Global Architecture — Step 9

The composed architecture for the ATM is shown in Figure 8Bghows that our patterns
yield appropriate architectures for subproblems fittingrmblem frames, and that these
architectures can be combined in a modular way to obtain@ritacture of the overall
system according to the rules of Step 9. The following mehge® been done:

The problemTake Moneyand the problenupdate Accounare parallel and share
some input phenomena (cf. case 9d). We decided to merge tresponding applica-
tion components. The problehogis related parallel to all other subproblems, sharing
input phenomena (cf. case 9d). We decided to mergé.digeApplicationcomponent
with Authenticate ApplicationRequest ApplicatigriJpdate Account Applicatioand
the merged application fofake MonefUpdate AccountThe problemdAuthenticate
RequestUpdate Accounand the merged probleirake MonefUpdate Accounare re-
lated sequentially or by alternative (cf. case 9b). Theretbe corresponding applica-
tions are also merged. We call the resulting compoMaih Application The problem
Display Logis parallel and do not share any interface phenomena (af. @) Hence,
the componenbDisplay Log Applicatioris not merged. All components that are IALs
or HALs (cf. case 9a) are merged with the components of theesame in the other
subproblem architectures.

Display Log Application Main Application
1

Y24 E4",E6'|E9",E11" C7ly16
(]

C20”

(]
Money Ac.|AL
{]

c20

20
L1
L 1

Data
Storage
(Logs)

Data
Storage

(Account
Data)

User

C19”
(]
(]
C19’
(]
(]

User
Interface

Interface
(Admin)

LT [[LT
Admin Display (C26)/ Customer (E4, E6, E9, E11) Card Reader Card Reader ~ Money Supply/ Money Supply/
Admin (E27) (C2, C13) (C1, C12) Case (C19) Case (C20)
from Customer Sensor from Actuator

(E5, E15) Customer (E18)

Fig. 38.Composed Architecture

27

6.10 Complete State Machines for all components — Step 10

To create the complete state machines we start with thecapipln components.

The application component state machinesTate MoneyndUpdate Accounare
merged by adding the output signaldate_account(-amount) to the transition in the
state machin@ake Moneactivated bybanknotes_removed() (cf. Fig. 39).

Take Money / Update Account)

/take_banknotes_from_supply”(),
put_banknotes_to_case”()
open_case”(), start_timer(LIMIT)

granted_
no_card
[_

banknotes_removed”() /
close_case”(),
update_account(- amount)

é timeout”() /
retract_banknotes_from_case”()

Fig. 39.Merged State Machine for Take Money and Update Account Appbn

The state machines f@uthentication ApplicationRequest ApplicatigrandTake
Money/Update Accourhust then be merged with the state machine forltbg Ap-
plication using the same technique. This merge is presented exemmptarthe state
machineTake Money Update Accouritigure 40 shows the result of the merge.

Take Money / Update Account / Log Application)

Itake_banknotes_from_supply”(),
put_banknotes_to_case”()
open_case”(), start_timer(LIMIT)

granted_
no_card
{ _

banknotes_removed”() /
close_case”(),
update_account(— amount),
log(banknotes_removed)

C‘) timeout”() /
retract_banknotes_from_case”()

Fig. 40.Merged State Machine for Take Money, Update Account, andAjmgjication

28

After merging the necessary state machines for the pasitgiroblems in the ap-
plication component, the state machines for the sequentéhthe alternative subprob-
lems can be combined using composite states (see Fig. 44)eshlting state machine
exactly reflects the grammar describing the dependencibesubproblems.

Main Application)

Q\

Authentication /
Log Application

Request / Log
Application

refused Take Card / Log
Application

Take Card / Log

S c_retracted
Application

Take Money /
Update Account /
Log Application

OO

Fig. 41. State Machine for all Sequential and Alternative Problems

Then the state machines for the IALs, the HALs andWfser Interface must be
merged. The merged state machine forlttser Interfaces shown in Figure 42.

7 Conclusions

In this paper we presented a (partial) development processrequirements elicitation
to detailed design. This process is based on patterns g problem frames and
architectural styles. The expression of the relationshigisveen the subproblems is
used to guide the composition of the designed componentscdhtributions of our
approach are the following:

— Our process gives concrete guidance of how to use problemegand architec-
tural patterns, in connection with a model-based appraasbftware development,
using various UML notations.

— We provide a systematic way of exploiting information on havproblem was
decomposed into subproblems for constructing the oveohltisn to a problem

29

User Interface (merged))

enter_pin(valid_or_invalid) /

.\ enter_pin”(valid_or_invalid)
enter_request(amount) /
wait_for_change

enter_request”(amount)
granted_ok”()/ ask_pin”() /
granted_ok() ask_pin()

refuse_withdrawal”() /
refuse_withdrawal()

Fig. 42.Merged State Machine for the User Interface

from the solutions of its subproblems. For top-down decositfom, this may be
simple; for use-case or parallel problem decompositiomgwer, it is not obvious
how to obtain the overall solution from the solutions of thproblems.

— The process results in detailed descriptions of the soffwamponents to be im-
plemented and tested. The state machines (and data diest)tre an appropriate
basis forimplementation, whereas the sequence diagramglprscenarios against
which the implemented software can be tested.

— Because of the extensive validation contained in our psdasonsistencies are
found before starting the implementation.

— Because of the systematic problem decomposition and snletmposition, our
process can be used for large, realistic systems.

Although the work presented here is independent of any fospecification lan-
guage, if desired, it would be possible to accompany thetaathral descriptions with
a formal specification development along the ideas of [6a8{ also to take into ac-
count properties as in [1] (cf. Section 4).

