Subobject Transformation Systems and Elementary Net Systems

Andrea Corradini

Dipartimento di Informatica, Pisa, Italy
IFIP WG 1.3 - Sierra Nevada, January 17, 2008

Joint work with
Frank Hermann
Paweł Sobocińsk
Technische Universität Berlin, Germany
University of Southampton, UK

Outline

- Motivations
- Subobject Transformation Systems
- Elementary Net Systems as STSs
- Relations among productions in STSs
- From derivation trees of a GTS to an STS
- Analysis of dependencies using relations
- Future perspectives

Motivations

In rule-based computational formalisms, a fundamental ingredient of the theory is the analysis of computations:

- equivalences among computations
- partial order or branching structures (processes, unfoldings)
- Term Rewriting Systems: permutation equivalence
- Petri Nets: processes, unfolding
- Graph Transformation Systems: shift equivalence, processes, unfolding
- Transformation Systems over Adhesive Categories: ...

Motivations (cont'd)

The analysis of computations is based on the analysis of relations among rule occurrences.
Examples:

- conflict, causal dependence between transitions of Petri Nets
- parallel/sequential independence, conflict, asymmetric conflict among productions of GTS
- co-causality, disabling, co-disabling in TS over adhesive categories
Such relations are meaningful on the computation space of a system, sometimes represented as a system satisfying safety and acyclicity constraints (occurrence system).

Motivations (cont'd)

Natural questions arise:

- is conflict the negation of parallel independence?
- how are related conflict and asymmetric conflict?
- which relations can be defined in terms of the others? which ones are primitive?

A systematic study of such relations is missing...
We introduce Subobject Transformation Systems as a formal framework for the analysis of the relations among production occurrences of a DPO system.

Double-pushout rewriting in C

- A rule is a span of mono $q=L \stackrel{\alpha}{\leftarrow} K \xrightarrow{\beta} R$
- A match is an arrow $m: L \rightarrow G$
- Direct derivation $A \xrightarrow{\langle m, q\rangle} B$ if the following double-pushout diagram can be constructed:

Double-pushout rewriting in C

- A rule is a span of mono $q=L \stackrel{\alpha}{\leftarrow} K \xrightarrow{\beta} R$
- A match is an arrow $m: L \rightarrow G$
- Direct derivation $A \stackrel{\langle m, q\rangle}{\longrightarrow} B$ if the following double-pushout diagram can be constructed:

- Theory of DPO originally developed for C = Graph
- Recently generalized to adhesive categories

Adhesive categories

An adhesive category:

- has pullbacks, has pushouts along monos
- pushouts along monos are Van Kampen squares

DPO theory in quasi-adhesive cats

- Parallel and Sequential Independence
- Parallel Productions and Derivations
- Local Church-Rosser and Parallelism Theorem
- Shift Equivalence and Canonical Derivations
- Concurrency Theorem
- Embedding and extensions
- Critical pair lemma
- ...

The category of subobjects

Given category \mathbf{C} and $T \in \mathbf{C}, \operatorname{Sub}(T)$ is the full subcategory of C / T with monos as objects.

Objects: $a: A \hookrightarrow T$, denoted simply as A
Arrows: $f:(a: A \hookrightarrow T) \rightarrow(b: B \mapsto T)$ such that $b \circ f=a$, denoted as $A \subseteq B$, because it is a preorder

The category of subobjects

Given category \mathbf{C} and $T \in \mathbf{C}, \operatorname{Sub}(T)$ is the full subcategory of C / T with monos as objects.

Objects: $a: A \hookrightarrow T$, denoted simply as A
Arrows: $f:(a: A \hookrightarrow T) \rightarrow(b: B \mapsto T)$ such that $b \circ f=a$, denoted as $A \subseteq B$, because it is a preorder

- If C has pullbacks, $\operatorname{Sub}(T)$ has products (intersections)

The category of subobjects

Given category \mathbf{C} and $T \in \mathbf{C}, \operatorname{Sub}(T)$ is the full subcategory of C / T with monos as objects.

