K: The Concurrent Rewrite Abstract Machine

Grigore Rosu

Note to the reader

- There are many "explanation slides" that I do not use in presentations about K; instead, I include those explanations as part of the talk
- These explanations are here only to better explain the slides to those who just read them
- Please let me know if I should explain better certain parts of this presentation
- Feel free to contact me for pointers to work on K

Dijkstra's Algorithm

All shortest paths in a graph

Dijkstra's Algorithm

All shortest paths in a graph

Dijkstra's Algorithm in K

- All shortest distances in a graph, concurrently
- Hold pairs (node,cost) in a multi-set soup

• For each edge $x \xrightarrow{t} y$ add a *K-rule*

$$\langle (x, c_x) (y, c_y) \rangle$$
 when $t + c_x < c_y$
 $t + c_x$

Explanation for previous slide

The rule

$$\langle (x, c_x) (y, c_y) \rangle$$
 when $t + c_x < c_y$
 $t + c_x$

reads as follows:

— Whenever two pairs (x,c_x) and (y,c_y) can be found in the multiset soup (the $\langle | |$ and $| \rangle |$ are open soup boundaries) such that $t + c_x < c_y$, replace c_y by $t + c_x$ (K-rules change the underlined subterms as indicated below the line); note that in K, unlike in term rewriting, concurrent rule applications can share subterms which are not underlined

Explanation for next slides

- Making use of sharing information, K defines a concurrent rewriting relation , which allows for sharing of read-only subterms (i.e., not underlined)
- t ⇒ t' means that t may concurrently rewrite to t'; K does not enforce maximal concurrent rewriting on purpose (it would be easy to add rewriting strategies, including maximal concurrent rewriting, but we do not do it for the time being)
- Next, c means a pair (node,c) in the soup (i.e., the current cost of node is c), and 1 means that a K rule is applied matching the two involved pairs, and the cost of the target node is c2 after the rule is applied

Run 1 in K

All shortest distances ... directly

Run 1 in K Concurrent Step 1

All shortest distances ... directly

Run 1 in K Concurrent Step 2

All shortest distances ... directly

Run 2 in K

Run 2 in K Concurrent Step 1

Run 2 in K Concurrent Step 2

Run 2 in K Concurrent Step 3

Explanation on the two runs above

- Since K does not enforce maximal concurrent rewriting, the first run showed how one can directly calculate all the minimal distances in the graph using only two concurrent steps
- The second run was greedy, maximizing the number of concurrent applications of rules; consequently, it ended up using three concurrent steps instead of two
- Morale: it is hard to find optimal scheduling of concurrent rule applications; different implementations may choose different strategies; we prefer to let this issue open, so we do not enforce any particular concurrent rewrite strategy in K

Dijkstra's Algorithm Correctness

- Termination: each rule decreases a cost
- Confluence: critical pairs joinable
- Thus, unique normal forms
- Normal form = all shortest distances
 - Build a rewrite sequence corresponding to some shortest paths; canonicity guarantees the rest
- If one wants to find all shortest paths as well, then one needs to also keep a parent to each node; however, the rewrite system is not confluent then, because there may be multiple shortest path solutions

Motivation for K

- Teaching Programming Languages
- Why K? We found no formalism to define everything we wanted, including:
 - Operational semantics
 - Including concurrency, callcc and other existing PL features
 - Efficient interpreters at no additional expense
 - Program analyzers based on semantics of PL
 - Symbolic execution, model checkers, theorem provers, ...
 - Type systems, type checkers, type inferencers
 - Visualization

Demo

- Go to http://fsl.cs.uiuc.edu/index.php/Special:MaudeStepperOnline
- Select some languages from the left menu and
 - run them (this shows the interpreter capability)
 - run the stepper (go through the program exec)
 - run the graph (see all the statespace)

We Tried to Use the Following ... and Failed

SOS

 Non-modular, rigidity to syntax, cannot define existing language features, only interleaving semantics for concurrency, slow; we want a framework where definition = implementation and everything else, i.e., a language definition should serve all the purposes, not only some purposes

MSOS

 Partially solves only the non-modularity problem of SOS; still not fully modular (aspects, etc); slow; no support for program analysis

