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Motivations

-

In rule-based computational formalisms, a fundamental
Ingredient of the theory is the analysis of computations:

- equivalences among computations
- partial order or branching structures (processes,

unfoldings)
#® Term Rewriting Systems . permutation equivalence
® Petri Nets . processes, unfolding

® Graph Transformation Systems : shift equivalence,
processes, unfolding

» Transformation Systems over Adhesive Categories

o -

IFIP WG 1.3 - Sierra Nevada, January 14-18, 2008 — p. 3/:



Motivations (cont’'d)
-

The analysis of computations is based on the analysis of
relations among rule occurrences
Examples:

=

® conflict , causal dependence between transitions of Petri
Nets

® parallel/sequential independence , conflict , asymmetric conflict
among productions of GTS

® co-causality , disabling , co-disabling In TS over adhesive
categories

Such relations are meaningful on the computation space of
a system, sometimes represented as a system satisfying
safety and acyclicity constraints (occurrence system).

o -
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Motivations (cont’'d)
N o

atural questions arise:

- 1S conflict the negation of parallel independence ?
- how are related conflict and asymmetric conflict ?
- which relations can be defined in terms of the others?

which ones are primitive?
A systematic study of such relations is missing...

We introduce Subobject Transformation Systems as a
formal framework for the analysis of the relations among
production occurrences of a

o -
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Double-pushout rewriting in C
- -

® Aruleisaspanofmonog=L< K% R
# A matchisanarrowm: L — G

» Direct derivation A -2+ B if the following
double-pushout diagram can be constructed:

o -
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Double-pushout rewriting in C

-

® Aruleisaspanofmonog=L< K% R
# A matchisanarrowm: L — G

» Direct derivation A -2+ B if the following

double-pushout diagram can be constructed:

o Theory of DPO originally developed for C = Graph

L #® Recently generalized to adhesive categories

=

-
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Adhesive categories
A

# has pullbacks, has pushouts along monos

n adhesive category:

# pushouts along monos are Van Kampen squares

/ C, f’
/% \ /

Oy A\ B

A B 9 < e

a b

J D/n d/C f
a< " B

NV

o -

IFIP WG 1.3 - Sierra Nevada, January 14-18, 2008 — p. 7/3



DPO theory In quasi-adhesive cats

=

Parallel and Sequential Independence

Parallel Productions and Derivations

Local Church-Rosser and Parallelism Theorem
Shift Equivalence and Canonical Derivations
Concurrency Theorem

Embedding and extensions

Critical pair lemma

-
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The category of subobjects
& -

Iven category C and 7' € C, Sub(T) is the full subcategory
of C/T with monos as objects.

Objects: a : A»— T, denoted simply as A

Arrows: f:(a:A—T)— (b: B—T)suchthatbo f = a,
denoted as A C B, because it Is a preorder

o -
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The category of subobjects
& -

Iven category C and 7' € C, Sub(T) is the full subcategory
of C/T with monos as objects.

Objects: a : A»— T, denoted simply as A

Arrows: f:(a:A—T)— (b: B—T)suchthatbo f = a,
denoted as A C B, because it Is a preorder

A
» If C has pullbacks, / \

Sub(7) has products ANB PB T

(intersections ) \ /
B
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The category of subobjects

=

fGiven category C and 7' € C, Sub(T) is the full subcategory
of C/T with monos as objects.

Objects: a : A»— T, denoted simply as A

Arrows: f:(a:A—T)— (b: B—T)suchthatbo f = a,
denoted as A C B, because it Is a preorder

A
e If C is adhesive, \
Sub(T) has N

coprod- ANB PO AUB=—=T

ucts (unions ), and It Is
distributive \ B;//
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The category of subobjects

=

fGiven category C and 7' € C, Sub(T) is the full subcategory
of C/T with monos as objects.
Objects: a : A»— T, denoted simply as A

Arrows: f:(a:A—T)— (b: B—T)suchthatbo f = a,
denoted as A C B, because it Is a preorder

A
e If C is adhesive, \
Sub(T) has N

(enions ) C(‘j’p_rfd_' ANB PO AUB=—=T
ucts (unions ), and It IS
distributive \ B ;//

Note: Sub(7) iIs not adhesive!

o -
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Representing subobjects with Venn diag

- .