Objects: $a: A \hookrightarrow T$, denoted simply as A
Arrows: $f:(a: A \mapsto T) \rightarrow(b: B \mapsto T)$ such that $b \circ f=a$, denoted as $A \subseteq B$, because it is a preorder

- If C is adhesive, $\operatorname{Sub}(T)$ has coproducts (unions), and it is distributive

The category of subobjects

Given category \mathbf{C} and $T \in \mathbf{C}, \operatorname{Sub}(T)$ is the full subcategory of C / T with monos as objects.

Objects: $a: A \hookrightarrow T$, denoted simply as A
Arrows: $f:(a: A \mapsto T) \rightarrow(b: B \mapsto T)$ such that $b \circ f=a$, denoted as $A \subseteq B$, because it is a preorder

- If C is adhesive, $\operatorname{Sub}(T)$ has coproducts (unions), and it is distributive

Note: $\operatorname{Sub}(T)$ is not adhesive!

Representing subobjects with Venn diags.

If $\operatorname{Sub}(T)$ is distributive, the representation of subobjects of T using Venn diagrams is sound.
$A \cap(B \cup C)=\{d, e, f\}=$ $(A \cap B) \cup(A \cap C)$
and
$A \cup(B \cap C)=\{a, d, e, f, g\}=$ $(A \cup B) \cap(A \cup C)$

Note that since $\operatorname{Sub}(T)$ might not be a Boolean lattice, not all "zones" in the diagram correspond to subobjects (e.g., a).

Subobject Transformation System

A Subobject Transformation System (sTs) over an adhesive category \mathbf{C} is $\mathcal{S}=\langle T, P, \pi, S\rangle$, where:

- $T \in \mathbf{C}$ is a type object, P are the production names,
- $\pi: P \rightarrow \mathbf{S u b}(T)^{\leftarrow \rightarrow \rightarrow}$ maps each $p \in P$ to a span $L_{p} \supseteq K_{p} \subseteq R_{p}$ (often denoted $\left\langle L_{p}, K_{p}, R_{p}\right\rangle$)
- $S \in \operatorname{Sub}(T)$ is the start object.

Subobject Transformation System

A Subobject Transformation System (sTs) over an adhesive category \mathbf{C} is $\mathcal{S}=\langle T, P, \pi, S\rangle$, where:

- $T \in \mathbf{C}$ is a type object, P are the production names,
- $\pi: P \rightarrow \mathbf{S u b}(T)^{\leftarrow \rightarrow \rightarrow}$ maps each $p \in P$ to a span $L_{p} \supseteq K_{p} \subseteq R_{p}$ (often denoted $\left\langle L_{p}, K_{p}, R_{p}\right\rangle$)
- $S \in \operatorname{Sub}(T)$ is the start object.

A production $\langle L, K, R\rangle$ is pure if $K=L \cap R$

Direct derivations

Given production $\pi(q)=\langle L, K, R\rangle$ and $G \in \operatorname{Sub}(T)$ such that $L \subseteq G$, there is a direct derivation $G \Rightarrow^{q} G^{\prime}$ if there exists a context $D \in \operatorname{Sub}(T)$ such that:
(i) $L \cup D \cong G ;$
(ii) $L \cap D \cong K$;
(iii) $D \cup R \cong G^{\prime}$;
(iv) $D \cap R \cong K$.

Direct derivations

Given production $\pi(q)=\langle L, K, R\rangle$ and $G \in \operatorname{Sub}(T)$ such that $L \subseteq G$, there is a direct derivation $G \Rightarrow^{q} G^{\prime}$ if there exists a context $D \in \operatorname{Sub}(T)$ such that:
(i) $L \cup D \cong G$;
(iii) $D \cup R \cong G^{\prime}$;
(ii) $L \cap D \cong K$;
(iv) $D \cap R \cong K$.

Diagrammatically...

Direct derivations

Given production $\pi(q)=\langle L, K, R\rangle$ and $G \in \operatorname{Sub}(T)$ such that $L \subseteq G$, there is a direct derivation $G \Rightarrow^{q} G^{\prime}$ if there exists a context $D \in \operatorname{Sub}(T)$ such that:
(i) $L \cup D \cong G$;
(ii) $L \cap D \cong K$;
(iii) $D \cup R \cong G^{\prime}$;
(iv) $D \cap R \cong K$.

Diagrammatically...

Yes, this is a double-pushout, but before that...

