Logics for Traces

Christian Kissig, Alexander Kurz

Sierra Nevada, January 22, 2008

(Non-Deterministic) Labelled Transition Systems

Definition (Labelled Transition Systems)

A Labelled Transition System [LTS] is a tuple

$$\langle N, \Sigma, R \subseteq N \times \Sigma \times N \rangle$$

consisting of

- ► a set *N* of **nodes**
- a set Σ of labels
- ▶ a relation $R \subseteq N \times \Sigma \times N$

Traces for LTS

[R.V.Glabbeek, "The Linear Time-Branching-Spectrum"]

Traces for LTS

▶ finite traces from x: {ab}

[R.V.Glabbeek, "The Linear Time-Branching-Spectrum"]

Traces for LTS

- ▶ finite traces from x: {ab}
- ▶ infinite traces from x: {bababab···}

[R.V.Glabbeek, "The Linear Time-Branching-Spectrum"]

Bisimulation vs Trace Equivalence for LTS (1)

Bisimulation vs Trace Equivalence for LTS (2)

Coalgebras

Let $\mathcal T$ be a **monad** and $\mathcal F$ an **endofunctor** on $\mathcal Set$ and let X be a set.

Definition (Coalgebras)

A $T\mathcal{F}$ -coalgebra c with carrier X is a map $c: X \to T\mathcal{F}X$.

Coalgebras

Let $\mathcal T$ be a **monad** and $\mathcal F$ an **endofunctor** on $\mathcal Set$ and let X be a set.

Definition (Coalgebras)

A $T\mathcal{F}$ -coalgebra c with carrier X is a map $c: X \to T\mathcal{F}X$.

We understand

- T as the branching type
- $ightharpoonup \mathcal{F}$ as the **transition** type
- [B. Jacobs, "Introduction to Coalgebra. Towards mathematics of states and observations."]

Examples for Coalgebras

- ▶ Non-Deterministic LTS: T = P, $F = 1 + \Sigma \times (-)$
- ▶ Probabilistic LTS: $\mathcal{T} = \mathcal{D}$, $\mathcal{F} = 1 + \Sigma \times (-)$
- ▶ LTS with Termination and Deadlock: $\mathcal{T} = 1 + (-)$, $\mathcal{F} = 1 + \Sigma \times (-)$
- ▶ Context-free Grammars: $\mathcal{T} = \mathcal{P}$, $\mathcal{F} = ((-) + \Sigma)^*$

The Kleisli-Category, syntactically

Given a monad $\langle \mathcal{T}, \mu, \eta \rangle$, we define the Kleisli-Category $\mathit{KI}(\mathcal{T})$ over Set :

- ▶ objects X in KI(T) are objects X over Set
- ▶ arrows $X \stackrel{f}{\longrightarrow} Y$ in KI(T) are arrows $X \stackrel{f}{\longrightarrow} T(Y)$ in Set
- ▶ the composition $X \xrightarrow{f} Y \xrightarrow{g} Z$ in KI(T) is the composition $X \xrightarrow{f} T(Y) \xrightarrow{Tg} TT(Z) \xrightarrow{\mu_Z} TZ$ in Set

Distributive Laws

Definition (Distributive Laws)

A distributive law π for a monad $\langle \mathcal{T}, \mu, \eta \rangle$ and a functor \mathcal{F} is a natural transformation $\pi: \mathcal{F}\mathcal{T} \Rightarrow \mathcal{T}\mathcal{F}$ which is compatible with the monad structure :

Distributive Laws

Definition (Distributive Laws)

A distributive law π for a monad $\langle \mathcal{T}, \mu, \eta \rangle$ and a functor \mathcal{F} is a natural transformation $\pi: \mathcal{FT} \Rightarrow \mathcal{TF}$ which is compatible with the monad structure :

Provided a **distributive law** $\pi: \mathcal{FT} \Rightarrow \mathcal{TF}$, there is a **lifting** $\overline{\mathcal{F}}$ of the functor \mathcal{F} to $\mathcal{K}I(\mathcal{T})$

- $ightharpoonup \overline{\mathcal{F}}: X \mapsto \mathcal{F}X$
- $\triangleright \overline{\mathcal{F}}: X \xrightarrow{f} Y \mapsto \overline{\mathcal{F}}X \xrightarrow{\pi_Y \circ \mathcal{F}f} \overline{\mathcal{F}}Y$

▶ if \mathcal{F} preserves ω -colimits, the initial sequence in $\mathcal{S}et$ yields the initial \mathcal{F} -algebra in $\mathcal{S}et$.

- ▶ if \mathcal{F} preserves ω -colimits, the initial sequence in $\mathcal{S}et$ yields the initial \mathcal{F} -algebra in $\mathcal{S}et$.
- ▶ provided a distributive law, the initial sequence can be lifted to $KI(\mathcal{T})$ and yields the **initial** $\overline{\mathcal{F}}$ -algebra $\alpha: \overline{\mathcal{F}}A \stackrel{\cong}{\longrightarrow} A$ in $KI(\mathcal{T})$.

