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Context

Biological regulatory networks (BRN) :

genes or derived products as proteins interact with others such
that cell behaviours are regulated

Goal :
Understanding the functioning of biological regulatory networks
in order to predict some knowledge about behaviours

Motivation:

e Focusing on an isolated part of the global system,
perceived as having a particular biological function

e and studying in which cases properties of biological
regulatory networks are preserved.



Qualitative modeling frameworks for BRN

multivalued discrete approach developed by R. Thomas:

e constituent concentrations are abstracted by integers to
denote thresholds from which they can act on other
constituents

e biological systems are described by an interaction graph
defining the static part

¢ a huge but finite set of state transition graphs defining all
the possible dynamics, or models.

¢ discretization preserves qualitative biological

observations/experiments expressed as temporal
properties



Decomposing BRN as sub-BRNs expressing
biological functions

e As expected, model-checking technics are efficient to
study small BRNs, but cannot cope with large BRNs.

e In practice, biologists study small BRNSs, of particular
importance w.r.t a biological function.

e Interactions between BRNs are studied afterwards,
whether properties of sub-BRNs are preserved or not.



The general ideal

Following an institution-like approach, we provide a logic to
characterize dynamic of BRNs
e Syntax
Signatures are interaction graphs
Sentences are CTL-X formulas
(Computational Tree Logic without the neXt
temporal operator)
e Semantics
Models are a particular sub-class of state
transition systems
Satisfaction relation is the usual one for CTL
and we establish the satisfaction condition with some restricted
conditions on the embedding of a BRN within an other one.



Reminder : institutions

Definition
An institution Z = (Sig, Sen, Mod, |=) consists of
e a category Sig of signatures,

e a functor Sen: Sig — Set giving for each signature X a
set, element of sentences,

e a contravariant functor Mod : Sig°? — Cat giving for each
signature ¥ a category of X-models

¢ a |Sig|-indexed family of satisfaction relations
EsC |Mod(%)| x Sen(X)
such that the satisfaction condition holds:
Vo:X — Y, VM €|Mod(Y)|, Ve € Sen(X),

M’ s Sen(o)(¢) ¢ Mod(o)(M') Ex ¢



Biological Regulatory Network

Biological regulatory graph : Example

e Vertex = genes
e Edges = interactions (activation or inhibition)

e Labels =
Sn : Sign ((+) for activation, (—) for inhibition)
Th : Threshold (interaction level)



Signatures

A BRN-signature is a labeled directed graph
G=< V,F,Sn, Th > where :

© V is a finite set of variables.

® F C V x V denotes the set of edges.
Foranyie V, G,?L, resp. G; , denotes the set of
successors, resp. predecessors, of iin < V, F >.

©® Snis a mapping from F to {+, —}.
@O This a mapping from F to N* such that:

Vie V,¥j e G, Th(i,j) = crc #1 = Tk € G : Th(i, k) = c—1



Models:state space

Dynamic behaviors = traces associating at each time to each
gene its concentration level.
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We know that x;; € {0,1} and x¢, € {0,1,2}

The state space Sg of G =< V, F, Sn, Th > is the set of
mappings s: V — Ns.t. Vie V,s(i) € {0,..., b}.

with b; = |{s € N* | 3j € G, Th(i,j) = s}|



Models:resources

The concentration level of i € V evolves over time depending
on concentration levels of its resources, i.e. i’s predecessors
having reached a concentration level to affect i’s one:

{j € G/|(Sn(j, i) = + and s(j) > Th(j, 1))}
Rg,i(s) = { U
{j € G/|(Sn(j,i) = — and s(j) < Th(j, 1))}

Resources Graph
cl | cro Rgel | Racro
0 0 {cro} | {cl, cro} -
ol 1 0 | {cl, cro} 5 . (=)
0 2 1] {ch}
1 0 | {cl,cro} {cro} Hence, a resource is the presence
1 1 {ch} {cro} of an activator or the absence of an
1] 2 {ch} 0 inhibitor.