Elementary Net Systems

An Elementary Net System (ENs) is $N=\left\langle C, E, F, S_{i n}\right\rangle$ where:

1. C and E are disjoint sets of conditions and events
2. $F \subseteq(C \times E) \cup(E \times C)$ is the flow relation
3. $S_{i n} \subseteq C$ is the initial configuration

As usual, for $x \in C \cup E,{ }^{\bullet} x=\{y \in C \cup E \mid\langle y, x\rangle \in F\}$ $x^{\bullet}=\{y \in C \cup E \mid\langle x, y\rangle \in F\}$

Elementary Net Systems

An Elementary Net System (ENs) is $N=\left\langle C, E, F, S_{i n}\right\rangle$ where:

1. C and E are disjoint sets of conditions and events
2. $F \subseteq(C \times E) \cup(E \times C)$ is the flow relation
3. $S_{\text {in }} \subseteq C$ is the initial configuration

As usual, for $x \in C \cup E,{ }^{\bullet} x=\{y \in C \cup E \mid\langle y, x\rangle \in F\}$ $x^{\bullet}=\{y \in C \cup E \mid\langle x, y\rangle \in F\}$

An event $e \in E$ is enabled at S if

$$
\bullet e \subseteq S \quad \wedge \quad\left(e^{\bullet} \backslash \bullet e\right) \cap S=\varnothing
$$

In this case, e can fire: $S[e\rangle(S \backslash \bullet e) \cup e^{\bullet}$

A sample net

- e_{2} is enabled at $\left\{c_{1}, c_{2}, c_{3}\right\}$:

$$
\bullet_{2} \subseteq\left\{c_{1}, c_{2}, c_{3}\right\} \quad \wedge \quad\left(e_{2} \bullet \bullet \bullet e_{2}\right) \cap\left\{c_{1}, c_{2}, c_{3}\right\}=\varnothing \text {. }
$$

- e_{1} is not enabled at $\left\{c_{1}, c_{2}, c_{3}\right\}$:

$$
\left(e_{1} \bullet \backslash \bullet e_{1}\right) \cap\left\{c_{1}, c_{2}, c_{3}\right\}=\left\{c_{2}\right\} \neq \varnothing .
$$

This is called a contact situation.

ENS as STS, firing as direct derivation

An ens is an sts over Set, where productions have empty interface. The operational behaviour is the same.

ENS as STS, firing as direct derivation

An ens is an sts over Set, where productions have empty interface. The operational behaviour is the same.
Given $N=\left\langle C, E, F, S_{i n}\right\rangle$, consider the sts over Set $\mathcal{S}(N)=\left\langle C, E, \pi_{N}, S_{i n}\right\rangle$, where

$$
\text { for all } e \in E, \pi_{N}(e)=\left(\bullet e \supseteq \varnothing \subseteq e^{\bullet}\right)
$$

Then, $S[e\rangle S^{\prime}$ if and only if $S \Rightarrow^{e} S^{\prime}$.

ENS as STS, firing as direct derivation

An ens is an sts over Set, where productions have empty interface. The operational behaviour is the same.
Given $N=\left\langle C, E, F, S_{i n}\right\rangle$, consider the sts over Set $\mathcal{S}(N)=\left\langle C, E, \pi_{N}, S_{\text {in }}\right\rangle$, where

$$
\text { for all } e \in E, \pi_{N}(e)=\left(\bullet e \supseteq \varnothing e^{\bullet}\right)
$$

Then, $S[e\rangle S^{\prime} \quad$ if and only if $\quad S \Rightarrow^{e} S^{\prime}$.
(\Rightarrow) Let $D \stackrel{\text { def }}{=} S \backslash \bullet e$. Since $\pi_{N}(e)=\left\langle\bullet e, \varnothing, e^{\bullet}\right\rangle$, conditions $(i)-(i v)$ reduce to (i) $S \cong \bullet e \cup(S \backslash \bullet e),(i i) S^{\prime} \cong(S \backslash \bullet e) \cup e^{\bullet},(i i i) \bullet e \cap(S \backslash \bullet e)=\varnothing$, and $(i v)$
$(S \backslash \bullet e) \cap e^{\bullet}=\varnothing$. Now, (i) and (iii) are tautologies, (ii) holds by the definition of firing, and (iv) is equivalent to $S \cap\left(e^{\bullet} \backslash \bullet e\right)=\varnothing$, which is implied by (\dagger).
(\Leftarrow) Let $\left\langle L_{e}, K_{e}, R_{e}\right\rangle \stackrel{\text { def }}{=}\left\langle\bullet e, \varnothing, e^{\bullet}\right\rangle$. The first conjunct of (\dagger) is implied by condition (ii). The second one is equivalent to $S \cap R_{e} \subseteq L_{e}$, which is shown as follows:
$S \cap R_{e} \stackrel{(i)}{\cong}\left(L_{e} \cup D\right) \cap R_{e} \cong\left(L_{e} \cap R_{e}\right) \cup\left(D \cap R_{e}\right) \stackrel{(i v)}{\cong}\left(L_{e} \cap R_{e}\right) \cup K_{e} \subseteq L_{e}$.

