
Petri nets, behavioural semantics and  
web services development

F. Gadducci
Pisa University

[joint work with F. Bonchi, A. Brogi, and S.Corfini]



Plan of the talk

• From Web Services to CPR nets
• Open CPR nets and Contexts
• Saturated Semantics for CPR nets
• Conclusions (and example)



Plan of the talk

• From Web Services to CPR nets
• Open CPR nets and Contexts
• Saturated Semantics for CPR nets
• Conclusions (and example)



Syntactic tree of an 
OWL-S specification



A “typical” example 
from banking: credit 
request procedure

Syntactic tree of an 
OWL-S specification



public specification:
less internal info, yet 
same “behaviour”...



public specification:
less internal info, yet 
same “behaviour”...

...but which kind 
of observations?



From Web Services to Petri nets



Composition of Web Services
A. Brogi, S. Corfini. Behaviour-aware discovery of Web service compositions 
International Journal of Web Service Research 4(3), pp. 1-25, 2007.

• OWL-S ontologies (proposed by W3C)
• An OWL-S advertisement contains three descriptions:

– Service Profile: “what the service does”
– Service Model: “how the service works”
– Service Grounding: “how to access the service”



From OWL-S to Petri nets

Atomic Process
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Consume-Produce-Read nets

Data Place

Control Place

Read arc
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The token game

Behave as C/E nets 
w.r.t. control flow...

but data places 
are persistent!

[Usually reachable  
 - as e.g. WF nets]

Never consumed, and 
possibly overlapped!
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CPR-Contexts
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Contexts as Category of Cospans
O C J

Inner interfaceOuter interface
Net
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Motivations

• Incremental development of services
• Matching of (composition of) services
• Publishing of services
• Replacing of services

WEAK & COMPOSITIONAL



Basic Observations

i

f

A
C

B

Given an Open CPR net N,
and a marking m,

Obs(N,m) =
tokens in the open places
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Interactive Semantics
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Conclusions

Weak Bisimilarity 
coincides with 

Saturated Bisimilarity
It is
1. Weak (wrt internal transitions)
2. Compositional (congruence)
3. Computable (data persistency)
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Ongoing work

• So far...
– A tool for mapping an OWS-L service model 

specification into an OCPR net
– A straightforward adaptation of the algorithm 

for the verification of weak bisimularity 
• Forthcoming...

– A better adaptation of the verification algorithm
– A generalization to other classes of nets
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equivalent nets... 

• the two net encodings (the service and its 
public specification) are equivalent, after 
removing private names from open places

• the two sub-nets are equivalent, after 
removing the additional names [hence, the 
new one can be safely plugged in...]


