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Context

Biological regulatory networks (BRN) :

genes or derived products as proteins interact with others such
that cell behaviours are regulated

Goal :
Understanding the functioning of biological regulatory networks
in order to predict some knowledge about behaviours

Motivation:
• Focusing on an isolated part of the global system,

perceived as having a particular biological function
• and studying in which cases properties of biological

regulatory networks are preserved.



Qualitative modeling frameworks for BRN

multivalued discrete approach developed by R. Thomas:

• constituent concentrations are abstracted by integers to
denote thresholds from which they can act on other
constituents

• biological systems are described by an interaction graph
defining the static part

• a huge but finite set of state transition graphs defining all
the possible dynamics, or models.

• discretization preserves qualitative biological
observations/experiments expressed as temporal
properties



Decomposing BRN as sub-BRNs expressing
biological functions

• As expected, model-checking technics are efficient to
study small BRNs, but cannot cope with large BRNs.

• In practice, biologists study small BRNs, of particular
importance w.r.t a biological function.

• Interactions between BRNs are studied afterwards,
whether properties of sub-BRNs are preserved or not.



The general ideal

Following an institution-like approach, we provide a logic to
characterize dynamic of BRNs
• Syntax

Signatures are interaction graphs
Sentences are CTL-X formulas
(Computational Tree Logic without the neXt
temporal operator)

• Semantics
Models are a particular sub-class of state
transition systems
Satisfaction relation is the usual one for CTL

and we establish the satisfaction condition with some restricted
conditions on the embedding of a BRN within an other one.



Reminder : institutions

Definition
An institution I = (Sig,Sen,Mod , |=) consists of

• a category Sig of signatures,
• a functor Sen : Sig → Set giving for each signature Σ a

set, element of sentences,
• a contravariant functor Mod : Sigop → Cat giving for each

signature Σ a category of Σ-models
• a |Sig|-indexed family of satisfaction relations
|=Σ⊆ |Mod(Σ)| × Sen(Σ)

such that the satisfaction condition holds:
∀σ : Σ→ Σ′, ∀M′ ∈ |Mod(Σ′)|, ∀ϕ ∈ Sen(Σ),

M′ |=Σ′ Sen(σ)(ϕ)⇔ Mod(σ)(M′) |=Σ ϕ



Biological Regulatory Network

Biological regulatory graph : Example
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• Vertex = genes
• Edges = interactions (activation or inhibition)
• Labels ={

Sn : Sign ((+) for activation, (−) for inhibition)
Th : Threshold (interaction level)



Signatures

A BRN-signature is a labeled directed graph
G =< V ,F ,Sn,Th > where :

1 V is a finite set of variables.
2 F ⊆ V × V denotes the set of edges.

For any i ∈ V , G+
i , resp. G−i , denotes the set of

successors, resp. predecessors, of i in < V ,F >.
3 Sn is a mapping from F to {+,−}.
4 Th is a mapping from F to N∗ such that:

∀i ∈ V , ∀j ∈ G+
i ,Th(i , j) = c∧c 6= 1⇒ ∃k ∈ G+

i : Th(i , k) = c−1



Models:state space

Dynamic behaviors = traces associating at each time to each
gene its concentration level.
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We know that xcI ∈ {0,1} and xcro ∈ {0,1,2}

The state space SG of G =< V ,F ,Sn,Th > is the set of
mappings s : V → N s.t. ∀i ∈ V , s(i) ∈ {0, . . . ,bi}.

with bi = |{s ∈ N∗ | ∃j ∈ G+
i ,Th(i , j) = s}|



Models:resources

The concentration level of i ∈ V evolves over time depending
on concentration levels of its resources, i.e. i ’s predecessors
having reached a concentration level to affect i ’s one:

RG,i(s) =


{j ∈ G−i |(Sn(j , i) = + and s(j) ≥ Th(j , i))}

∪
{j ∈ G−i |(Sn(j , i) = − and s(j) < Th(j , i))}

Resources
cI cro RG,cI RG,cro
0 0 {cro} {cI, cro}
0 1 ∅ {cI, cro}
0 2 ∅ {cI}
1 0 {cI, cro} {cro}
1 1 {cI} {cro}
1 2 {cI} ∅

Graph
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Hence, a resource is the presence
of an activator or the absence of an
inhibitor.



Models

• No indication in the signature to decide the concentration
level that i can reach.

• This degree of freedom gives rise to a class of possible
G-models, so-called dynamics of G.