ENS as STS, firing as direct derivation

An ens is an sts over Set, where productions have empty interface. The operational behaviour is the same.

Given $N=\left\langle C, E, F, S_{i n}\right\rangle$, consider the sts over Set $\mathcal{S}(N)=\left\langle C, E, \pi_{N}, S_{i n}\right\rangle$, where

$$
\text { for all } e \in E, \pi_{N}(e)=\left(\bullet e \supseteq \varnothing \subseteq e^{\bullet}\right)
$$

Then,

$$
S[e\rangle S^{\prime} \quad \text { if and only if } \quad S \nRightarrow^{e} S^{\prime} .
$$

Interestingly: $S \Rightarrow^{e} S^{\prime} \quad$ implies absence of contact

$$
\left(e^{\bullet} \backslash \bullet e\right) \cap S=\varnothing \quad \equiv \quad\left(R_{e} \backslash L_{e}\right) \cap S=\varnothing \quad \equiv \quad S \cap R_{e} \subseteq L_{e}
$$

A methodological intermezzo...

- Relation between Place/Transitions nets and Graph Transformation Systems well understood, and exploited in several ways:
- concurrent semantics (processes, unfoldings, ...)
- verification based on approximations (Petri graphs)
- from zero-safe nets to transactional GTS

A methodological intermezzo...

- Relation between Place/Transitions nets and Graph Transformation Systems well understood, and exploited in several ways:
- concurrent semantics (processes, unfoldings, ...)
- verification based on approximations (Petri graphs)
- from zero-safe nets to transactional GTS
- Claim:

$$
\frac{\text { GTS }}{\text { P/T nets }}=\frac{\text { STS }}{\text { ENS }}
$$

We start a new research thread: generalize results about ens to arbitrary sts

- analysis of structural properties of systems (contact-freeness, free choice, ...)
- construction of contact-free system by complementation (???)

Back to foundations: a handy lemma

Given \mathbf{C}, adhesive, and $T \in \mathbf{C}$, the following are equivalent:

(1) Square (1) in $\operatorname{Sub}(T)$ is a pushout in C
(2) $B \cap C \cong A$ and $D \cong B \cup C$
(3) $B \cap C \subseteq A$ and $D \subseteq B \cup C$.

This allows one to switch between diagrammatical and set-theoretical notation

Direct derivations as double pushouts

Recall: $G \Rightarrow{ }^{q} G^{\prime}$ if there exists a context $D \in \operatorname{Sub}(T)$ such that:

$$
\begin{array}{lll}
\text { (i) } & L \cup D \cong G ; & \text { (iii) } \quad D \cup R \cong G^{\prime} ; \\
\text { (ii) } & L \cap D \cong K ; & \text { (iv) } \\
D \cap R \cong K .
\end{array}
$$

Then $G \Rightarrow^{q} G^{\prime}$
if and only if

- $G \cap R \subseteq L \in \operatorname{Sub}(T)$ (no contact), and
- there is a D such that (1) and (2) are pushouts in C.

Relations among productions of an STS

The intersection of two productions has nine "disjoint zones".

Two productions are completely independent if their intersection is preserved by both, i.e.,
$\left(L_{1} \cup R_{1}\right) \cap\left(L_{2} \cup R_{2}\right) \subseteq K_{1} \cap K_{2}$

Each zone (but $K K$) determines a certain kind of dependency between the productions. For example, "non-emptiness" of $L L$ means that they are in conflict.