Evaluation contexts

Does not support environment-based definitions, still only interleaving semantics;
 no support for program analysis (model checking, symbolic execution); slow

CHAM

 Claims true concurrency ... but not when rules share data; no implementation available and hard to implement; airlock is expensive

Continuations

 Mainly implementation technique; interleaving concurrency semantics; little to no support for program analysis (model checking, symbolic execution, etc.); not used for defining type systems; we want an ideal definitional technique, which can be used for anything related to languages, including typing

Explanation for next two slides

- They show the way we used the various formalisms mentioned above
- We faithfully embedded each in rewriting logic and then used the latter to execute them
- Faithful embedding means that the resulting rewriting theory captures the original one stepfor-step
- This is different from "encodings", which typically change the computation granularity of the source framework

Rewriting Logic Semantics

- Ecumenical Definitional Framework -
- Serbanuta, Rosu, Meseguer: Info&Comp 2008

Example (and similarly for all approaches) SOS as a methodological fragment of RLS

SOS:

$$\frac{C_1 \xrightarrow{l_1} C_1', \ C_2 \xrightarrow{l_2} C_2', \ \dots, \ C_n \xrightarrow{l_n} C_n'}{C \xrightarrow{l} C'}$$

 RLS_{SOS} :

$$\{C\} \to \{l, C'\} \text{ if } \{C_1\} \to \{l_1, C'_1\} \land \{C_2\} \to \{l_2, C'_2\} \land \cdots \land \{C_n\} \to \{l_n, C'_n\}$$

Theorem:

$$SOS \vdash C \xrightarrow{l} C' \iff RLS_{SOS} \vdash \{C\} \rightarrow \{l, C'\}$$

What does it actually mean?

- One can use one's favorite definitional approach within RL
 - Use RL's generic tools and techniques
- However:
 - RL does not tell you how to define a language
 - RL has all the advantages and disadvantages of the adopted definitional methodology

How does K relate to RLS?

- Extended fragment
- Unconditional, but "more concurrent"
- K currently executed using RL (Maude)

Success Stories

- Complete real languages defined using K
 - Java 1.4, Scheme, Beta
 - Started, to be completed: SML, Haskell, C
- Large research and classroom languages
 - SIMPLE, KOOL, FUN, LOGIK
- Competitive resulting interpreters and tools
 - Our Scheme ~10 times slower than Dr. Scheme
 - JavaFAN model checker faster than JavaPathFinder
 - Polymorphic type system faster than SML's

K Specific Features

Explicit Data Sharing

Why? To Increase Concurrency

Why Explicit Data Sharing? Example: Resource Sharing

 We want photosynthesis to apply concurrently in spite of the fact that the sun is shared by all rule instances (that is, rules overlap!)

Why Explicit Data Sharing? Example: Resource Sharing

Why Explicit Data Sharing? Example: Mutual Exclusion

- Access to critical resource (water faucet here) cannot be concurrent, by design.
- Takes two steps to get two glasses of water, in spite of potential for concurrent execution

Why Explicit Data Sharing? Example: Mutual Exclusion

Why Explicit Data Sharing? Example: Mutual Exclusion

Conventional Rewrite Rules Are Not Expressive Enough for Concurrency

- As conventional rewrite rules, the two rules above are identical (leaf -> face, sun -> water, ...)
- Yet, we want them to have totally different meaning wrt concurrency semantics!

K Rules – First Iteration

K rules mention the shared context only once:

$$C[\underline{t_1}, \underline{t_2}, ..., \underline{t_n}]$$

$$\underline{t_1'}, \underline{t_2'}, ..., \underline{t_n}$$

instead of

$$C[t_1, t_2, ..., t_n] \rightarrow C[t'_1, t'_2, ..., t'_n]$$

Example of K Rule Resource Sharing

The dot "." is the unit of both bags and lists

Example of K Rule Resource Sharing – Alternative rule

Example of K Rule Mutual Exclusion

K Specific Features

Explicit Data Liberation

Why? To Increase Concurrency

Why Explicit Data Liberation Concurrency Unconstrained by Matching

- Joe and Ann, make unconditional promises:
 - Joe: Ann, for you, I'll be an ideal Joe (say Joe')
 - Ann: Joe, for you, I'll be an ideal Ann (say Ann')

```
couple(Joe, Ann) → couple(Joe', Ann) couple(Joe, Ann) → couple(Joe, Ann')
```