If Sub(7") Is distributive, the representation of subobjects of
T using Venn diagrams is sound.

AN(BUC) = {d,e, f} =

ANB)U(ANC C( i \
N (Tcaty)
AN

AU(BNC) ={a,d,e, f,g} =
(AUB)N(AUC)

Note that since Sub(7") might not be a Boolean lattice, not
all “zones” in the diagram correspond to subobjects (e.g., a).

o -
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Subobject Transformation System

-

A Subobject Transformation System  (sTs) over an adhesive
category Cis S = (T, P, w, S), where:
® T'c CIs a type object , PP are the production names

® 7: P — Sub(T)” 7 maps eachp e P toaspan
L, D K, C R, (often denoted (L, K, R),))

® S € Sub(T) Is the start object .

o -
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Subobject Transformation System

-

A Subobject Transformation System  (sTs) over an adhesive
category Cis S = (T, P, w, S), where:

® T'c CIs a type object , PP are the production names

® 7: P — Sub(T)” 7 maps eachp e P toaspan
L, D K, C R, (often denoted (L, K, R),))

® S € Sub(T) Is the start object .

A production (L, K, R)ispure if K = LN R

o -
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Direct derivations

o -

Given production 7(q) = (L, K, R) and G € Sub(T') such that
L C G, there is a direct derivation G =7 ' if there exists a
context D € Sub(7T') such that:

(1) LUDZX=G, (i) DUR= G
(i) LNDK; (iv) DNR=ZK.

o -
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Direct derivations

o -

Given production 7(q) = (L, K, R) and G € Sub(T') such that
L C G, there is a direct derivation G =7 ' if there exists a
context D € Sub(7T') such that:

(1) LUDZ=G; (i41) DURZ=G;
(12) LND=K; (wv) DNR=ZK.
Diagrammatically...

g LND=EK=DNR ?
i
G~=LUD D DUR=G

o -
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Direct derivations

o -

Given production 7(q) = (L, K, R) and G € Sub(T') such that
L C G, there is a direct derivation G =7 ' if there exists a
context D € Sub(7T') such that:

(1) LUDZ=G; (i41) DURZ=G;
(12) LND=K; (wv) DNR=ZK.
Diagrammatically...

g LND=EK=DNR ?
i
G~=LUD D DUR=G

Yes, this is a double-pushout, but before that...

o -
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Elementary Net Systems

-

An Elementary Net System (Ens) IS N = (C., E, F', S;;,) where:

-

1. ¢’ and E are disjoint sets of conditions and events
2. 'C(C'x E)U(E x (') is the flow relation
3. 5, € C'Is the initial configuration

Asusual,forr e CUE, *x={ye CUFE | (y,x) € F'}
*={ye CUE|(z,y) € F}

o -
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Elementary Net Systems

-

An Elementary Net System (Ens) IS N = (C., E, F', S;;,) where:

-

1. ¢’ and E are disjoint sets of conditions and events
2. 'C(C'x E)U(E x (') is the flow relation
3. 5, € C'Is the initial configuration

Asusual,forr e CUE, *x={ye CUFE | (y,x) € F'}
*={ye CUE|(z,y) € F}

An event e € I is enabled at S If

«CS A (e\*e)NS=g2 ()

Lln this case, e canfire: Sle) (S\ ®e)Ue® J
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-

.

A sample net

€2

(o )—

C2
C3

® ¢o s enabled at {c;, ¢, c3}:

*ea C{c1,c2,c3F A

® ¢ Isnotenabled at {c{,c2, c3}:

(61. \ .81) M {(31, C2, 63} = {CQ} # .

This Is called a contact situation .

O

C4

(62. \ .62) M {Cl, C9, Cg} = .

-
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ENS assTs, firing as direct derivation

fAn ENS IS an sTs over Set, where productions have empty
Interface. The operational behaviour is the same.

=

o -
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ENS assTs, firing as direct derivation

fAn ENS IS an sTs over Set, where productions have empty
Interface. The operational behaviour is the same.

