K: The Concurrent Rewrite
Abstract Machine

Note to the reader

There are many “explanation slides” that | do
not use in presentations about K; instead, |
include those explanations as part of the talk

These explanations are here only to better
explain the slides to those who just read them

Please let me know if | should explain better
certain parts of this presentation

Feel free to contact me for pointers to work
on K

Dijkstra’s Algorithm

All shortest paths in a graph

Dijkstra’s Algorithm

All shortest paths in a graph

Dijkstra’s Algorithm in K

e All shortest distances in a graph, concurrently

* Hold pairs (node,cost) in a multi-set soup

(

.

(start,0)
(x,c,)

(v.c,)

\

e For each edge X > vy add a K-rule

Q(X;Cx) (v, c,)D whent+c,<c,

t+cC

X

Explanation for previous slide

e The rule

<](X;Cx) (v, c,)D whent+c <c,
t+c

X
reads as follows:

— Whenever two pairs (x,c,) and (y,c) can be found in
the multiset soup (the "and D are open soup
boundaries) such thatt+c, <c,, replacec by t+c,
(K-rules change the underlined subterms as indicated
below the line) ; note that in K, unlike in term

rewriting, concurrent rule applications can share
subterms which are not underlined

Explanation for next slides

e Making use of sharing information, K defines a
concurrent rewriting relation => , which allows for
sharing of read-only subterms (i.e., not underlined)

e t = t’ means that t may concurrently rewrite to t’; K
does not enforce maximal concurrent rewriting on
purpose (it would be easy to add rewriting strategies,
including maximal concurrent rewriting, but we do not
do it for the time being)

e Next, @ means a pair (hode,c) in the soup (i.e., the

current cost of node is c), and means that a

K rule is applied matching the two involved pairs, and
the cost of the target node is c, after the rule is applied

Run1linK

All shortest distances ... directly

Run 1inK
Concurrent Step 1

All shortest distances ... directly

Run 1inK
Concurrent Step 2

All shortest distances ... directly

Run 2 in K

All shortest distances ... eventually (max concurrency)

Run 2 in K
Concurrent Step 1

All shortest distances ... eventually (max concurrency)

Run 2 in K
Concurrent Step 2

All shortest distances ... eventually (max concurrency)

Run 2 in K
Concurrent Step 3

All shortest distances ... eventually (max concurrency)

P, => P, = P, => P,

Explanation on the two runs above

e Since K does not enforce maximal concurrent rewriting,
the first run showed how one can directly calculate all
the minimal distances in the graph using only two
concurrent steps

e The second run was greedy, maximizing the number of
concurrent applications of rules; consequently, it
ended up using three concurrent steps instead of two

* Morale: itis hard to find optimal scheduling of
concurrent rule applications; different
implementations may choose different strategies; we
prefer to let this issue open, so we do not enforce any
particular concurrent rewrite strategy in K

Dijkstra’s Algorithm
Correctness

Termination: each rule decreases a cost
Confluence: critical pairs joinable
Thus, unigue normal forms

Normal form = all shortest distances

— Build a rewrite sequence corresponding to some
shortest paths; canonicity guarantees the rest

If one wants to find all shortest paths as well,

then one needs to also keep a parent to each

node; however, the rewrite system is not

confluent then, because there may be multiple

shortest path solutions

Motivation for K

e Teaching Programming Languages

e Why K? We found no formalism to define
everything we wanted, including:

— Operational semantics
 Including concurrency, callcc and other existing PL features

— Efficient interpreters at no additional expense

— Program analyzers based on semantics of PL
e Symbolic execution, model checkers, theorem provers, ...