Models

¢ No indication in the signature to decide the concentration
level that i can reach.
¢ This degree of freedom gives rise to a class of possible
G-models, so-called dynamics of G.
Letx = {(i,w) | ie VAwC G} be the set of all subsets of
predecessors in Gforie V.

A G-modelisamapping p: k — Ns. t.
vie V,p((i,0)) =0 A (V(i,w #0) € s, p((i,w)) € {0,....bi}).



Models: asynchoneous transition system (AST)

Since in the nature, several variables cannot cross a threshold
simultaneously, we make evolve one variable / by one unit in
the direction its concentration level specified by p.

The asynchronous transition system generated from p is a
directed graph GTA((G,p)) =< Sg, T > s.t.:

° Vse 867 (37 S) eTeVieV, S(I) = p((la RG,/(S)))
e Vs#£5 € 8Sg, (s,8) e T iff:
e there exists i € V, s.t.

oo [ s(i) +1and s(i) < p((i, Rg.i(s)))
S(’)—{s(i)-ﬂ and s(i) > p((1. A (5))

e and s'(j) = s(j) forevery j € V\ {i}.



Models:Example

Graph
Resources and a model Asynchroneous model
cl | cro R P R P (00) =
G,cl cl G,cro cro
0 0 {cro} 1 | {cl, cro} 2 ! l
0 1 01 0| {cl cro} 2
0| 2 0| o {ch 1
1] o {clcrop | 1 {cro} | 1
1 1 {cl} 1 {cro} 1
1] 2|  feh| 1 0| o




Sentences Sen(G)

Sentences are CTL-X formulas whose atomic formulas are
comparisons between a concentration level of a variable with
some threshold values.

e Atomic formulas are of the form (i ~ s) where j € V,
s€{0,....bj} and ~c {=,<,>}.
e Formulas are of the form:

ATOM | For = For | For A For | For v For | —=For
AG For |EG For |AF For |EF For | A[For U For] | E[For U For]

A (for All path), E (there exists one path), F(there exists
one state in the path), G (for all states in the path), U (until).

i>s(resp. i < s)willdenote i=sVi>s(resp. i=sVi<s).



Satisfaction relation

Satisfaction relation between models and sentences for BRN is
derived form the usual one between transition systems and
CTL-X formulas.

For a model p with GTA((G, p)) as associated AST:

p =g e < GTA((G.p)) E ¢
with for s € Sg,

Lis)y={i>Li</li=1"]

ieV,III"e{01,..., }}
s(iy > I,s(i)y < I',s(i)y=1"

Xe) =1 AXero=0= EG(x;=1)

=] o
= =



Embedding : motivation and objectives

Biologists study small BRNs viewed as a biologic function.
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Embedding

e Embedding = inclusion of a graph G in a graph G’

e Embedding preserves genes, interactions, and order
between thresholds in relation to each gene.

Effect : Shifting the thresholds
Example

!



Signature embedding

G=<V,F,Sn,Th>and G =< V', F',Sn’, TH > signatures.
An embedding G — G’ is an injective mapping o : V — V' s.t.:

O VijeV,(ij)eF = (a(i), (f))GF'
@ Vi,je V,(i,j) € F,Sn(i,j) = Sn'(a(i), o ()))
@ Vvie V.Vj ke G,

Th(i,j) = Th(i, k) < TH (o(i),o(j)) = TH (o(i), o(k))
O viec V.V, keG,

Th(i,j) < Th(i,k) < TH (o(i),o(j)) < TH (o (i), o(k))
@vjcV, vk eV,

(K',o()) e FF=3ie V, (i,j)e FANo(i)=K



Translation of formulas along signature embedding
c:9g— @G
Idea : Translating a threshold into an interval of values.

