
A Rewriting Semantics for Maude Strategies

N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo

Universidad Complutense de Madrid

University of Illinois at Urbana-Champaign

IFIP WG 1.3

Urbana, August 1, 2008

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 1 / 32

In previous works

• we proposed a strategy language for Maude;

• we described a simple set-theoretic semantics for such a
language;

• we built a prototype implementation on top of Full Maude;

• we and many other people have used the language and the
prototype in several examples:

• backtracking,
• semantics,
• deduction (congruence closure, completion),
• sudokus,
• neural networks,
• membrane computing,
• . . .

http://maude.sip.ucm.es/strategies

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 2 / 32

http://maude.sip.ucm.es/strategies

Goals

• Advance the semantic foundations of Maude’s strategy language.

• We can think of a strategy language S as a rewrite theory
transformation R 7→ S(R) such that S(R) provides a way of
executing R in a controlled way [Clavel & Meseguer 96, 97].

• We describe a detailed operational semantics by rewriting.
• Rewriting the term σ @ t computes the solutions of applying the

strategy σ to the term t.
• Given a system module M and a strategy module SM, we specify

the generic construction of a rewrite theory S(M, SM), which
defines the operational semantics of SM as a strategy module for
M.

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 3 / 32

Goals

• Articulate some general requirements for strategy languages:

• Absolute requirements: soundness and completeness with respect
to the rewrites in R.

• More optional requirements, monotonicity and persistence,
represent the fact that no solution is ever lost.

• The Maude strategy language satisfies all these four
requirements.

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 4 / 32

Strategy language requirements

• The two most basic absolute requirements for any strategy
language are:

• Soundness.
If S(R) ` σ @ t −→∗ w and t′ ∈ sols(w), then R ` t −→∗ t′.

• Completeness.
If R ` t −→∗ t′ then there is a strategy σ in S(R) and a term w
such that S(R) ` σ @ t −→∗ w and t′ ∈ sols(w).

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 5 / 32

Strategy language requirements

• An optional requirement is what we call determinism. Intuitively,
a strategy language controls and tames the nondeterminism of a
theory R.

• At the operational semantics level, this requirement can be made
precise as follows:

• Monotonicity.
If S(R) ` σ @ t −→∗ w and S(R) ` w −→∗ w′, then
sols(w) ⊆ sols(w′).

• Persistence.
If S(R) ` σ @ t −→∗ w and there exist terms w′ and t′ such that
S(R) ` σ @ t −→∗ w′ and t′ ∈ sols(w′), then there exists a term
w′′ such that S(R) ` w −→∗ w′′ and t′ ∈ sols(w′′).

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 6 / 32

Strategy language requirements

• A second, optional requirement is what we call the separation
between the rewriting language itself and its associated strategy
language.

• In the design of Maude’s strategy language this means that a
Maude system module M never contains any strategy
annotations. Instead, all strategy information is contained in
strategy modules of the form SM.

• Strategy modules are on a level on top of system modules, which
provide the basic rewrite rules.

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 7 / 32

Maude strategies

Idle and fail are the simplest strategies.

Basic strategies are based on a step of rewriting.

• Application of a rule (identified by the corresponding rule
label) to a given term (possibly with variable instantiation).

• For conditional rules, rewrite conditions can be controlled by
means of strategy expressions: L[S]{E1 ... En}

The rule is applied anywhere in the term where it matches
satisfying its condition.

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 8 / 32

Maude strategies

Top For restricting the application of a rule just to the top of the
term.

Tests are strategies that test some property of a given state term,
based on matching.

• amatch T s.t. C is a test that, when applied to a given
state term T’, succeeds if there is a subterm of T’ that
matches the pattern T and then the condition C is satisfied,
and fails otherwise.

• match works in the same way, but only at the top.

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 9 / 32

Maude strategies

Regular expressions

*** concatenation

op _;_ : Strat Strat -> Strat [assoc] .

*** union

op _|_ : Strat Strat -> Strat [assoc comm] .

*** iteration (0 or more)

op _* : Strat -> Strat .

*** iteration (1 or more)

op _+ : Strat -> Strat .

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 10 / 32

Maude strategies

Conditional strategy is a typical if-then-else, but generalized so that
the first argument is also a strategy: E ? E’ : E’’

Using the if-then-else combinator, we can define many other
useful strategy combinators as derived operations.