— Type systems, type checkers, type inferencers
— Visualization

Demo

e Goto http://fsl.cs.uiuc.edu/index.php/Special:MaudeStepperOnline

e Select some languages from the left menu and

—runt
—runt

—runt

nem (this shows the interpreter capability)
ne stepper (go through the program exec)

ne graph (see all the statespace)

http://fsl.cs.uiuc.edu/index.php/Special:MaudeStepperOnline

We Tried to Use the Following
... and Failed

SOS

— Non-modular, rigidity to syntax, cannot define existing language features, only
interleaving semantics for concurrency, slow; we want a framework where
definition = implementation and everything else, i.e., a language definition should
serve all the purposes, not only some purposes

MSQOS

— Partially solves only the non-modularity problem of SOS; still not fully modular
(aspects, etc); slow; no support for program analysis
Evaluation contexts

— Does not support environment-based definitions, still only interleaving semantics;
no support for program analysis (model checking, symbolic execution); slow

CHAM

— Claims true concurrency ... but not when rules share data; no implementation
available and hard to implement; airlock is expensive

Continuations

— Mainly implementation technique; interleaving concurrency semantics; little to no
support for program analysis (model checking, symbolic execution, etc.); not used
for defining type systems; we want an ideal definitional technique, which can be
used for anything related to languages, including typing

Explanation for next two slides

They show the way we used the various
formalisms mentioned above

We faithfully embedded each in rewriting logic
and then used the latter to execute them

Faithful embedding means that the resulting
rewriting theory captures the original one step-
for-step

This is different from “encodings”, which typically
change the computation granularity of the source
framework

Rewriting Logic Semantics
- Ecumenical Definitional Framework -

e Serbanuta, Rosu, Meseguer: Info&Comp 2008

T

4)

sos| | Msos |

J

{ Con:inu-] R LS [CHAI\/I]

ations
{ Context]
Reduction

~_

Example (and similarly for all approaches)
SOS as a methodological fragment of RLS

SOS:
z L. Ln
c Lo

{CF = ALC"} it {C) — {1, O A {C2) — {lo, Co} A A O — {0, O}

Theorem:

SOS O 5 ¢ <= RLSsost {C} — {I,0"

What does it actually mean?

* One can use one’s favorite definitional
approach within RL

— Use RLU's generic tools and techniques
* However:

— RL does not tell you how to define a language

— RL has all the advantages and disadvantages of the
adopted definitional methodology

How does K relate to RLS?

e Extended fragment
e Unconditional, but “more concurrent”

e K currently executed using RL (Maude)

-

Success Stories

e Complete real languages defined using K

— Java 1.4, Scheme, Beta
— Started, to be completed: SML, Haskell, C

e Large research and classroom languages
— SIMPLE, KOOL, FUN, LOGIK

e Competitive resulting interpreters and tools
— Our Scheme ~10 times slower than Dr. Scheme
— JavaFAN model checker faster than JavaPathFinder
— Polymorphic type system faster than SML’s

K Specific Features

Explicit Data Sharing

Why? To Increase Concurrency

Why Explicit Data Sharing?
Example: Resource Sharing

 We want photosynthesis to apply concurrently
in spite of the fact that the sun is shared by all
rule instances (that is, rules overlap!)

Why Explicit Data Sharing?
Example: Resource Sharing

Why Explicit Data Sharing?
Example: Mutual Exclusion

O F=—--@Q B |

e Access to critical resource (water faucet here)
cannot be concurrent, by design.

* Takes two steps to get two glasses of water, in
spite of potential for concurrent execution

Why Explicit Data Sharing?
Example: Mutual Exclusion

QD &= O & |

=

o

5

~

=

/

Step 1/ ~
g i ®/

Why Explicit Data Sharing?
Example: Mutual Exclusion

QD &= O & |

4 _ N
=

H‘ @

_ %

Step 2

—

4 |)
e
o,

Conventional Rewrite Rules Are Not
Expressive Enough for Concurrency

e As conventional rewrite rules, the two rules
above are identical (leaf -> face, sun -> water, ...)

* Yet, we want them to have totally different
meaning wrt concurrency semantics!

K Rules — First Iteration

* K rules mention the shared context only once:

Cltr; tos s L]
/ / /
thth

instead of

Example of K Rule
Resource Sharing

The dot “” is the unit of both bags and lists

Example of K Rule
Resource Sharing — Alternative rule

Example of K Rule
Mutual Exclusion

o E

@ E [

K Specific Features

Explicit Data Liberation

Why? To Increase Concurrency

Why Explicit Data Liberation
Concurrency Unconstrained by Matching

e Joe and Ann, make unconditional promises:
— Joe: Ann, for you, I'll be an ideal Joe (say Joe’)
— Ann: Joe, for you, I'll be an ideal Ann (say Ann’)

couple(Joe, Ann) —» couple(Joe’, Ann)
couple(Joe, Ann) —» couple(Joe, Ann’)

e Standard term rewriting does not allow
couple(Joe, Ann) to evolve to couple(Joe’, Ann’)