Let κ = {(i ,w) | i ∈ V ∧ w ⊆ G−i } be the set of all subsets of
predecessors in G for i ∈ V .

A G-model is a mapping p : κ→ N s. t.:
∀i ∈ V ,p((i , ∅)) = 0 ∧ (∀(i ,w 6= ∅) ∈ κ, p((i ,w)) ∈ {0, . . . ,bi}).



Models: asynchoneous transition system (AST)

Since in the nature, several variables cannot cross a threshold
simultaneously, we make evolve one variable i by one unit in
the direction its concentration level specified by p.

The asynchronous transition system generated from p is a
directed graph GTA((G,p)) =< SG,T > s.t.:
• ∀s ∈ SG, (s, s) ∈ T ⇔ ∀i ∈ V , s(i) = p((i ,RG,i(s)))

• ∀s 6= s′ ∈ SG, (s, s′) ∈ T iff:
• there exists i ∈ V , s.t.

s′(i) =

{
s(i) + 1 and s(i) < p((i ,RG,i (s)))
s(i) - 1 and s(i) > p((i ,RG,i (s)))

• and s′(j) = s(j) for every j ∈ V \ {i}.



Models:Example

Graph
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Resources and a model

cI cro RG,cI pcI RG,cro pcro

0 0 {cro} 1 {cI, cro} 2
0 1 ∅ 0 {cI, cro} 2
0 2 ∅ 0 {cI} 1
1 0 {cI, cro} 1 {cro} 1
1 1 {cI} 1 {cro} 1
1 2 {cI} 1 ∅ 0

Asynchroneous model

xcI xcro
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Sentences Sen(G)

Sentences are CTL-X formulas whose atomic formulas are
comparisons between a concentration level of a variable with
some threshold values.

• Atomic formulas are of the form (i ∼ s) where i ∈ V ,
s ∈ {0, . . . ,bi} and ∼∈ {=, <,>}.

• Formulas are of the form:

ATOM | For ⇒ For | For ∧ For | For ∨ For | ¬For
AG For |EG For |AF For |EF For | A[For U For ] | E [For U For ]

A (for All path), E (there exists one path), F(there exists
one state in the path), G (for all states in the path), U (until).

i ≥ s (resp. i ≤ s) will denote i = s ∨ i > s (resp. i = s ∨ i < s).



Satisfaction relation

Satisfaction relation between models and sentences for BRN is
derived form the usual one between transition systems and
CTL-X formulas.

For a model p with GTA((G,p)) as associated AST:

p |=G ϕ⇔ GTA((G,p)) |= ϕ

with for s ∈ SG,

L(s) = {i > l , i < l ′, i = l ′′ | i ∈ V , l , l ′, l ′′ ∈ {0,1, . . . ,bi},
s(i) > l , s(i) < l ′, s(i) = l ′′

}
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|= xcI = 1 ∧ xcro = 0⇒ EG(xcI = 1)



Embedding : motivation and objectives

Biologists study small BRNs viewed as a biologic function.
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Embedding

• Embedding = inclusion of a graph G in a graph G′

• Embedding preserves genes, interactions, and order
between thresholds in relation to each gene.

Effect : Shifting the thresholds

Example
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Signature embedding

G =< V ,F ,Sn,Th > and G′ =< V ′,F ′,Sn′,Th′ > signatures.

An embedding G→ G′ is an injective mapping σ : V → V ′ s.t.:

1 ∀i , j ∈ V , (i , j) ∈ F ⇔ (σ(i), σ(j)) ∈ F ′

2 ∀i , j ∈ V , (i , j) ∈ F ,Sn(i , j) = Sn′(σ(i), σ(j))

3 ∀i ∈ V , ∀j , k ∈ G+
i ,

Th(i , j) = Th(i , k)⇔ Th′(σ(i), σ(j)) = Th′(σ(i), σ(k))

4 ∀i ∈ V , ∀j , k ∈ G+
i ,

Th(i , j) < Th(i , k)⇔ Th′(σ(i), σ(j)) < Th′(σ(i), σ(k))

5 ∀j ∈ V , ∀k ′ ∈ V ′,
(k ′, σ(j)) ∈ F ′ ⇒ ∃i ∈ V , (i , j) ∈ F ∧ σ(i) = k ′



Translation of formulas along signature embedding
σ : g → G

Idea : Translating a threshold into an interval of values.
Notation: σg1(0) = 0 and

for l 6= 0, σg1(l) = ThG(g1,g2) for g2 s.t. Thg(g1,g2) = l ,
Example σcI(1) = 2

• For all (i = l), Sen(σ)(xg = l) = xg ≥ σg(l) ∧ xg < σg(l + 1)

• For all (i > l), Sen(σ)(xg > l) = xg ≥ σg(l + 1)

• For all (i < l), Sen(σ)(xg < l) = xg < σg(l + 1)

• Other symbols are handled as usual

Example
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Sen(σ)(AG(xcro = 1)) = AG(1 ≤ xcro < 3)



Reduced model along a signature embedding
σ : G→ G′

The reduction of a model along a signature embedding is
defined up to some restrictions on thresholds.