Subobject difference as "regions"

Note that $U \backslash V$ and $U \backslash(U \cap V)$ denote the same zone.

Subobject difference as "regions"

Note that $U \backslash V$ and $U \backslash(U \cap V)$ denote the same zone.

Given subobjects U, V, W such that $W \cap U \subseteq V$, and Z such that $Z \subseteq U \cup V \cup W$, let

$$
(U, V) \equiv(U \cup Z, V \cup W)
$$

A region $U \backslash V$ is an equivalence class $[U, V]$.

Subobject difference as "regions"

Note that $U \backslash V$ and $U \backslash(U \cap V)$ denote the same zone.

Given subobjects U, V, W such that $W \cap U \subseteq V$, and Z such that $Z \subseteq U \cup V \cup W$, let

$$
(U, V) \equiv(U \cup Z, V \cup W)
$$

A region $U \backslash V$ is an equivalence class $[U, V]$.

Region $U \backslash V$ is empty if $U \subseteq V$.

Subobject difference as "regions"

Note that $U \backslash V$ and $U \backslash(U \cap V)$ denote the same zone.

Given subobjects U, V, W such that $W \cap U \subseteq V$, and Z such that $Z \subseteq U \cup V \cup W$, let

$$
(U, V) \equiv(U \cup Z, V \cup W)
$$

A region $U \backslash V$ is an equivalence class $[U, V]$.

Region $U \backslash V$ is empty if $U \subseteq V$.
Useful fact: Given subobjects $U_{1} \supseteq U_{2} \supseteq U_{3}$, region $U_{1} \backslash U_{3}$ is empty if and only if both regions $U_{1} \backslash U_{2}$ and $U_{2} \backslash U_{3}$ are empty.

Regions of the intersection of productions

The basic regions of the intersection are, with $X, Y \in\{L, R\}$:

- $X Y=$ $X_{1} \cap Y_{2} \backslash K_{1} \cup K_{2}$,
- $K X=K_{1} \cap X_{2} \backslash K_{2}$, and
- $X K=X_{1} \cap K_{2} \backslash K_{1}$.

Non-basic regions are for example $R L+R K=R_{1} \cap L_{2} \backslash K_{1}$, and $K L+R K=\left(K_{1} \cap L_{2}\right) \cup\left(K_{2} \cap R_{1}\right) \backslash K_{1} \cap K_{2}$.

The five basic relations

Name	Symbol	Inequation	Diagram in C	Non-empty region
Conflict	$q_{1} \downarrow q_{2}$	$L_{1} \cap L_{2} \nsubseteq K_{1} \cup K_{2}$	$\begin{aligned} \hline \hline K_{1} \cup K_{2} & \longrightarrow L_{1} \cup K_{2} \\ & \\ & \downarrow \mathrm{pO} \\ K_{1} \cup L_{2} & \longrightarrow L_{1} \cup L_{2} \end{aligned}$	LL
Deactivation	$q_{1}<_{d} q_{2}$	$K_{1} \cap L_{2} \nsubseteq K_{2}$		$K L$
Write causality	$q_{1}<_{w c} q_{2}$	$R_{1} \cap L_{2} \nsubseteq K_{1} \cup K_{2}$	$\begin{aligned} & K_{1} \cup K_{2} \longrightarrow R_{1} \cup K_{2} \\ & \\ & \Downarrow \neg \mathrm{PO} \\ & K_{1} \cup L_{2} \\ & \\ & \downarrow R_{1} \cup L_{2} \end{aligned}$	$R L$
Read causality	$q_{1}<_{r c} q_{2}$	$R_{1} \cap K_{2} \nsubseteq K_{1}$		RK
Backward conflict	$q_{1} \bigvee q_{2}$	$R_{1} \cap R_{2} \nsubseteq K_{1} \cup K_{2}$	$\begin{gathered} K_{1} \cup K_{2}>R_{1} \cup K_{2} \\ \\ \downarrow \quad \neg \mathrm{PO} \\ K_{1} \cup R_{2} \end{gathered}>R_{1} \cup R_{2}$	$R R$