Given N = (C, E, F, S;,), consider the sts over Set
S(N)={(C,E,mn, Sin), Where

=

foralle e E, ny(e) =(%e O @ C €°)

Then, Sle)S" ifandonlyif S =¢S5’

o -
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ENS assTs, firing as direct derivation

fAn ENS IS an sTs over Set, where productions have empty
Interface. The operational behaviour is the same.

Given N = (C, E, F, S;,), consider the sts over Set
S(N)={(C,E,mn, Sin), Where

=

foralle e E, ny(e) =(%e O @ C €°)

Then, Sle)S" ifandonlyif S =¢S5’

(=) Let D = S\ ®e. Since mn(e) = (®e, &, e®), conditions (i) — (iv) reduce to (7)

S U(S\ %), (i1) S = (S\ ®e)Ue®, (iit) *en(S\ ®e) = &, and (iv)

(S'\ ®e)Ne® = . Now, (¢) and (ii7) are tautologies, (i7) holds by the definition of firing, and
(év) is equivalentto S N (e® \ ®e) = &, which is implied by ().

(<) Let (Le, Ke, Re) 1 (®e, @, e®). The first conjunct of (1) is implied by condition (ii). The
second one is equivalentto S N Re C L, which is shown as follows:

(4) (iv)
SARe > (Le UD)NRe 22 (Le NRe)U(DNRe) 2 (LeNRe)UKe C Le.
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ENS assTs, firing as direct derivation

fAn ENS IS an sTs over Set, where productions have empty
Interface. The operational behaviour is the same.

Given N = (C, E, F, S;,), consider the sts over Set
S(N)={(C,E,mn, Sin), Where

=

foralle e E, ny(e) =(%e O @ C €°)

Then, Sle)S" ifandonlyif S =¢S5’

Interestingly: S =¢S5’ implies absence of contact

(*\*)NS=2 = (R\L)JNS=& = SNR.C L

o -
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A methodologicalintermezzo...

o .

# Relation between Place/Transitions nets and Graph
Transformation Systems well understood, and exploited
In several ways:
s concurrent semantics (processes, unfoldings, ...)
s Verification based on approximations (Petri graphs)
» from zero-safe nets to transactional GTS

o -
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A methodologicalintermezzo...

o .

# Relation between Place/Transitions nets and Graph
Transformation Systems well understood, and exploited
In several ways:

s concurrent semantics (processes, unfoldings, ...)

s Verification based on approximations (Petri graphs)

o from zero-safe nets to transactional GTS

GTS . STS
P/T nets o ENS

We start a new research thread: generalize results
about ens to arbitrary sts

® Claim:

o analysis of structural properties of systems
(contact-freeness, free choice, ...)

L s construction of contact-free system by J
complementation (??7?)
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Back to foundations: a handy lemma

L .

Given C, adhesive, and T € C, the following are equivalent:
A=—B
| ]
C>—D

(1) Square (1) iIn Sub(7") Is a pushout in C

(2) BhC=Aand D= BuU(C

3y BNC CAand D C BUC.

This allows one to switch between diagrammatical and
set-theoretical notation

o -
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Direct derivations as double pushouts

o .

Recall: G =7 ' if there exists a context D € Sub(7") such
that:

(1) LUDZ=G; (741) DURZ=G;
(1) LND=K; (iv) DNRZK.
Then G =4 ¢ if and only if

® GNRCLeSub(T) (nocontact ), and
# thereis a D such that (1) and (2) are pushouts in C.

L<—At—=K>r—R
mi (1) ik (2) in
G<f—=D—9—=(

o -
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Relations among productions of an ST¢

- .

The intersection of two productions has nine “disjoint
zones’”.

Two productions are completely independent if their
Intersection is preserved by both, I.e.,

(L1 UR1) N (L2 URy) C K1 N Ko

1 1
Each zone (but K K) de- fnfh
termines a certain Kind . | L | KL | RL
of dependency between
the productions. For ex- Kol | vk | R
ample, “non-emptiness” L1l
of LL means that they
~are in conflict. Bz ] LR | KR | RR o

evadd, January 14-18, 2008 — p. 19/:



Subobject difference as “regions”

.
IR
Y

Note that U \ V and

U\ (UnNYV) denote the

Same zone.

=



Subobject difference as “regions”

o .