Why Explicit Data Liberation
Concurrency Unconstrained by Matching

e Explicit context sharing does not help:

couple(Joe, Ann) couple(Joe, Ann)
Joe’ Ann’

 The two rules above cannot apply concurrently
because each changes the context of the other

e Same happens when defining concurrent
languages: Joe and Ann can be threads
accessing different locations in a shared store

Explicit Data Liberation in K

e Positions can be explicitly liberated
— Notation: overline them!

couple(Joe, Ann) couple(Joe, Ann)
Joe’ Ann’

e Liberated positions
— Used for concurrent matching, ... but
— Allowed to be changed by the matching rules

couple(Joe, Ann) = couple(Joe’, Ann’)
 Major Difference between K and rewriting
— Like causal atomicity versus serializability

K Specific Features

List and Bag Cells

Rewriting Modulo ... Insufficient

2

/ \ No way to rearrange soup so that
one can apply two rules
concurrently; one cannot use
idempotency of sun, as
“unexpected” concurrent behaviors
could happen if other rules were
around, e.g., an “eclipse” rule; think
of sun as a shared store.

Special Support for Lists and Bags in K

Angular separators
mean “inside”;
desugared into a finite
number of multiset
equivalent rules

Special Support for Lists and Bags in K

Special Support for Lists and Bags in K

e “Cell” separators also used for lists

e If a separator is round, it means “end”; if
angular it means “and so on in that direction”

e Separators can be indexed and nested

=)

4 <lXDk Q(XJ)D Dprocess \((y’5)
7 i Yo b L
- %

process

Configurations = Nested Lists and Bags

Config
_input- - ___'__—-—- * —nextloc — ——busy_— -nextTid___
—— output- CSE‘
ol control b oclass holds i tad
l Environment Cantrol I bject \ Name I | LockTupleSet | Name |
P ol . mstack estack Istack
Computation MethodStack ExceptionStack LoopStack

KOOL configuration “soup”

K Specific Features

Computations and Tasks

Computations and Tasks

e Computations are lists of tasks as follows

17 ~ 15 ~ -+ N T,

e Produced by heating/cooling equations

a1+ aos = a1 M L+ a9
A1+ a9 = a9 NN a1 +

Computational Equivalence Classes

The K-CHALLENGE

An experimental programming language
intended to challenge definitional frameworks

Starts with simple imperative language
Keeps adding features, modularly (in K)

All existing frameworks, except K, fail: they can
either not define certain features at all, or, if
they can, they do it non-modularly

K-CHALLENGE: Start with IMP

K-Annotated Syntax of IMP

Int == . all integer numbers
Bool = true | false
Name = all identifiers; to be used as names of variables
Val = Int
AFExzp == Val| Name
| AFErp + AExp [strict, extends + [t mt—Int]
BFExp 1= Bool
| AFrp < AExp [segstrict, extends < Intx Int— Bool)
| not BEurp [strict, extends = pooi . Bool
| BEzp and BExp [strict(1)]
Stmt = Stmt, Stmt [51; 50 = 81 v 82
| Name:= AFEzp [strict(2)]
| if BEzp then Stmt else Stmt [strict(1)]
| while BEzp do Stmt
\ halt A Ezp [strict]
Pgm 1= Stmit; AEcp

(_z bi (oDstate
o]
true and b — b

|K Configuration and Semantics of IMP |

KRES"’?? = ;;‘; i L (K] false and b — false
34 eswtt | List |1y (c:=v), (o Dstate
Config (K | (State) state - . o0 /7] e

| Val | [K] | (Set[Config])T

if true then s else s9 — sq

) if false then s, else s9 — 55

[r] = A@ebs (@)staredT (while b do s}, = (if b then (s:while b do s) else -},
{(ehehr — v (halt i), — (iDx

K-CHALLENGE: Start with IMP

if BExp then Stmt else St

4

If & then kq else ko = k ~ if U then k1 else ko
¢ if true then kq else ko — Ky
If false then ky else ko — ko