 Standard term rewriting does not allow couple(Joe, Ann) to evolve to couple(Joe', Ann')

Why Explicit Data Liberation Concurrency Unconstrained by Matching

Explicit context sharing does not help:

```
couple(Joe, Ann)
Joe'
```

couple(Joe, <u>Ann</u>) Ann'

- The two rules above cannot apply concurrently because each changes the context of the other
- Same happens when defining concurrent languages: Joe and Ann can be threads accessing different locations in a shared store

Explicit Data Liberation in K

- Positions can be explicitly liberated
 - Notation: overline them!

```
couple(Joe, Ann)
Ann'
```

- Liberated positions
 - Used for concurrent matching, ... but
 - Allowed to be changed by the matching rules

```
couple(Joe, Ann) ⇒ couple(Joe', Ann')
```

- Major Difference between K and rewriting
 - Like causal atomicity versus serializability

K Specific Features

List and Bag Cells

Rewriting Modulo ... Insufficient

No way to rearrange soup so that one can apply two rules concurrently; one cannot use idempotency of sun, as "unexpected" concurrent behaviors could happen if other rules were around, e.g., an "eclipse" rule; think of sun as a shared store.

Special Support for Lists and Bags in K

Angular separators mean "inside"; desugared into a finite number of multiset equivalent rules

Special Support for Lists and Bags in K

Special Support for Lists and Bags in K

- "Cell" separators also used for lists
- If a separator is round, it means "end"; if angular it means "and so on in that direction"
- Separators can be indexed and nested

$$\left\langle \left(\frac{x}{x} \right)_{k} \right\rangle \left\langle (x,7) \right\rangle_{\sigma} \right\rangle_{process}$$

Configurations = Nested Lists and Bags

KOOL configuration "soup"

K Specific Features

Computations and Tasks

Computations and Tasks

Computations are lists of tasks as follows

$$T_1 \curvearrowright T_2 \curvearrowright \cdots \curvearrowright T_n$$

Produced by heating/cooling equations

$$a_1 + a_2 \rightleftharpoons a_1 \curvearrowright \Box + a_2$$

 $a_1 + a_2 \rightleftharpoons a_2 \curvearrowright a_1 + \Box$

Computational Equivalence Classes

$$x * (y + 2)$$

$$x \land (\square * (y + 2))$$

$$x \land (\square * (y \land (\square + 2)))$$

$$x \land (\square * (2 \land (y + \square)))$$

$$(y + 2) \land (x * \square)$$

$$y \land (\square + 2) \land (x * \square)$$

$$2 \land (y + \square) \land (x * \square)$$

$$x * (y \land (\square + 2))$$

$$x * (2 \land (y + \square))$$

The K-CHALLENGE

- An experimental programming language intended to challenge definitional frameworks
- Starts with simple imperative language
- Keeps adding features, modularly (in K)
- All existing frameworks, except K, fail: they can either not define certain features at all, or, if they can, they do it non-modularly

K-CHALLENGE: Start with IMP

K-Annotated Syntax of IMP

```
Int ::= \ldots all integer numbers
 Bool ::= true | false
Name ::= all identifiers; to be used as names of variables
   Val ::= Int
AExp ::= Val \mid Name
                                                         [strict, extends +_{Int \times Int \rightarrow Int}]
              AExp + AExp
BExp ::= Bool
               AExp \le AExp
                                                    [seqstrict, extends \leq_{Int \times Int \rightarrow Bool}]
              not BExp
                                                           [strict, extends \neg_{Bool \rightarrow Bool}]
              BExp and BExp
                                                                               [strict(1)]
 Stmt ::= Stmt; Stmt
                                                                      [s_1; s_2 = s_1 \curvearrowright s_2]
              Name := AExp
                                                                               [strict(2)]
              if BExp then Stmt else Stmt
                                                                               [strict(1)]
              while BExp do Stmt
              halt AExp
                                                                                  [strict]
 Pqm ::= Stmt; AExp
```