In the future, we intend to extend this work in several digt. First, we want
to treat complex data structures in more detail. Secondesiur approach aims at a
guided and integrated use of several techniques and s@adtains, we would like to
explore how to integrate the use of design patterns in thisldpment. Third, we intend
to elaborate more on the later phases of software develdpf@nexample, we want
to investigate how to generate code from the outputs of carges. Finally, we aim at
tool support for our process, preferably integrating éx¢gstJML tools. Our long-term
goal is to apply our process in industrial applications.

References

1. L. Barroca, J. L. Fiadeiro, M. Jackson, R. C. Laney, and @&séibeh. Problem frames: A
case for coordination. In R. D. Nicola, G. L. Ferrari, and Geretith, editorsCoordination
Models and Languages, 6th International Conference, COMDRDION 2004, Pisa, Italy,
February 24-27, 2004, Proceedingsages 5-19, 2004.

30

11.

12.

13.

14.

15.

16.

17.

18.

19.

L. Bass, P. Clements, and R. Kazm&uftware Architecture in PracticeAddison-Wesley,
1998.

. R. Bharadwaj and C. Heitmeyer. Hardware/Software Cadgbeand Co-Validation using

the SCR Method. IfProceedings IEEE International High-Level Design Validatand Test
Workshop (HLDV 99)1999.

. J. Cheesman and J. DanielsUML Components — A Simple Process for Specifying

Component-Based Softwarkddison-Wesley, 2001.

. C. Choppy, D. Hatebur, and M. Heisel. Architectural paigefor problem frames.|IEE

Proceedings — Software, Special issue on Relating SoftRegeirements and Architectyre
152(4):198-208, 2005.

. C. Choppy and M. Heisel. Use of patterns in formal develepimSystematic transition from

problems to architectural designs. In M. Wirsing, R. Hekai¢c and D. Pattinson, editors,
Recent Trends in Algebraic Development Techniques, 16t TWBelected Paperdé NCS
2755, pages 205—-220. Springer Verlag, 2003.

. C. Choppy and M. Heisel. Une approache a base de "patqomg’ la spécification et

le développement de systemes d’'information. Piloceedings Approches Formelles dans
I'Assistance au Développement de Logiciels - AFADL'2@@&ges 61-76, 2004.

. C. Choppy and G. Reggio. UsingASL to Specify the Requirements and the De-

sign: A Problem Specific Approach. In D. Bert, C. Choppy, andDP Mosses, edi-
tors, Recent Trends in Algebraic Development Techniques, 14tbTW8elected Papers
LNCS 1827, pages 104-123. Springer Verlag, 2000. A completsion is available at
ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio 99a.ps .

. M. Fowler. Analysis Patterns: Reusable Object Modelsldison Wesley, 1997.
. E. Gamma, R. Helm, R. Johnson, and J. VlissifEsign Patterns — Elements of Reusable

Object-Oriented SoftwareAddison Wesley, Reading, 1995.

J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L aRafti. Relating Software Re-
quirements and Architectures using Problem Frame®rdaeedings of IEEE International
Requirements Engineering Conference (RE'@¥sen, Germany, 9-13 September 2002.
M. Heisel and D. Hatebur. A model-based development gzocfor embed-
ded systems. In T. Klein, B. Rumpe, and B. Schatz, editdPspc. Work-
shop on Model-Based Development of Embedded Systemsnber TUBS-
SSE-2005-01. Technical University of Braunschweig, 2005. Available at
http://www.sse.cs.tu-bs.de/publications/MBEES-Tagun gsband.pdf

M. Jackson.Problem Frames. Analyzing and structuring software dewelent problems
Addison-Wesley, 2001.

M. Jackson and P. Zave. Deriving specifications fromireqments: an example. IRro-
ceedings 17th Int. Conf. on Software Engineering, Sedit®%) pages 15-24. ACM Press,
1995.

L. Lavazza and V. D. Bianco. A UML-Based Approach for Resgnting Problem Frames.
In K.Cox, J. Hall, and L. Rapanotti, edito8roc. 1st International Workshop on Advances
and Applications of Problem Frames (IWAAPRE Press, 2004.

N. Mansurov. Automatic synthesis of sdl from msc. Tecahieport, klocwork, Inc., 2003.
http://www.klocwork.com/company/downloads/WP SDL from _MSC.pdf .

D. L. Parnas and J. Madey. Functional documents for ctenmystems. IrBcience of
Computer programmingsolume 25, pages 41-61, 1995.

L. Rapanotti, J. G. Hall, M. Jackson, and B. Nuseibehhiecture Driven Problem Decom-
position. InProceedings of 12th IEEE International Requirements Eeglimg Conference
(RE’04), Kyoto, Japan, 6-10 September 2004.

M. Shaw and D. GarlanSoftware Architecture. Perspectives on an Emerging Diisp
Prentice-Hall, 1996.

31

20.
21.
22.

23.
24,

A. Sutcliffe. The Domain Theory, Patterns for Knowledge and Software &efasdison
Wesley, 2002.

A. Sutcliffe and N. Maiden. The Domain Theory for Requients Engineering.|EEE
Transactions on Software Engineerjrig(3):174-196, 1998.

A. S. TanenbaumModern Operating SystemBrentice Hall, 1992. TAN a 92:1 2.Ex.

UML Revision Task ForceOMG UML Specificationhttp://www.uml.org

P. Zave and M. Jackson. Four dark corners for requiresvegineeringACM Transactions
on Software Engineering and Methodolo@y1):1-30, January 1997. Also available under
http://www.research.att.cofipamela/ori.html#fre.

32