Notation: og,(0) = 0 and

for I # 0, og, (1) = Thg(g1, g2) for go s.t. Thy(g1,92) =1,
Example o¢(1) =2

e Forall (i=1), Sen(c)(xg =1) = xg > og(I) N Xg < og(/ + 1)
e Forall (i > 1), Sen(c)(xg > 1) = xg > og(/+ 1)

e Forall (i < /), Sen(c)(xg <) =xg < og(l+ 1)

e Other symbols are handled as usual

Example

1 —2
-1 -2
3 O POS OO
—1 —1

Sen(o)(AG(Xcro = 1)) = AG(1 < Xgro < 3)



Reduced model along a signature embedding
c:G— G

The reduction of a model along a signature embedding is
defined up to some restrictions on thresholds.

Given a signature embedding o : G — G’ and a G'-model p/,
the reduced G-model from p’ denoted pl’a is defined as follows:

V(i,w) € &,

Th(i,j) if3jeV,
S TH (o (i), o(j)) = maxgerd TH(o(0)
Pl ({7 w) = T (o). o(k)) < P((o (i), o(w)))

0 otherwise

a(k)) |
}



Preservation result

CTL-X formulas are preserved through embedding of biological
regulatory networks.

Theorem
For o : G — G embedding, p’ G'-model and ¢ € Sen(G),

PEale) <= p, Evy



Sketch of the proof

Let us consider o: G — G,
P’ a G'-model,
(Se, T') = GTA((G', p')) its associated ATS
v € Sen(G).
Let us define a partition of the state space of GTA((G', p')),
taking into account shifting of thresholds through the
embedding o.

(NGO
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Sketch of the proof

Let us define the mapping B : Sg — 25 as follows:
Vs € Sg, B(S) C Sg verifying: s’ € B(s) if for every i in V:
e if s(i) = 0, then s'(o(i)) > 0 and
s'(o (1)) < min jyer{ T (o (i), a(k)) | TH'(a(i),o(k)) > 0}
« otherwise, let j be any variable in G s.t. s(i) = Th(i, )
then s'(a(i)) > TH (o (i), o(j)) and
s/(o(i)) < ming gyer{ TH (o (i), a(K)) | TH (i), o(K)) >
TH (o (i), (7))}
Proposition 1
The mapping B makes a partition of Sg, i.e.
@ vs,s'e S, B(s)nB(s') =1, and
2] USESG Bs = S



Sketch of the proof

A binary relation R is called a divergence blind stuttering (dbs)
relation iff it is symmetric and

L(r) = L(s)
rRs<=< (r,r')eT= 3sy,51,...,5nfinite path,n>0,(sg = 5)
AVi<nrRs)Ar Rsp

The largest dbs relation is an equivalence relation noted ~gps.

Proposition 2

Note P = {B(s)|s € Sg}. Then, we have:
P is a dbs equivalence.



Sketch of the proof

Preliminary

The quotient of a transition system (S, T) by ~,s is denoted
(S, T)/ﬁdbs'

The equivalence relation ~4,s preserves CTL-X formulas, i.e.
(S, T)and (S, T),~,, satisfy the same formulas.

Proposition 3
(Sa's T') /g @nd GTA(G, pl’g) are isomorphic.



Sketch of the proof:illustration
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Sketch of the proof:illustration
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Counter-example: necessity of restrictive conditions
on signature embeddings

GO Seo

resource w” [ pi [ pf, .
resource w | Pa [ 0 0 resource w P,
0 0 {a} 1 [ 0
{a} 1 {b} 1 {a} 1
{a, b} 1

o ) (0,1>r (1 n )
00 | (1 0

AG(AF(a = 0)) is satisfied by p"g but not by p'.



Conclusion

e Result:

e Preservation of properties along simple embedding of
biological regulatory networks:
no new entering edge when embedding a network within a
larger one

o discrete models for BRN modelled as an institution

e Current work : Investigation of some other loose conditions
about property preservation for BRN

e Future work : BRN as an application domain to study
complex systems.
A system is considered as complex according to the fact
that properties of sub-systems are not preserverd at the
level of the global system.



