
Petri nets, behavioural semantics and
web services development

F. Gadducci
Pisa University

[joint work with F. Bonchi, A. Brogi, and S.Corfini]

Plan of the talk

• From Web Services to CPR nets
• Open CPR nets and Contexts
• Saturated Semantics for CPR nets
• Conclusions (and example)

Plan of the talk

• From Web Services to CPR nets
• Open CPR nets and Contexts
• Saturated Semantics for CPR nets
• Conclusions (and example)

Syntactic tree of an
OWL-S specification

A “typical” example
from banking: credit
request procedure

Syntactic tree of an
OWL-S specification

public specification:
less internal info, yet
same “behaviour”...

public specification:
less internal info, yet
same “behaviour”...

...but which kind
of observations?

From Web Services to Petri nets

Composition of Web Services
A. Brogi, S. Corfini. Behaviour-aware discovery of Web service compositions
International Journal of Web Service Research 4(3), pp. 1-25, 2007.

• OWL-S ontologies (proposed by W3C)
• An OWL-S advertisement contains three descriptions:

– Service Profile: “what the service does”
– Service Model: “how the service works”
– Service Grounding: “how to access the service”

From OWL-S to Petri nets

Atomic Process

Input data

Output data

From OWL-S to Petri nets

Consume-Produce-Read nets

Consume-Produce-Read nets

Data Place

Control Place

Consume-Produce-Read nets

Data Place

Control Place

Read arc

The token game

Behave as C/E nets
w.r.t. control flow...

The token game

Behave as C/E nets
w.r.t. control flow...

The token game

Behave as C/E nets
w.r.t. control flow...

but data places
are persistent!

Never consumed

The token game

behave as C/E nets
w.r.t. control flow...

but data places
are persistent!

Never consumed

The token game

behave as C/E nets
w.r.t. control flow...

but data places
are persistent!

Never consumed

The token game

Behave as C/E nets
w.r.t. control flow...

but data places
are persistent!

Never consumed, and
possibly overlapped!

The token game

Behave as C/E nets
w.r.t. control flow...

but data places
are persistent!

[Usually reachable
 - as e.g. WF nets]

Never consumed, and
possibly overlapped!

Plan of the talk

• From Web Services to CPR nets
• Open CPR nets and Contexts
• Saturated Semantics for OCPR nets
• Conclusions (and example)

Open CPR nets
i

f

BC

A

Open CPR net
=

CPR net
+

Outer
Interface

Open CPR nets
i

f

BC

A

Initial Place
(no incoming
 transitions) Open CPR net

=
CPR net

+
Outer

Interface

Open CPR nets
i

f

BC

A

Final Place
(no outgoing
 transitions)

Initial Place
(no incoming
 transitions) Open CPR net

=
CPR net

+
Outer

Interface

Open CPR nets
i

f

BC

A

Open
Data Places

Final Place
(no outgoing
 transitions)

Initial Place
(no incoming
 transitions) Open CPR net

=
CPR net

+
Outer

Interface

CPR-Contexts

A
C
B

i

f

i

f

D

Inner Interface
•no outgoing arc into i
•no incoming arc into f

Outer Interface

Inserting nets into contexts

A
C
B

i

f

i

f

D

i

f

A

B

C

Inserting nets into contexts

A
C
B

i

f

i

f

D

Inserting nets into contexts

i

f

D

Contexts as Category of Cospans
O C J

Inner interfaceOuter interface
Net

Composition of Cospans

O C JJ N 0

Inner interface
is the empty set

∅

Composition of Cospans

O C JJ N 0

C +J N
PO

Inner interface
is the empty set

∅

Plan of the talk

• From Web Services to CPR nets
• Open CPR nets and Contexts
• Saturated Semantics for CPR nets
• Conclusions (and example)

Motivations

• Incremental development of services
• Matching of (composition of) services
• Publishing of services
• Replacing of services

WEAK & COMPOSITIONAL

Basic Observations

i

f

A
C

B

Given an Open CPR net N,
and a marking m,

Obs(N,m) =
tokens in the open places

Saturated Bisimulation
i

f

A
C
B

i

f

A
C
B

N,m N’,m’

Obs(N,m) = Obs(N’,m’)

R

A
C
B

i

f

CA
C
B

i

f

C
Saturated Bisimulation

i

f

A
C
B

i

f

A
C
B

N,m N’,m’

A
CB

i

f
C

Obs(N,m) = Obs(N’,m’)

R

∀

A
C
B

i

f

CA
C
B

i

f

C
Saturated Bisimulation

i

f

A
C
B

i

f

A
C
B

N,m N’,m’

C[N],o C[N’],o’
A
CB

i

f
C

Obs(N,m) = Obs(N’,m’)

R

R∀

Interactive Semantics

i

f

A

B

C
Tokens can be
added and/or

removed
from open places

From reduction semantics (firing) we derive a LTS

Labels model
the interactions

of the net
with the environment

Interactive Semantics

+i
i

f

A

B

C

From reduction semantics (firing) we derive a LTS

Tokens can be
added and/or

removed
from open places

Interactive Semantics

+i

τ

i

f

A

B

C
Tokens can be
added and/or

removed
from open places

From reduction semantics (firing) we derive a LTS

Interactive Semantics

+i

+C

τ

i

f

A

B

C
Tokens can be
added and/or

removed
from open places

From reduction semantics (firing) we derive a LTS

Interactive Semantics

+i

+C

τ

i

f

A

B

C
Tokens can be
added and/or

removed
from open places

From reduction semantics (firing) we derive a LTS

Interactive Semantics

+i

-f

+C

τ

i

f

A

B

C
Tokens can be
added and/or

removed
from open places

From reduction semantics (firing) we derive a LTS

Weak Bisimulation
i

f

A
C
B

i

f

A
C
B

N,m N’,m’

Obs(N,m) = Obs(N’,m’)

R
+i, -f, +C

N,o N’,o’R

+i, -f, +C

Weak Bisimulation
i

f

A
C
B

i

f

A
C
B

N,m N’,m’

Obs(N,m) = Obs(N’,m’)

R
τ

N,o N’,o’R

τ

Conclusions

Weak Bisimilarity
coincides with

Saturated Bisimilarity
It is
1. Weak (wrt internal transitions)
2. Compositional (congruence)
3. Computable (data persistency)

Plan of the talk

• From Web Services to CPR nets
• Open CPR nets and Contexts
• Saturated Semantics for CPR nets
• Conclusions (and example)

Ongoing work

• So far...
– A tool for mapping an OWS-L service model

specification into an OCPR net
– A straightforward adaptation of the algorithm

for the verification of weak bisimularity
• Forthcoming...

– A better adaptation of the verification algorithm
– A generalization to other classes of nets

equivalent nets...

• the two net encodings (the service and its
public specification) are equivalent, after
removing private names from open places

equivalent nets...

• the two net encodings (the service and its
public specification) are equivalent, after
removing private names from open places

• the two sub-nets are equivalent, after
removing the additional names [hence, the
new one can be safely plugged in...]