K-CHALLENGE: Start with IMP

q L D]{ GUD.State

K-CHALLENGE: Add increment

AFEzp ::= ... | ++ Name
(++x), (o Dstate where i =ofx] +1
i oli/x]

K-CHALLENGE: Add output

Stmt ::= ... | output_ [strict] | halt
Config ::= ... | List[Val] | (List[Val]) output

[[S]] — (IGSDk G'Dsta,te G'DoutputDT
<(]Df€ (]UlDoutputDT — ol
(haltbk — qu

(output v, {-)output

U

K-CHALLENGE: Add A-expressions
First, a substitution-based definition

Val ::= ... | AName. Exp
Fxp .= ... | Exp Fxp |strict]

((Ax.e)v), where x € Name, e € Fxp, v € Val

elv/x]

K-CHALLENGE: Add A-expressions
A closure-based definition

Config ::= (K)i | (Ent)eny | (Store) store | (List[Val]) output | (Set[Config]) T
|[f]] = (](]€Dk (]‘De-nv (]‘Dsto-re (]’DoutputDT

(] £ Dk (],Ol)e-nv (]O'Dsto-re
(];li = 'l?D;J (]pDe-m (] a Dsto-re
: olv/ple]]

(++)y Qdens (0 Detore where i is ofpfa]] +1

; ST
Val = ... | closure(Name, Exp, Env)
Ezp = ... | AName.Exp | Exp Exp [strict]

(] A€ Dﬁc (]PD enuv

closure(.x, e, p)

(closure(x,e.p) v)p (P Denw (@ |store Where lis a fresh location
e v restore(p’) pll/x] olv/l]

K-CHALLENGE: Add recursion

Exp := ... | uName.Exp
(pr.e)) = ((Az.e) (pa.e)),

K-CHALLENGE: referencing, dereferencing,
addressing, location assignment

Val ::= ... | Loc
Fzxp ::== ... | ref Exp [stricl] | « Exp |strict] | & Name
Stmt:= ... | Exp := Exp [strict]
(refv), (o |)store Wherel is a fresh location
[olv/I]
(] * | I>k (]JD,Store
o|l]
(& @ Dk 1) enw
pla]

(][- ;UDI{ (] ag D,Sto-re

olv/l]

K-CHALLENGE: Add CALL/CC

Exp :
Val ::

&
-

... | callcc Exp |strict]
... | ce(K, Env)

(] callccv ~ ka (]pDB'Tl’U
v ek, p)

(ce(k, p)v ~ i (];D env
vk P

K-CHALLENGE: Add nondeterminism

Fxp ::= ... | randomBool
randomBool — true
randomBool — false

K-CHALLENGE: Add aspects

Stmt ::= ... | aspect Stmt
Config == ... | (K] aspect

IIS]] — (](ISDIC (]'De-nxu (]'D,store (]'Doutput (]'Da,spectDT
(Iaspect 8[>k (]:D aspect
S

(] A\L.€ [>k: (]/OD env (ISDa,spect
closure(x, (s ~ ¢e), p)

K-CHALLENGE: Concurrency with
threads and lock synchronization

Stmt::= ... | spawn Stmt | acquire Exp [strict] | release Exp [strict]

Config ::= ... | (Set[Val x Nat]) notas | (Set[Configl) thread | (Set] Val]) pusy
[[8]] — (](](ISDA (]D enuv (]’Dh,olds[)th,read (I’Dstore (]'Doutput (]’Da,spect (]’DbusyDT

(](]—D store (]T)ZDoutput (]—D aspect (]—DbusyDT = vl

(spawn s),. (9] enw

(](]'SDA (])OD env (]'Dholds[)th?"ea,d
(D (D notds) threaq (15 Dbusy

s — lc
(acquire v}, {(v, 1))y (release v, {(v, s(0)D poras
s(n) : n
(]vaUire UDI{ <]) Dholds (]il)busy when v g ls (]release UDR 4(0’ O)Dholds ngbuw

(v,0) s v

K-CHALLENGE: Concurrency
Rendez-vous synchronization

Stmt = ... | rv Exp [strict]
(rvo), (rvo),

K-CHALLENGE: Concurrency
Distributed Agents with Message Comm.