Intuitive meaning of relations

Conflict: $q_{1} \wedge q_{2}$ when there is an "item" consumed by both q_{1} and q_{2}
Deactivation: $q_{1}<_{d} q_{2}$ when there is an item preserved by q_{1} and consumed by q_{2}; the firing of q_{2} deactivates
Write causality: $q_{1}<_{w c} q_{2}$ when there is an item produced by q_{1} and consumed by q_{2}
Read causality: $q_{1}<_{r c} q_{2}$ when there is an item produced by q_{1} and preserved by q_{2}
Backwards conflict: $q_{1} \bigvee q_{2}$ when there is an item produced by both q_{1} and q_{2}

Laws on relations

Given production q with $\pi(q)=\langle L, K, R\rangle$, let

$$
q^{\mathrm{op}} \equiv\langle R, K, L\rangle
$$

The following equivalences follow from the definitions:

1. $q_{1}<_{d} q_{2} \Leftrightarrow q_{2}^{\mathrm{op}}<_{r c} q_{1}^{\mathrm{op}}$;
2. $q_{1} \vee q_{2} \Leftrightarrow q_{2}^{\mathrm{op}} \triangleq q_{1}^{\mathrm{op}}$.
3. $q_{1}^{\mathrm{op}}<_{w c} q_{2}^{\mathrm{op}} \Leftrightarrow q_{2}<_{w c} q_{1}$
4. $q_{1} \triangleq q_{2} \Leftrightarrow q_{1}^{\mathrm{op}}<_{w c} q_{2} \Leftrightarrow q_{2}^{\mathrm{op}}<_{w c} q_{1}$;
5. $q_{1} \bigvee q_{2} \Leftrightarrow q_{1}<_{w c} q_{2}^{\mathrm{op}} \Leftrightarrow q_{2}<w c q_{1}^{\mathrm{op}}$;
6. $q_{1}<_{r c} q_{2} \Leftrightarrow q_{1}<_{r c} q_{2}^{\mathrm{op}}$;
7. $q_{1}<_{d} q_{2} \Leftrightarrow q_{1}^{\mathrm{op}}<_{d} q_{2}$;

Compound relations

Name	Symbol	Inequation	Diagram	Non-empty region
Causality	$q_{1}<{ }_{c} q_{2}$	$R_{1} \cap L_{2} \nsubseteq K_{1}$		$R L+R K$
Disabling	$q_{1}<_{d} q_{2}$	$L_{1} \cap L_{2} \nsubseteq K_{2}$		$L L+K L$
Co-causality	$q_{1}<^{c} q_{2}$	$L_{2} \cap R_{1} \nsubseteq K_{2}$		$K L+R L$
Co-disabling	$q_{1}<^{d} q_{2}$	$R_{1} \cap R_{2} \nsubseteq K_{1}$		$R K+R R$

Compound relations via basic ones

Causality: $q_{1}<_{c} q_{2} \quad \Leftrightarrow \quad q_{1}<_{r c} q_{2} \vee q_{1}<_{w c} q_{2}$;
Disabling: $q_{1}<_{d} q_{2} \Leftrightarrow \quad q_{1}<_{d} q_{2} \vee q_{2} \measuredangle q_{1}$;
Co-causality: $q_{1}<^{c} q_{2} \quad \Leftrightarrow \quad q_{1}<_{d} q_{2} \vee q_{2}<_{w c} q_{1}$;
Co-disabling: $q_{1}<^{d} q_{2} \Leftrightarrow q_{1}<_{w c} q_{2} \vee q_{1} \bigvee q_{2}$.

Compound relations via basic ones

Causality: $q_{1}<_{c} q_{2} \quad \Leftrightarrow \quad q_{1}<_{r c} q_{2} \vee q_{1}<_{w c} q_{2}$;
Disabling: $q_{1} \ll d_{d} q_{2} \Leftrightarrow q_{1}<_{d} q_{2} \vee q_{2} \measuredangle q_{1}$;
Co-causality: $q_{1}<^{c} q_{2} \quad \Leftrightarrow \quad q_{1}<{ }_{d} q_{2} \vee q_{2}<{ }_{w c} q_{1}$;
Co-disabling: $q_{1}<^{d} q_{2} \Leftrightarrow q_{1}<_{w c} q_{2} \vee q_{1} \bigvee q_{2}$.
Sample proof for Causality:
In terms of regions, the statement means region $R L+R K$ is not empty iff either RL or RK is not empty, and thus region $R L+R K$ is empty iff $R L$ and $R K$ are empty. Now let
$U_{1}=R_{1} \cap L_{2}, U_{2}=\left(K_{1} \cap L_{2}\right) \cup\left(R_{1} \cap K_{2}\right)$ and $U_{3}=K_{1} \cap L_{2}$. It is straightforward to check that $R L$ represents $U_{1} \backslash U_{2}, R K$ represents $U_{2} \backslash U_{3}$, and $R L+R K$ represents $U_{1} \backslash U_{3}$; furthermore since $U_{1} \supseteq U_{2} \supseteq U_{3}$, we can conclude.