E orelse E’ = E ? idle : E’

not(E) = E ? fail : idle

E ! = E * ; not(E)

try(E) = E ? idle : idle

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 11 / 32

Maude strategies

Strategies applied to subterms with the (a)matchrew combinator
control the way different subterms of a given state are rewritten.

amatchrew P s.t. C by P1 using E1, ..., Pn using En

applied to a state term T:
Mart́ı-Oliet, Meseguer, and Verdejo

P = g(...P1...Pn...) −→ g(...)

matching substitution

T = f(... g(... ...)... ...) −→ f(... g(... ...)... ...)

E1 En rewriting of subterms

Fig. 1. Behavior of the amatchrew combinator.

3.6 Conditional strategies

Our next strategy combinator is a typical if-then-else, but generalized so that the
first argument is also a strategy. We have borrowed this idea from Stratego [10],
but it also appears in ELAN [2, Example 5.2].

The behavior of the strategy expression E ? E’ : E’’ is as follows: in a given
state term, the strategy E is evaluated; if E is successful, the strategy E’ is evaluated
in the resulting states, otherwise E’’ is evaluated in the initial state. That is, by
definition, this combinator satisfies the equation

[[(E ? E′ : E′′) @ t]] = if [[E @ t]] #= ∅ then [[E′ @ [[E @ t]]]] else [[E′′ @ t]] fi.

As explained in [10,8], using the if-then-else combinator, we can define many
other useful strategy combinators as derived operations such as, for example,

E orelse E’ = E ? idle : E’

not(E) = E ? fail : idle
E ! = E * ; not(E)

try(E) = E ? idle : idle

3.7 Rewriting of subterms

With the previous combinators we cannot force the application of a strategy to a
specific subterm of the given initial term. In particular, the scope of the substitution
in the (a)match combinators is only the corresponding condition. We can have more
control over the way different subterms of a given state are rewritten by means of
the (a)matchrew combinators. When the strategy expression

amatchrew P s.t. C by P1 using E1, ..., Pn using En

is applied to a state term T, first a subterm of T that matches P and satisfies C
is selected. Then, the terms P1, . . . , Pn (which must be disjoint subterms of P),
instantiated appropriately, are rewritten as described by the strategy expressions
E1, . . . , En, respectively. The results are combined in P and then substituted in T,
in the way illustrated in Figure 1. The strategy expressions E1, . . . , En can make
use of the variables instantiated in the matching, thus taking care of information
extracted from the state term.

The version matchrew works in the same way, but performing matching only at
the top. In all cases, when the condition is true it can be omitted. The congru-
ence operators used in ELAN and Stratego [2,10] are special cases of the matchrew
combinator, as shown in [8].

7

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 12 / 32

Maude strategies

Recursion is achieved by giving a name to a strategy expression and
using this name in the strategy expression itself or in other
related strategies.

Modules The user can write one or more strategy modules to define
strategies for a system module M.

smod STRAT is

protecting M .

including STRAT1 including STRATj .

strat E1 : T11 ... T1m @ K1 .

sd E1(P11,...,P1m) := Exp1 .

...

strat En : Tn1 ... Tnp @ Kn .

sd En(Pn1,...,Pnp) := Expn .

csd En(Qn1,...,Qnp) := Expn’ if C .

...

endsd

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 13 / 32

Rewriting semantics of strategies

• Transform the pair (M, SM) into a rewrite theory S(M, SM)
where we can write strategy expressions and apply them to terms
from M.

• Rewriting a term of the form <E@ t> produces the results of
rewriting the term t by means of the strategy E.

sort Task .

op <_@_> : Strat S -> Task .

op sol : S -> Task .

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 14 / 32

Rewriting semantics of strategies

• A set of tasks constitutes the main infrastructure for defining the
application of a strategy to a term:

sorts Tasks Cont .

subsort Task < Tasks .

op none : -> Tasks .

op __ : Tasks Tasks -> Tasks [assoc comm id: none] .

eq T:Task T:Task = T:Task .

• We use continuations to control the computation of applied
strategies:

op <_;_> : Tasks Cont -> Task .

op chkrw : RewriteList Condition StratList S S′ -> Cont .
op seq : Strat -> Cont .

op ifc : Strat Strat Term -> Cont .

op mrew : S Condition TermStratList S′ -> Cont .

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 15 / 32

Rewriting semantics of strategies

• We also need several auxiliary operations for representing

• variables,
• labels,
• substitutions,
• contexts,
• replacement, and
• matching.