Agent ::= agent identifiers or names

Val ::= ... | Agent

Exp := ... | new-agent Stmt | receive-from Ezp [strict] | receive | me | parent
Stmt ::= ... | send-asynch Exp Exp [strict] | send-synch Exp Exp [strict]

Config == ... | (Set[Config]) agent | (Agent, Agent, Val)essage
[[“]] — Q(IQQ‘*DA (]'D(—fn.t: G'DhoﬂdsDUe.r't'a.d. G'Ds{.m'c‘ G'Dt.-,,:f',r)f_.'r_:{. G'Db'u.s_u q'”Dm.r:' (I”Dpa.re.'-n.(.Du_qe:'n,!’. (I'Duu.i’-pu.(D I where n € Ayf-ﬂ"."'t fresh
((v]) output M))T — vl when M contains only messages (zero or more)

(Dt
P s 9

e i gy
e ‘h""‘“--u

0 (‘{.gt'“f q DTH sage q"‘Df-'"“-f-t?-”-&f-

i
—
e
—
e

*
“::':::—_
\\ “"“*—h-,,___‘ =
G "‘=—-~__‘

)
D_qro-r‘f'- Q Du spect (] busy ﬂ DIHF Q menr

q' . Dj}?.?'{?flr'f G i

T

(]D!, q---Dr:n.-z-' (]---Dh.r:fd.s

K-CHALLENGE: Concurrency
Distributed Agents with Message Comm.

(new-agent s}, (7).

m (]{]'GC’DR (]'Den-—t-' (]'Dho{dsDth-read G'Dstor‘e G'Daspect {]'Dr{:u-sy {]TNDrne anpa—rentDagent

(A)agent — - when A contains no thread

GE[I G'” D me
T

(parent), (1) parent
n

(send-asynch m v}, (1) me
GH, ., ""-"D-rne.ssage

(receive-from nl), (M) e (1,7, V) nessage
py

(receive) , (M) e (- 72, V) rmessage
E— .

{(send-synch m v}, (1) el 4gens {(receive-from n|, (m),,
py

e [ageri

(send-synch m v}, ((receive), (M) ..}
—

agent

K-CHALLENGE: Self-Generation of Code

Fap = ... | quote Fxp | unquote Fxp | eval Frp [strict]

Val := ... | code(K)

K == ... | quote(Nat, List[K]) | code(List[K]) | KmK [strict] | [Ld(List[K]) [strict(2)] | KnK [stric]]
(quote(k)}, = (quote(0,k)),,
quote(n, k1 m k) = quote(n, k1)= q !()3‘."(5‘? ko) code(ky ek code(ka) = code(ky v ko)

(n, k1
quote(n, f(kl)) = El((ju()f(.{??, kl)) it f # quote, unquote |I|(code(kl)) = code(f(kl))
quote(n, quote(k)) = [@UO quote(s(n), k))
quote(0, unquote(k)) =k

quote(s (), unquote(k)) = [UNQUOTE(quote(n, k))

quote(n, (k, kl)) = quote(n, k)m quote(n, kl) if kI # - code(k)m code(kl) = code(k, El)
quote(n, k) = code(k) if k € Vally Name eval code(k) =k

Conclusion

e K: The Concurrent Rewrite Abstract Machine
e Attempts at maximizing the amount of
concurrency in a formal semantic definition

— Explicit sharing of data
— Special support for lists and bags
— Special representation of computations and tasks

* Next step: efficient implementation based on
transactions

Stop here

The Idea

 There is a major difference between
— Sequential rewrite steps; and

— Parallel rewrite steps

e Arbitrary degree of parallelism at each step:
from minimal to maximal

From Conditional to Unconditional

 Many transformations in the literature
— 1996: Alouini, Kirchner

Concurrent Rewriting

 Concurrent implementations of rewriting

— 1990: Aida, Goguen, Meseguer

— 1996: Alouini, Kirchner (also GC in this context)
 We want a different thing:

— Concurrent rewriting as a formalism
— Shared data allowed and specifiable

A Rewrite System

Consider a three rule rewrite system

/7_)”7

{, —>

or graphically

A - A
A - A\
A~/

Standard Rewrite Step

-no concurrent rewriting-

44 4
Ll

' =

Concurrent Rewrite Step in K

Q: How many rewrites can be applied
concurrently on the term below?