K Configuration and Semantics of IMP

```
KResult ::= Val 
 K ::= KResult | List_{\curvearrowright}[K] 
 Config ::= (|K|)_k | (|State|)_{state} 
 | Val | [|K|] | (|Set[Config])_{\top}
[\![p]\!] = (|[p]\!]_k | (|\emptyset|)_{state})_{\top}
```

```
\begin{array}{l} \left(\begin{array}{c} x\\ \overline{\sigma[x]} \end{array}\right)_k \ (\!|\sigma|\!)_{state} \\ \hline \text{true and } b \to b \\ \text{false and } b \to \text{false} \\ \left(\begin{array}{c} \underline{x:=v}\\ \end{array}\right)_k \ \left(\begin{array}{c} \sigma\\ \hline \sigma[v/x] \end{array}\right)_{state} \\ \hline \vdots \\ \text{if true then } s_1 \ \text{else } s_2 \to s_1 \\ \text{if false then } s_1 \ \text{else } s_2 \to s_2 \\ \text{(while } b \ \text{do } s)_k = \text{(if } b \ \text{then } (s; \text{while } b \ \text{do } s) \ \text{else } \cdot \text{)}_k \\ \text{(halt } i \text{)}_k \to \text{(ii)}_k \end{array}
```

K-CHALLENGE: Start with IMP

```
if BExp then Stmt else St
if k then k_1 else k_2 \rightleftharpoons k \curvearrowright if \square then k_1 else k_2
if true then k_1 else k_2 \rightarrow k_1
if false then k_1 else k_2 \rightarrow k_2
```

K-CHALLENGE: Start with IMP

K Configuration and Semantics of IMF

$$KResult ::= Val K ::= KResult | List \subseteq [K] Config ::= (K)_k | (State)_{state} | Val | [K] | (Set [Config])_{\square}$$

$$[n] = ((n)_k)_{n} ((0)_{n+n+n})_{\square}$$

```
\begin{array}{l} (\underbrace{x})_k \ (\sigma)_{state} \\ \hline \sigma[x] \\ \hline \text{true and } b \to b \\ \hline \text{false and } b \to \text{false} \\ \underbrace{(\underline{x} := \underline{v})_k} \ (\underbrace{\sigma})_{state} \\ \hline \cdot \ \sigma[\underline{v/x}] \\ \hline \text{if true then } s_1 \ \text{else } s_2 \to s_1 \\ \hline \text{if false then } s_1 \ \text{else } s_2 \to s_2 \\ \hline \text{(while } b \ \text{do } s)_k = \text{(if } b \ \text{then } (s; \text{while } b \ \text{do } s) \ \text{else } \cdot)_k \\ \hline \text{(halt } i)_k \to \text{(}i\text{)}_k \\ \hline \end{array}
```

K-CHALLENGE: Add increment

$$\begin{array}{ll} AExp ::= \dots \mid ++Name \\ \underbrace{(++x)}_k \underbrace{(\sigma)}_{state})_{state} & \text{where } i = \sigma[x]+1 \end{array}$$

K-CHALLENGE: Add output

```
Stmt ::= ... \mid output\_ [strict] \mid halt \\ Config ::= ... \mid List[Val] \mid (List[Val])_{output}
```

$$\begin{split} \llbracket s \rrbracket &= (\lVert s \rVert_k \ \lVert \cdot \rVert_{state} \ \lVert \cdot \rVert_{output})_\top \\ & \langle \lVert \cdot \rVert_k \ \lVert v \rVert_{output} \rangle_\top = vl \\ & \langle \lVert halt \rangle_k \to (\lVert \cdot \rVert_k)_k \end{aligned}$$

$$\underbrace{\left(\underbrace{\mathsf{output}}_{\cdot} v \right)_{output}}_{\cdot}$$

K-CHALLENGE: Add λ -expressions First, a substitution-based definition

```
Val ::= \dots \mid \lambda Name.Exp

Exp ::= \dots \mid Exp Exp \ [strict]
```

$$(\underbrace{(\lambda x.e)\,v}_k)_k$$
 where $x\in Name,\ e\in Exp,\ v\in Val_k$