Given subobjects U, V, W
U ’ ’
CV/ \V suchthat WnU C V, and
\ UNv Zsuchthat Z CUuVuUw,
VAU let

N

U, V) =UUZ,VUW)

Note that U \ V and

U\ (UNYV) denote the A region U\ V is an equiva-
same zone. lence class [U, V].

o -
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Subobject difference as “regions”

o .

Given subobjects U, V, W
U ) )
/ / \ 4 suchthat WwnNnU C V, and

U\V 7Y Zsuchthat Z CUUVUW,
VAU let

N

Note that U \ V and

U\ (UNYV) denote the A region U\ V is an equiva-
same zone. lence class [U, V].

U, V) =UUZ,VUW)

Region U\ Visempty if U C V.

o -
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Subobject difference as “regions”

o .

Given subobjects U, V, W
U ) )
/ / \ 4 suchthat WwnNnU C V, and

U\V 7Y Zsuchthat Z CUUVUW,
VAU let

N

Note that U \ V and

U\ (UNYV) denote the A region U\ V is an equiva-
same zone. lence class [U, V].

U, V) =UUZ,VUW)

Region U\ Visempty if U C V.
Given subobjects U; O U, O Us, region Uy \ Us

IS empty if and only if both regions U; \ U; and Us \ Us are
empty.

o -
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Regions of the intersection of productior

- .

The basic regions of the /Ll /Kl: Rl\
Intersection are, with Lini
X, Y € {L, R}: /LQ LL | KL | RL
® XY =

X1NYy\ KU Ko, C];?R LK | KK | RK

and \\RQ LR | KR | RR /
N XK:XlﬂKQ\Kl.

NN

Non-basic regions are for example
RL+RK = Ry N Lse \ K7, and
KL+RK = (K1 N L) U (Ko N Ry) \ K1 N Ko,

o -
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-

The five basic relations

. . . Non-empt
Name Symbol Inequation Diagram in C . PY
region
KUKy > 11U K>
Conflict q1 A\ Q2 L1 N Lo Z K1 U K>y I —PO I LL
KiULy>—= 11U Lo
Ko Lo
Deactivation | ¢ <4 ¢ KiNnLy & Ky I o I KL
KiUKo > KjU L9
. Ki UKy > Ry U K>
write < RiNLy & KUK RL
causality q1 <we 42 1 2 1 2 I —PO I
KiULy>—R1U Lo
Read i i
ea
. <pe RiNK K - RK
causality o . ! 2 & 1 I " I
KiUK9g > R UKo
Back q KiUKy>— R UKp>
ackwar
. RiNR KiUK - RR
conflict Q1Y q2 1NRy € Ky 2 I PO I

Ki{UR9y > R{UR>y

IFIP WG 1.3~ Sferra

Jevada 1:\quary 14 152‘ 2008

vaba;,oar
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Intuitive meaning of relations

=

Conflict: ¢1 A g2 When there is an “item” consumed by both
¢1 and g9

Deactivation: ¢q; <4 g2 When there is an item preserved by ¢;
and consumed by ¢o; the firing of ¢» deactivates

Write causality:  ¢1 <we g2 When there is an item produced by
¢1 and consumed by ¢

Read causality: ¢1 <. g2 When there is an item produced by
g1 and preserved by ¢

Backwards conflict:  ¢1 Y g2 when there is an item produced
by both ¢; and ¢

o -
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-

The following equivalences follow from the definitions:

N o O R~ W E

. aws on relations

Given production ¢ with 7(q) = (L, K, R), let

¢°* = (R, K, L)

g1 <dq2 < qu <rc q(fp;

aYe & 4 Aa'

q° <wedy S @2 <we@

A € @ <w@ S 6 <wedq
Y@ S @q<wdy S @ <wd
A <rcq2 <= 41 <rc qu;

Q1 <492 < q(fp <d 42,

-
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Compound relations

. . Non-empt
Name Symbol | Inequation Diagram . Py
region
K Ry
Causality G <cq | RiNLo Q K4 I —PO I RL+RK
KiULy>—= R{U Lo
Ky Lo
Disabling @1 <qgq2 | LinNLy L Ky I —PO I LL+KL
L1UKo>—= 11U L>
K9 Lo
Co-causality | ¢1 <®q2 | LaN Ry € Ko I —PO I KL+RL
RiUK9g>— R1UL»
K Ry
Co-disabling q1 < g | R1 N Rs 7,@ K4 I -PO I RK+RR
KiURy > R{UR> J
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Compound relations via basic ones