A:0,1, 2, ..., 10 out of 11 redexes!

Concurrent Rewrite Step in K

4 4
Ll

-1 rewrite- (standard rewriting)

Concurrent Rewrite Step in K

4 4
Ll

-2 concurrent rewrites-

Concurrent Rewrite Step in K

4 4
Ll

-6 concurrent rewrites-

Concurrent Rewrite Step in K

4 4
Ll

-7 concurrent rewrites-

Concurrent Rewrite Step in K

4 4
Ll

-9 concurrent rewrites-

Concurrent Rewrite Step in K

4 4
Ll

-10 concurrent rewrites (ver 1)-

Concurrent Rewrite Step in K

4 4
Ll

-10 concurrent rewrites (ver 2)-

	K: The Concurrent Rewrite Abstract Machine
	Note to the reader
	Dijkstra’s Algorithm
	Dijkstra’s Algorithm
	Dijkstra’s Algorithm in K
	Explanation for previous slide
	Explanation for next slides
	Run 1 in K�
	Run 1 in K�Concurrent Step 1
	Run 1 in K�Concurrent Step 2
	Run 2 in K�
	Run 2 in K�Concurrent Step 1
	Run 2 in K�Concurrent Step 2
	Run 2 in K�Concurrent Step 3
	Explanation on the two runs above
	Dijkstra’s Algorithm�Correctness
	Motivation for K
	Demo
	We Tried to Use the Following�… and Failed
	Explanation for next two slides
	Rewriting Logic Semantics�- Ecumenical Definitional Framework -
	Example (and similarly for all approaches)�SOS as a methodological fragment of RLS
	What does it actually mean?
	How does K relate to RLS?
	Success Stories
	K Specific Features
	Why Explicit Data Sharing?�Example: Resource Sharing
	Why Explicit Data Sharing?�Example: Resource Sharing
	Why Explicit Data Sharing?�Example: Mutual Exclusion
	Why Explicit Data Sharing?�Example: Mutual Exclusion
	Why Explicit Data Sharing?�Example: Mutual Exclusion
	Conventional Rewrite Rules Are Not Expressive Enough for Concurrency
	K Rules – First Iteration
	Example of K Rule�Resource Sharing
	Example of K Rule�Resource Sharing – Alternative rule
	Example of K Rule�Mutual Exclusion
	K Specific Features
	Why Explicit Data Liberation�Concurrency Unconstrained by Matching
	Why Explicit Data Liberation�Concurrency Unconstrained by Matching
	Explicit Data Liberation in K
	K Specific Features
	Rewriting Modulo … Insufficient
	Special Support for Lists and Bags in K
	Special Support for Lists and Bags in K
	Special Support for Lists and Bags in K
	Configurations = Nested Lists and Bags
	K Specific Features
	Computations and Tasks
	Computational Equivalence Classes
	The K-CHALLENGE
	K-CHALLENGE: Start with IMP
	K-CHALLENGE: Start with IMP
	K-CHALLENGE: Start with IMP
	K-CHALLENGE: Add increment
	K-CHALLENGE: Add output
	K-CHALLENGE: Add -expressions�First, a substitution-based definition
	K-CHALLENGE: Add -expressions�A closure-based definition
	K-CHALLENGE: Add recursion
	K-CHALLENGE: referencing, dereferencing, addressing, location assignment
	K-CHALLENGE: Add CALL/CC
	K-CHALLENGE: Add nondeterminism
	K-CHALLENGE: Add aspects
	K-CHALLENGE: Concurrency with threads and lock synchronization
	K-CHALLENGE: Concurrency�Rendez-vous synchronization
	K-CHALLENGE: Concurrency�Distributed Agents with Message Comm.
	K-CHALLENGE: Concurrency�Distributed Agents with Message Comm.
	K-CHALLENGE: Self-Generation of Code
	Conclusion
	Stop here
	The Idea
	From Conditional to Unconditional
	Concurrent Rewriting
	A Rewrite System
	Standard Rewrite Step� �-no concurrent rewriting-
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82