K-CHALLENGE: Add λ -expressions A closure-based definition

$$Config := (|K|)_k \mid (|Env|)_{env} \mid (|Store|)_{store} \mid (|List[Val]|)_{output} \mid (|Set[Config]|) + [e] = (|e|)_k \mid (|\cdot|)_{env} \mid (|\cdot|)_{store} \mid (|\cdot|)_{output}) + [e] = (|e|)_k \mid (|\cdot|)_{env} \mid (|\sigma|)_{store} \mid (|\cdot|)_{output}) + [e] = (|e|)_k \mid (|\rho|)_{env} \mid (|\sigma|)_{store} \mid (|-e|)_{env} \mid (|\sigma|)_{store} \mid (|-e|)_{env} \mid (|\sigma|)_{env} \mid (|\sigma$$

K-CHALLENGE: Add recursion

$$Exp ::= \dots \mid \mu Name.Exp \langle \mu x.e \rangle_k = \langle (\lambda x.e) (\mu x.e) \rangle_k$$

K-CHALLENGE: referencing, dereferencing, addressing, location assignment

$$\begin{array}{l} Val ::= \ldots \mid Loc \\ Exp ::= \ldots \mid \operatorname{ref} Exp \; [strict] \mid * Exp \; [strict] \mid \& \; Name \\ Stmt := \ldots \mid Exp := Exp \; [strict] \\ \underbrace{(\operatorname{ref} v)}_k \langle \underbrace{\sigma}_{l} \rangle_{store} \quad \text{where} \; l \; \text{is a fresh location} \\ \underbrace{(\underbrace{* l}_{l})}_k \langle (\sigma)_{store} \rangle_{store} \\ \underbrace{\sigma[l]} \\ \underbrace{(\underbrace{\& \; x}_{l})}_k \langle (\rho)_{env} \rangle_{env} \\ \underbrace{(\underbrace{l := v}_{l})}_k \langle \underbrace{\sigma}_{l} \rangle_{store} \\ \underbrace{\sigma[v/l]} \end{array}$$

K-CHALLENGE: Add CALL/CC

$$Exp ::= \dots \mid callcc Exp [strict]$$

 $Val ::= \dots \mid cc(K, Env)$

$$\underbrace{\left(\begin{array}{c} \mathsf{callcc} \, v \\ v \, \mathit{cc}(k, \rho) \end{array} \right)}_{} \sim k \, k \, (\rho)_{env}$$

$$\underbrace{ \left(\frac{cc(k,\rho) \, v \, \sim \, \bot}{v \, \sim \, k} \right)_k \, \left(\underline{\bot} \right)_{env}}_{p}$$

K-CHALLENGE: Add nondeterminism

 $Exp ::= ... \mid randomBool$ randomBool \rightarrow true randomBool \rightarrow false

K-CHALLENGE: Add aspects

$$\begin{array}{l} Stmt ::= \dots \mid \text{aspect } Stmt \\ Config ::= \dots \mid (\!\!\lceil K \!\!\rceil)_{aspect} \\ \\ \llbracket s \rrbracket = (\!\!\lceil s \!\!\rceil)_k \ (\!\!\lceil \cdot \!\!\rceil)_{env} \ (\!\!\lceil \cdot \!\!\rceil)_{store} \ (\!\!\lceil \cdot \!\!\rceil)_{output} \ (\!\!\lceil \cdot \!\!\rceil)_{aspect} \\ \\ \hline \cdot \qquad \qquad \qquad \\ \underbrace{ \left(\begin{array}{c} \lambda x.e \\ \hline closure(x,(s \curvearrowright e),\rho) \end{array} \right)_k \ (\!\!\lceil \rho \!\!\rceil)_{env} \ (\!\!\lceil s \!\!\rceil)_{aspect} } \end{array}$$