- if \mathcal{F} preserves ω -colimits, the initial sequence in $\mathcal{S}et$ yields the initial \mathcal{F} -algebra in $\mathcal{S}et$.
- ▶ provided a distributive law, the initial sequence can be lifted to $KI(\mathcal{T})$ and yields the **initial** $\overline{\mathcal{F}}$ -algebra $\alpha : \overline{\mathcal{F}}A \stackrel{\cong}{\longrightarrow} A$ in $KI(\mathcal{T})$.
- (Smyth, Plotkin) if
 - ▶ the Kleisli-category is DCPO_⊥-enriched with composition left-strict and
 - $ightharpoonup \overline{\mathcal{F}}$ is locally monotone

the initial $\overline{\mathcal{F}}$ -algebra coincides with the **final** $\overline{\mathcal{F}}$ -**coalgebra** $\zeta: \overline{\mathcal{F}}Z \stackrel{\cong}{\longrightarrow} Z$

- ▶ if \mathcal{F} preserves ω -colimits, the initial sequence in $\mathcal{S}et$ yields the initial \mathcal{F} -algebra in $\mathcal{S}et$.
- ▶ provided a distributive law, the initial sequence can be lifted to $KI(\mathcal{T})$ and yields the **initial** $\overline{\mathcal{F}}$ -algebra $\alpha: \overline{\mathcal{F}}A \stackrel{\cong}{\longrightarrow} A$ in $KI(\mathcal{T})$.
- (Smyth, Plotkin) if
 - \blacktriangleright the Kleisli-category is $DCPO_{\perp}$ -enriched with composition left-strict and
 - $ightharpoonup \overline{\mathcal{F}}$ is locally monotone

the initial $\overline{\mathcal{F}}$ -algebra coincides with the **final** $\overline{\mathcal{F}}$ -**coalgebra** $\zeta: \overline{\mathcal{F}}Z \stackrel{\cong}{\longrightarrow} Z$

• we obtain for any $\overline{\mathcal{F}}$ -coalgebra c in $\mathit{KI}(\mathcal{T})$ the **trace map** tr_c into ζ

[Hasuo, Jacobs, Sokolova, "Generic Trace Theory"]

Logic for Traces: Syntax

From now on let T = P.

Logic for Traces: Syntax

From now on let T = P.

Definition (Syntax)

- ightharpoonup Fma₀ = \emptyset
- $ightharpoonup Fma_{n+1} = [\mathcal{F}Fma_n]_{\perp,\vee}$
- $ightharpoonup Fma = \bigcup_{n < \omega} Fma_n$

Logic for Traces: Syntax

From now on let T = P.

Definition (Syntax)

- ightharpoonup Fma₀ = \emptyset
- $ightharpoonup Fma_{n+1} = [\mathcal{F}Fma_n]_{\perp,\vee}$
- $ightharpoonup Fma = \bigcup_{n < \omega} Fma_n$

Concretely, for $\mathcal{F}=1+\Sigma imes(-)$ where $1=\{\checkmark\}$ and $a,b\in\Sigma$,

- ightharpoonup Fma₀ = \emptyset
- ightharpoonup Fma₁ = $\{\bot, \checkmark, \checkmark \lor \checkmark, \cdots\}$
- ► $Fma_2 = \{\bot, \checkmark, \checkmark \lor \checkmark, \cdots, (a, \checkmark), \cdots, (b, \checkmark), \cdots, (a, \checkmark) \lor (b, \checkmark), \cdots\}$
- **.** . . .

Logic for Traces: Semantics

Definition (Modality for \mathcal{P})

Define a modality $\lambda: 2^{(-)} \Rightarrow 2^{\mathcal{P}(-)}$ by

$$\lambda_Y(Y' \subseteq Y) := \{Y'' \subseteq Y \mid Y' \cap Y'' \neq \emptyset\}$$
 for all sets Y .

Logic for Traces: Semantics

Definition (Modality for \mathcal{P})

Define a modality $\lambda: 2^{(-)} \Rightarrow 2^{\mathcal{P}(-)}$ by $\lambda_Y(Y' \subseteq Y) := \{Y'' \subseteq Y \mid Y' \cap Y'' \neq \emptyset\}$ for all sets Y.

Definition (Semantics)

Let c be a $\overline{\mathcal{F}}$ -coalgebra with carrier X in $KI(\mathcal{T})$, then for all $x \in X$,

- $\triangleright x \not\Vdash_c \bot$
- \triangleright $x \Vdash_c \phi \lor \psi$ iff $x \Vdash_c \phi$ or $x \Vdash_c \psi$
- ▶ $x \Vdash_c \nabla \phi$ iff $\exists x' \in c(x).x'(\overline{\mathcal{F}} \Vdash_c)\phi$, i.e. iff $x \in c^- \circ \lambda_{\mathcal{F}X}((\overline{\mathcal{F}} \Vdash_c)[\phi])$

Expressivity

Theorem

The proposed logic does not distinguish between trace-equivalent states.

For all \mathcal{PF} -coalgebras $c: X \to \mathcal{PF}X$ and points $x, y \in X$, if $tr_c(x) = tr_c(y)$ then $x \Vdash_c \phi$ iff $y \Vdash_c \phi$ for all $\phi \in Fma$.

Conclusions

Work in Progress:

- more boolean operators
- lacktriangleright more monads ${\mathcal T}$
- more expressive modalities for T

Interesting (for me):

- axiomatisation of trace logics
- infinite traces

Conclusions

¡muchas gracias!