Given a signature embedding σ : G→ G′ and a G′-model p′,
the reduced G-model from p′ denoted p′|σ is defined as follows:
∀(i ,w) ∈ κ,

p′|σ((i ,w)) =


Th(i , j) if ∃j ∈ V ,

Th′(σ(i), σ(j)) = max(i,k)∈F{Th′(σ(i), σ(k)) |
Th′(σ(i), σ(k)) ≤ p′((σ(i), σ(w)))}

0 otherwise



Preservation result

CTL-X formulas are preserved through embedding of biological
regulatory networks.

Theorem
For σ : G→ G′ embedding, p′ G′-model and ϕ ∈ Sen(G),

p′ |= σ(ϕ) ⇐⇒ p′|σ |= ϕ



Sketch of the proof

Let us consider σ : G→ G′,
p′ a G′-model,
(SG′ ,T ′) = GTA((G′,p′)) its associated ATS
ϕ ∈ Sen(G).

Let us define a partition of the state space of GTA((G′,p′)),
taking into account shifting of thresholds through the
embedding σ.
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Sketch of the proof

Let us define the mapping B : SG → 2SG′ as follows:
∀s ∈ SG, B(s) ⊆ SG′ verifying: s′ ∈ B(s) if for every i in V :
• if s(i) = 0, then s′(σ(i)) ≥ 0 and

s′(σ(i)) < min(i,k)∈F{Th′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > 0}
• otherwise, let j be any variable in G+

i s.t. s(i) = Th(i , j)
then s′(σ(i)) ≥ Th′(σ(i), σ(j)) and
s′(σ(i)) < min(i,k)∈F{Th′(σ(i), σ(k)) | Th′(σ(i), σ(k)) >
Th′(σ(i), σ(j))}

Proposition 1
The mapping B makes a partition of SG′ , i.e.

1 ∀s, s′ ∈ S, B(s) ∩ B(s′) = ∅, and
2
⋃

s∈SG
Bs = SG′ .



Sketch of the proof

A binary relation R is called a divergence blind stuttering (dbs)
relation iff it is symmetric and

r R s ⇐⇒


L(r) = L(s)
(r , r ′) ∈ T ⇒ ∃s0, s1, . . . , sn finite path ,n ≥ 0, (s0 = s)

∧(∀i < n, r R si) ∧ r ′ R sn

The largest dbs relation is an equivalence relation noted 'dbs.

Proposition 2
Note P = {B(s)|s ∈ SG}. Then, we have:

P is a dbs equivalence.



Sketch of the proof

Preliminary
The quotient of a transition system (S,T ) by 'dbs is denoted
(S,T )/'dbs

.
The equivalence relation 'dbs preserves CTL-X formulas, i.e.
(S,T ) and (S,T )/'dbs

satisfy the same formulas.

Proposition 3
(SG′ ,T ′)/'dbs

and GTA(G,p′|σ) are isomorphic.



Sketch of the proof:illustration
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Sketch of the proof:illustration
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Counter-example: necessity of restrictive conditions
on signature embeddings

a b1,−
1,−

a1,−

resource ω pa
∅ 0
{a} 1

resource ω′ p′a p′b
∅ 0 0
{a} 1
{b} 1
{a, b} 1

resource ω′ p′|σ a
∅ 0
{a} 1

(0) (1) (0) (1)(0,1) (1,1)

(0,0) (1,0)

AG(AF (a = 0)) is satisfied by p′|σ but not by p′.



Conclusion

• Result :
• Preservation of properties along simple embedding of

biological regulatory networks:
no new entering edge when embedding a network within a
larger one

• discrete models for BRN modelled as an institution

• Current work : Investigation of some other loose conditions
about property preservation for BRN

• Future work : BRN as an application domain to study
complex systems.
A system is considered as complex according to the fact
that properties of sub-systems are not preserverd at the
level of the global system.