K-CHALLENGE: Concurrency with threads and lock synchronization

```
Stmt ::= \dots \mid \mathsf{spawn} \; Stmt \mid \mathsf{acquire} \; Exp \; [strict] \mid \mathsf{release} \; Exp \; [strict] \mid \mathsf{Config} ::= \dots \mid (\mathsf{Set}[\mathit{Val} \times \mathit{Nat}])_{holds} \mid (\mathsf{Set}[\mathit{Config}])_{thread} \mid (\mathsf{Set}[\mathit{Val}])_{busy} \mid [s] = (((s)_k \; (\cdot)_{env} \; (\cdot)_{holds})_{thread} \; (\cdot)_{store} \; (\cdot)_{output} \; (\cdot)_{aspect} \; (\cdot)_{busy})_{\top} \mid ((-)_{store} \; (v)_{output} \; (-)_{aspect} \; (-)_{busy})_{\top} = vl
```

$$\frac{(\operatorname{spawn}\ s)_k\ (|\rho|)_{env}\ (|\cdot|)_{holds})_{thread}}{((|\cdot|)_k\ (|lc|)_{holds})_{thread}} \frac{(|\cdot|)_k\ (|lc|)_{holds})_{thread}}{|ls-lc|} \\ \frac{(\operatorname{acquire}\ v)_k\ (|v,\underline{n}|)_{holds}}{(s(n))}_{holds} \\ \frac{(\operatorname{acquire}\ v)_k\ (|\cdot|)_{holds}}{(v,0)}_{holds} \\ \frac{(|\cdot|)_k\ (|\cdot|)_{holds}}{|ls|}_{holds} \\ \frac{(|\cdot|)_k\ (|\cdot|)_{holds}}{|$$

K-CHALLENGE: Concurrency Rendez-vous synchronization

```
\begin{array}{l} Stmt ::= \dots \mid \operatorname{rv} \; Exp \; [strict] \\ (\operatorname{\underline{rv}} v)_k \; (\operatorname{\underline{rv}} v)_k \\ \vdots \end{array}
```

K-CHALLENGE: Concurrency Distributed Agents with Message Comm.

```
Agent ::= agent identifiers or names \ Val ::= ... \mid Agent \ Exp ::= ... \mid new-agent \ Stmt \mid receive-from \ Exp \ [strict] \mid receive \mid me \mid parent \ Stmt ::= ... \mid send-asynch \ Exp \ [strict] \mid send-synch \ Exp \ [strict]
```

```
\begin{aligned} &Config ::= \dots \mid (\!\!\lceil \mathsf{Set}[\mathit{Config}]\!\!)_{\mathit{agent}} \mid (\!\!\lceil \mathit{Agent}, \mathit{Agent}, \mathit{Val}\!\!)_{\mathit{message}} \\ &[\![\![s]\!]\!] = (\!\!\lceil (\!\!\lceil \!\lceil \!\lceil s \rceil\!\!)_{\mathit{k}} (\!\!\lceil \cdot \!\!\rceil)_{\mathit{env}} (\!\!\lceil \cdot \!\!\rceil)_{\mathit{holds}}\!\!)_{\mathit{thread}} (\!\!\lceil \cdot \!\!\rceil)_{\mathit{store}} (\!\!\lceil \cdot \!\!\rceil)_{\mathit{busy}} (\!\!\lceil n \!\!\rceil)_{\mathit{me}} (\!\!\lceil n \!\!\rceil)_{\mathit{parent}}\!\!)_{\mathit{agent}} (\!\!\lceil \cdot \!\!\rceil)_{\mathit{output}}\!\!)_{\top} \quad \text{where } n \in \mathit{Agent} \text{ fresh} \\ &(\!\!\lceil \!\lceil v \!\!\rceil)_{\mathit{output}} M \!\!\rceil_{\top} \to \mathit{vl} \quad \text{when } M \text{ contains only messages (zero or more)} \end{aligned}
```


K-CHALLENGE: Concurrency Distributed Agents with Message Comm.