=

fCausality: 1 <cq2 <= 91 <re @2V q <we 92,

Disabling: g1 <492 <& q1 <4492V @2 A q1,
Co-causality: g1 <“qa <& q1 <492V q2 <we 91,

Co-disabling: ¢1 <% g2 <  q1 <we @2V a1 Y ¢.

o -
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Compound relations via basic ones

=

fCausality: 1 <cq2 <= 91 <re @2V q <we 92,

Disabling: g1 <492 <& q1 <4492V @2 A q1,
Co-causality: g1 <“qa <& q1 <492V q2 <we 91,

Co-disabling: ¢1 <% g2 <  q1 <we @2V a1 Y ¢.

Sample proof for Causality

In terms of regions, the statement means region RL+RK is
not empty iff either RL or RK is not empty, and thus region
RL+RK is empty iff RL and RK are empty. Now let

U = RN LQ, Ug = (Kl ﬂLg) U (Rl M KQ) and U3 = KiNLs It
is straightforward to check that RL represents U; \ U,, RK
represents U, \ Us, and RL+RK represents U; \ Us;
furthermore since U; O U, O U;, we can conclude.

o -
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Independence In STSs
E

wo productions ¢; and ¢» are independent, denoted ¢; ¢ g9,
If
(L1 U Rl) M (LQ U RQ) C (K1 M KQ)

# |tis possible to show that ¢; ¢ ¢o If and only if they are
not related by any of the basic relations (reasoning in
terms of emptiness of regions)

# Several characterization of independence (similar to
parallel and sequential independence)

® Local Church-Rosser theorem for sTss

o -
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From derivation trees to STSs

-

Obtaining an sts from a derivation tree. Generalization of
the construction of a process from a given derivation.

=

<T, P,7T, G1>

/ \:] m PZ{QllaQ227Q337Q347Q15}
qi1,mi 2
/ 17 G115 \

7N
%W%Ni% " ’ D Do
T = colim : Gs
%77”5 )

G6 1 Dsg

o -
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More formally...

o .

# Given an adhesive grammar G over C we define the
strict monoidal category of derivation trees DerTree(G):

Objects: finite words of objects of C
Arrows: derivation forests

# For agiven object S € C and a derivation tree rooted at
S, we build an sts having as type graph the colimit of
the diagram in C witnessing the derivation tree.

® The construction extends to a functor

Prc : S/DerTree(G) — STS

o -
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Analysis of derivations

fThe dependencies among the steps in a derivation tree c:amT

be faithfully analyzed in the generated srs.
Suppose that G is an adhesive grammar. Let o be a
derivation tree in G with root S (« € S/DerTree(G)).

1. Let ¢ =% Cy =% C3 be two steps in a, and let ¢; and
q5 be the corresponding productions in Prc(«). Then:

they are sequential independent iff ¢} O ¢ iff
(@) #re @5) N (d) Lwe @) N (@1 Za @5)-

2. Let C) =% Oy, C7 =% C3 be two steps in a, and let ¢}
and ¢}, be the corresponding productions in Prc(«).
Then:

they are parallel independent iff ¢} ¢ ¢ iff

L (1 A5 AN (d) £a d5) N (dh £a qh)- -
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Conclusions

=

We introduced Subobject Transformation Systems as
DPO in the lattice of subobjects of an object of an
adhesive category.

STS provide a formal framework for the analysis of
relationships among production occurrences in the
derivation space of a DPO system

They provide an alternative syntax (set-theoretical,
using Venn diagrams) w.r.t. to the standard one based
on diagram chasing

They generalize Elementary Net Systems in the same
way Adhesive DPO Transformation Systems generalize
Place/Transition nets
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Future Work
L o

# Developing an algebra of regions, and exploring its
usefulness

# EXxploring in depth the relation with ENS systems,
generalizing their theory to arbitrary stss

# Generalizing constructions and results to infinite
derivation trees

o -
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