• In particular, we use overloaded matching operators that given a
pair of terms return the set of matches, either at the top or
anywhere, that satisfy a given condition. A match consists of a
pair formed by a substitution and a context.

op getMatch : S S Condition -> MatchSet .
op getAmatch : S S Condition -> MatchSet .

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 16 / 32

Some strategy rewrite rules

Idle and fail For each sort S in the system module M, we add rules

rl < idle @ T:S > => sol(T:S) .
rl < fail @ T:S > => none .

Basic strategies For each nonconditional rule [l] : t1 => t2 and
each sort S in M, we add the rule

crl < l[Sb] @ T:S > => gen-sols(MAT, t2 · Sb)
if MAT := getAmatch(t1 · Sb, T:S, trueC) .

eq gen-sols(none, T:S′) = none .

eq gen-sols(< Sb, Cx:S > MAT, T:S′) =
sol(replace(Cx:S, T:S′ · Sb)) gen-sols(MAT, T:S′) .

The treatment of conditional rules is much more complex.

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 17 / 32

Some strategy rewrite rules

Regular expressions

rl < E | E’ @ T:S > => < E @ T:S > < E’ @ T:S > .

rl < E ; E’ @ T:S > => < < E @ T:S > ; seq(E’) > .

rl < sol(R:S) TS ; seq(E’) >
=> < E’ @ R:S > < TS ; seq(E’) > .

rl < none ; seq(E’) > => none .

rl < E * @ T:S > => sol(T:S) < E ; (E *) @ T:S > .

eq E + = E ; E * .

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 18 / 32

Some strategy rewrite rules

Conditional strategies

rl < if(E, E’, E’’) @ T:S >
=> < < E @ T:S > ; ifc(E’, E’’, T:S) > .

rl < sol(R:S) TS ; ifc(E’, E’’, T:S′) >
=> < E’ @ R:S > < TS ; seq(E’) > .

rl < none ; ifc(E’, E’’, T:S) >
=> < E’’ @ T:S > .

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 19 / 32

Some strategy rewrite rules

Rewriting of subterms

crl < amatchrew(P:S, C, TSL) @ T:S′ > => gen-mrew(MAT, P:S, TSL)
if MAT := getAmatch(P:S, T:S′, C) .

eq gen-mrew(none, P:S, TSL) = none .

ceq gen-mrew(< Sb’, Cx’:S′ > MAT, P:S, (P1:S1 using E1, TSL)) =

< < E1 · Sb’ @ P1:S1 · Sb’ > ; mrew(Cx:S, TSL · Sb’, Cx’:S′) >
gen-mrew(MAT, P:S, (P1:S1 using E1, TSL))

if < none, Cx:S > := getAmatch(P1:S1 · Sb’, P:S · Sb’, trueC) .

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 20 / 32

Some strategy rewrite rules

Rewriting of subterms

crl < sol(R:S′′) TS ; mrew(Cx:S, (P1:S1 using E1, TSL), Cx’:S′) >
=> < < E1 @ P1:S1 > ; mrew(Cx’’:S, TSL, Cx’:S′) >
< TS ; mrew(Cx:S, (P1:S1 using E1, TSL), Cx’:S′) >

if < none, Cx’’:S > :=
getAmatch(P1:S1, replace(Cx:S, R:S′′), trueC) .

rl < sol(R:S′′) TS ; mrew(Cx:S, nilTSL, Cx’:S′) >
=> sol(replace(Cx’:S′, replace(Cx:S, R:S′′)))
< TS ; mrew(Cx:S, nilTSL, Cx’:S′) > .

rl < none ; mrew(Cx:S, TSL, Cx’:S′) > => none .

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 21 / 32

Correctness and determinism

For a term w of sort Tasks, sols(w) is the set of terms t such that
sol(t) is a subterm at the top of w.

Theorem (Soundness)

If S(M, SM) ` <E@ t> −→∗ w and t′ ∈ sols(w), then M ` t −→∗ t′.

Theorem (Monotonicity)

If S(M, SM) ` <E@ t> −→∗ w and S(M, SM) ` w −→∗ w′, then
sols(w) ⊆ sols(w′).