$$\frac{(\text{new-agent } s)_k}{m} \frac{(n)_{me}}{(((s)_k (\cdot)_{env} (\cdot)_{holds})_{thread} (\cdot)_{store} (\cdot)_{aspect} (\cdot)_{busy} (m)_{me} (n)_{parent})_{agent} }{(A)_{agent} \rightarrow \cdot \text{ when } A \text{ contains no thread}}$$

$$\frac{(\text{me})_k}{n} (n)_{me}$$

$$\frac{(\text{parent})_k}{n} (n)_{parent}$$

$$\frac{(\text{parent})_k}{n} (n)_{parent}$$

$$\frac{(\text{parent})_k}{n} (m)_{me}$$

$$\frac{(n, m, v)_{message}}{(n, m, v)_{message}}$$

$$\frac{(\text{receive-from } n)_k}{v} (m)_{me} (n, m, v)_{message}$$

$$\frac{(\text{receive})_k}{v} (m)_{me} (n, m, v)_{message}$$

$$\frac{(\text{send-synch } m \cdot v)_k}{v} (n)_{me} (n)_{agent} (n)_{message}$$

$$\frac{(\text{send-synch } m \cdot v)_k}{v} (n)_{me} (n)_{agent} (n)_{message}$$

$$\frac{(\text{send-synch } m \cdot v)_k}{v} (n)_{me} (n)_{agent} (n)_$$

K-CHALLENGE: Self-Generation of Code

```
 Exp := \dots \mid \operatorname{quote} \ Exp \mid \operatorname{unquote} \ Exp \mid \operatorname{eval} \ Exp \ [\operatorname{strict}]   Val ::= \dots \mid \operatorname{quote}(Nat, \operatorname{List}[K]) \mid \operatorname{code}(\operatorname{List}[K]) \mid K \boxtimes K \ [\operatorname{strict}] \mid \square (\operatorname{List}[K]) \ [\operatorname{strict}(2)] \mid K \boxtimes K \ [\operatorname{strict}]   (\operatorname{quote}(k))_k = (\operatorname{quote}(0, k))_k   \operatorname{quote}(n, k_1 \curvearrowright k_2) = \operatorname{quote}(n, k_1) \boxtimes \operatorname{quote}(n, k_2)   \operatorname{quote}(n, f(kl)) = \square (\operatorname{quote}(n, kl)) \text{ if } f \neq \operatorname{quote}, \text{ unquote}   (\operatorname{quote}(n, \operatorname{quote}(k)) = \operatorname{quote}(\operatorname{quote}(n, k))   \operatorname{quote}(n, \operatorname{quote}(k)) = \operatorname{quote}(\operatorname{quote}(s(n), k))   \operatorname{quote}(0, \operatorname{unquote}(k)) = \lim_{k \to \infty} \operatorname{quote}(\operatorname{quote}(n, k))   \operatorname{quote}(n, (k, kl)) = \operatorname{quote}(n, k) \cong \operatorname{quote}(n, kl) \text{ if } kl \neq \cdot   \operatorname{quote}(n, k) = \operatorname{code}(k) = \operatorname{code}(k) = \operatorname{code}(k) = \operatorname{code}(k) = \operatorname{code}(k) = k   \operatorname{eval} \operatorname{code}(k) = k   \operatorname{eval} \operatorname{code}(k) = k
```

Conclusion

- K: The Concurrent Rewrite Abstract Machine
- Attempts at maximizing the amount of concurrency in a formal semantic definition
 - Explicit sharing of data
 - Special support for lists and bags
 - Special representation of computations and tasks
- Next step: efficient implementation based on transactions

Stop here

The Idea

- There is a major difference between
 - Sequential rewrite steps; and
 - Parallel rewrite steps
- Arbitrary degree of parallelism at each step: from minimal to maximal

From Conditional to Unconditional

- Many transformations in the literature
 - 1996: Alouini, Kirchner

Concurrent Rewriting

- Concurrent implementations of rewriting
 - 1990: Aida, Goguen, Meseguer
 - 1996: Alouini, Kirchner (also GC in this context)
- We want a different thing:
 - Concurrent rewriting as a formalism
 - Shared data allowed and specifiable

A Rewrite System

Consider a three rule rewrite system

Q: How many rewrites can be applied concurrently on the term below? A: 0, 1, 2, ..., 10 out of 11 redexes!

-1 rewrite- (standard rewriting)

-2 concurrent rewrites-

-6 concurrent rewrites-

-7 concurrent rewrites-

-9 concurrent rewrites-

-10 concurrent rewrites (ver 1)-

-10 concurrent rewrites (ver 2)-