Independence in STSs

Two productions q_{1} and q_{2} are independent, denoted $q_{1} \diamond q_{2}$, if

$$
\left(L_{1} \cup R_{1}\right) \cap\left(L_{2} \cup R_{2}\right) \subseteq\left(K_{1} \cap K_{2}\right)
$$

- It is possible to show that $q_{1} \diamond q_{2}$ if and only if they are not related by any of the basic relations (reasoning in terms of emptiness of regions)
- Several characterization of independence (similar to parallel and sequential independence)
- Local Church-Rosser theorem for stss

From derivation trees to STSs

Obtaining an sts from a derivation tree. Generalization of the construction of a process from a given derivation.

More formally...

- Given an adhesive grammar \mathcal{G} over C we define the strict monoidal category of derivation trees DerTree (\mathcal{G}) :

Objects: finite words of objects of C
Arrows: derivation forests

- For a given object $S \in \mathrm{C}$ and a derivation tree rooted at S, we build an sts having as type graph the colimit of the diagram in C witnessing the derivation tree.
- The construction extends to a functor

$$
\text { Prc : } S / \text { DerTree }(\mathcal{G}) \rightarrow \text { STS }
$$

Analysis of derivations

The dependencies among the steps in a derivation tree can be faithfully analyzed in the generated sts. Suppose that \mathcal{G} is an adhesive grammar. Let α be a derivation tree in \mathcal{G} with root $S(\alpha \in S / \operatorname{DerTree}(\mathcal{G}))$.

1. Let $C_{1} \Rightarrow{ }^{q_{1}} C_{2} \Rightarrow{ }^{q_{2}} C_{3}$ be two steps in α, and let q_{1}^{\prime} and q_{2}^{\prime} be the corresponding productions in $\operatorname{Prc}(\alpha)$. Then:
they are sequential independent iff $q_{1}^{\prime} \diamond q_{2}^{\prime}$ iff

$$
\left(q_{1}^{\prime} \nless r c^{q_{2}^{\prime}}\right) \wedge\left(q_{1}^{\prime} \nless_{w c} q_{2}^{\prime}\right) \wedge\left(q_{1}^{\prime} \nless d q_{2}^{\prime}\right) .
$$

2. Let $C_{1} \Rightarrow^{q_{1}} C_{2}, C_{1} \Rightarrow^{q_{2}} C_{3}$ be two steps in α, and let q_{1}^{\prime} and q_{2}^{\prime} be the corresponding productions in $\operatorname{Prc}(\alpha)$. Then:
they are parallel independent iff $q_{1}^{\prime} \diamond q_{2}^{\prime}$ iff

$$
\neg\left(q_{1}^{\prime} \wedge q_{2}^{\prime}\right) \wedge\left(q_{1}^{\prime} \measuredangle_{d} q_{2}^{\prime}\right) \wedge\left(q_{2}^{\prime} \not{ }_{d} q_{1}^{\prime}\right) .
$$

Conclusions

- We introduced Subobject Transformation Systems as DPO in the lattice of subobjects of an object of an adhesive category.
- STS provide a formal framework for the analysis of relationships among production occurrences in the derivation space of a DPO system
- They provide an alternative syntax (set-theoretical, using Venn diagrams) w.r.t. to the standard one based on diagram chasing
- They generalize Elementary Net Systems in the same way Adhesive DPO Transformation Systems generalize Place/Transition nets

Future Work

- Developing an algebra of regions, and exploring its usefulness
- Exploring in depth the relation with ENS systems, generalizing their theory to arbitrary stss
- Generalizing constructions and results to infinite derivation trees