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 22 / 32

Correctness and determinism

Theorem (Persistence)

If S(M, SM) ` <E@ t> −→∗ w and there exist terms w′ and t′ such
that S(M, SM) ` <E@ t> −→∗ w′ and t′ ∈ sols(w′), then there exists
a term w′′ such that S(M, SM) ` w −→∗ w′′ and t′ ∈ sols(w′′).

Theorem (Completeness)

If M ` t −→∗ t′ then there is a strategy expression E in S(M, SM)
and a term w such that S(M, SM) ` <E@ t> −→∗ w and t′ ∈ sols(w).

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 23 / 32

Relation with set-theoretic semantics

Proposition

For terms t and t′ and strategy expression E in S(M, SM), if
t′ ∈ [[E @ t]] then M ` t −→∗ t′.

Proposition

If M ` t −→∗ t′ then there is a strategy expression E in S(M, SM)
such that t′ ∈ [[E @ t]].

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 24 / 32

Relation with set-theoretic semantics

Proposition

For terms t and t′ and strategy expression E in S(M, SM), if there is
a term w of sort Tasks such that S(M, SM) ` <E@ t> −→∗ w with
t′ ∈ sols(w), then t′ ∈ [[E @ t]].

Proposition

If t′ ∈ [[E @ t]], then there exists a term w such that
S(M, SM) ` <E@ t> −→∗ w and t′ ∈ sols(w).

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 25 / 32

Implementation issues

• By taking advantage of the reflective properties of rewriting
logic, the transformation described before could be implemented
as an operation from rewrite theories to rewrite theories,
specified itself in rewriting logic.

• The transformed rewrite theory is more complex than expected
because of the need for handling substitutions, contexts and
matching, and the overloading of operators and repetition of
rules for several sorts.

• Instead of doing this, we have written a parameterized module
that extends the predefined META-LEVEL module with the
rewriting semantics of the strategy language in a generic and
quite efficient way.

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 26 / 32

Example

mod RIVER-CROSSING is

sorts Side Group .

ops left right : -> Side .

op change : Side -> Side .

ops s w g c : Side -> Group .

op __ : Group Group -> Group [assoc comm] .

vars S S’ : Side .

eq change(left) = right .

eq change(right) = left .

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 27 / 32

Example

crl [wolf-eats] : w(S) g(S) s(S’) => w(S) s(S’) if S =/= S’ .

crl [goat-eats] : c(S) g(S) s(S’) => g(S) s(S’) if S =/= S’ .

rl [shepherd-alone] : s(S) => s(change(S)) .

rl [wolf] : s(S) w(S) => s(change(S)) w(change(S)) .

rl [goat] : s(S) g(S) => s(change(S)) g(change(S)) .

rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

endm

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 28 / 32

Example

smod RIVER-CROSSING-STRAT is

protecting RIVER-CROSSING .

strat eating : @ Group .

sd eating := (wolf-eats | goat-eats) ! .

strat oneCross : @ Group .

sd oneCross := shepherd-alone | wolf | goat | cabbage .

strat allCE : @ Group .

sd allCE := (eating ; oneCross) * .

endsm

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 29 / 32

Example

frew [5000]

< call(’allCE.Strat);

match(’__[’s[’right.Side],’w[’right.Side],

’g[’right.Side],’c[’right.Side]], nil) @

’__[’s[’left.Side],’w[’left.Side],

’g[’left.Side],’c[’left.Side]] > .

result (sort not calculated):

sol(’__[’c[’right.Side],’g[’right.Side],

’s[’right.Side],’w[’right.Side]]) ...

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 30 / 32

Conclusions and future work

• We have given general requirements for strategy languages that
control the execution of a rewriting-based language.

• We have also discussed a rewriting-based operational semantics
of Maude’s strategy language.

• We have shown that the general requirements are indeed met by
our proposal for Maude’s strategy language.

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 31 / 32

Conclusions and future work

• The C++ implementation of Maude’s strategy language still
needs to be completed.

• The given requirements are very basic, but in a sense they are
still too weak. How should the nondeterminism of a theory R be
eliminated as much as possible in the strategy theory S(R)?

• We believe that the right answer resides in the notion of fairness.

• Distributed implementation of strategy languages: the natural
concurrency of rewriting logic is directly exploitable in S(R) by
applying different rules to different tasks.

http://maude.sip.ucm.es/strategies

N. Mart́ı-Oliet (UCM) A Rewriting Semantics for Maude Strategies 32 / 32

http://maude.sip.ucm.es/strategies

