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Motivations

In rule-based computational formalisms, a fundamental
ingredient of the theory is the analysis of computations:

- equivalences among computations

- partial order or branching structures (processes,
unfoldings)

Term Rewriting Systems : permutation equivalence

Petri Nets : processes, unfolding

Graph Transformation Systems : shift equivalence,
processes, unfolding

Transformation Systems over Adhesive Categories : ...
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Motivations (cont’d)

The analysis of computations is based on the analysis of
relations among rule occurrences .
Examples:

conflict , causal dependence between transitions of Petri
Nets

parallel/sequential independence , conflict , asymmetric conflict
among productions of GTS

co-causality , disabling , co-disabling in TS over adhesive
categories

Such relations are meaningful on the computation space of
a system, sometimes represented as a system satisfying
safety and acyclicity constraints (occurrence system).
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Motivations (cont’d)

Natural questions arise:

- is conflict the negation of parallel independence ?

- how are related conflict and asymmetric conflict ?

- which relations can be defined in terms of the others?
which ones are primitive?

A systematic study of such relations is missing...

We introduce Subobject Transformation Systems as a
formal framework for the analysis of the relations among
production occurrences of a DPO system .
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Double-pushout rewriting in C

A rule is a span of mono q = L α←− K
β

−→ R

A match is an arrow m : L→ G

Direct derivation A
〈m,q〉
===⇒ B if the following

double-pushout diagram can be constructed:

L

m

K
α β

i

R

c

A Dγ δ
B
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Double-pushout rewriting in C

A rule is a span of mono q = L α←− K
β

−→ R

A match is an arrow m : L→ G

Direct derivation A
〈m,q〉
===⇒ B if the following

double-pushout diagram can be constructed:

L

m

K
α β

i

R

c

A Dγ δ
B

Theory of DPO originally developed for C = Graph

Recently generalized to adhesive categories
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Adhesive categories

An adhesive category:

has pullbacks, has pushouts along monos

pushouts along monos are Van Kampen squares

C
m f

A

g

B

n
D

C′

m′ f ′

c

A′

g′

a

B′

n′

b
D′

d C

m
f

A

g

B

n
D
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DPO theory in quasi-adhesive cats

Parallel and Sequential Independence

Parallel Productions and Derivations

Local Church-Rosser and Parallelism Theorem

Shift Equivalence and Canonical Derivations

Concurrency Theorem

Embedding and extensions

Critical pair lemma

. . .
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The category of subobjects

Given category C and T ∈ C, Sub(T ) is the full subcategory
of C/T with monos as objects.

Objects: a : A � T , denoted simply as A

Arrows: f : (a : A � T )→ (b : B � T ) such that b ◦ f = a,
denoted as A ⊆ B, because it is a preorder
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The category of subobjects

Given category C and T ∈ C, Sub(T ) is the full subcategory
of C/T with monos as objects.

Objects: a : A � T , denoted simply as A

Arrows: f : (a : A � T )→ (b : B � T ) such that b ◦ f = a,
denoted as A ⊆ B, because it is a preorder

If C has pullbacks,
Sub(T ) has products
(intersections )

A

A ∩ B PBA ∪ B T

B
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The category of subobjects

Given category C and T ∈ C, Sub(T ) is the full subcategory
of C/T with monos as objects.

Objects: a : A � T , denoted simply as A

Arrows: f : (a : A � T )→ (b : B � T ) such that b ◦ f = a,
denoted as A ⊆ B, because it is a preorder

If C is adhesive,
Sub(T ) has coprod-
ucts (unions ), and it is
distributive

A

A ∩ B PO A ∪B T

B
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The category of subobjects

Given category C and T ∈ C, Sub(T ) is the full subcategory
of C/T with monos as objects.

Objects: a : A � T , denoted simply as A

Arrows: f : (a : A � T )→ (b : B � T ) such that b ◦ f = a,
denoted as A ⊆ B, because it is a preorder

If C is adhesive,
Sub(T ) has coprod-
ucts (unions ), and it is
distributive

A

A ∩ B PO A ∪B T

B

Note: Sub(T ) is not adhesive!
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Representing subobjects with Venn diags.

If Sub(T ) is distributive, the representation of subobjects of
T using Venn diagrams is sound.

A ∩ (B ∪ C) = {d, e, f} =
(A ∩ B) ∪ (A ∩ C)

and
A∪(B∩C) = {a, d, e, f, g} =
(A ∪ B) ∩ (A ∪ C)

A
B

C

a
b

c

d
e

f

g

Note that since Sub(T ) might not be a Boolean lattice, not
all “zones” in the diagram correspond to subobjects (e.g., a).
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Subobject Transformation System

A Subobject Transformation System (STS) over an adhesive
category C is S = 〈T, P, π, S〉, where:

T∈ C is a type object , P are the production names ,

π : P → Sub(T )·←·→· maps each p ∈ P to a span
Lp ⊇ Kp ⊆ Rp (often denoted 〈Lp,Kp, Rp〉)

S ∈ Sub(T ) is the start object .
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Subobject Transformation System

A Subobject Transformation System (STS) over an adhesive
category C is S = 〈T, P, π, S〉, where:

T∈ C is a type object , P are the production names ,

π : P → Sub(T )·←·→· maps each p ∈ P to a span
Lp ⊇ Kp ⊆ Rp (often denoted 〈Lp,Kp, Rp〉)

S ∈ Sub(T ) is the start object .

A production 〈L,K,R〉 is pure if K = L ∩R
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Direct derivations

Given production π(q) = 〈L,K,R〉 and G ∈ Sub(T ) such that
L ⊆ G, there is a direct derivation G⇒q G′ if there exists a
context D ∈ Sub(T ) such that:

(i) L ∪D ∼= G; (iii) D ∪ R ∼= G′;

(ii) L ∩D ∼= K; (iv) D ∩ R ∼= K.
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Direct derivations

Given production π(q) = 〈L,K,R〉 and G ∈ Sub(T ) such that
L ⊆ G, there is a direct derivation G⇒q G′ if there exists a
context D ∈ Sub(T ) such that:

(i) L ∪D ∼= G; (iii) D ∪ R ∼= G′;

(ii) L ∩D ∼= K; (iv) D ∩ R ∼= K.

Diagrammatically...

L L ∩D ∼= K ∼= D ∩ R R

G ∼= L ∪D D D ∪ R ∼= G′
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Direct derivations

Given production π(q) = 〈L,K,R〉 and G ∈ Sub(T ) such that
L ⊆ G, there is a direct derivation G⇒q G′ if there exists a
context D ∈ Sub(T ) such that:

(i) L ∪D ∼= G; (iii) D ∪ R ∼= G′;

(ii) L ∩D ∼= K; (iv) D ∩ R ∼= K.

Diagrammatically...

L L ∩D ∼= K ∼= D ∩ R R

G ∼= L ∪D D D ∪ R ∼= G′

Yes, this is a double-pushout, but before that...
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Elementary Net Systems

An Elementary Net System (ENS) is N = 〈C,E, F, Sin〉 where:

1. C and E are disjoint sets of conditions and events

2. F ⊆ (C × E) ∪ (E × C) is the flow relation

3. Sin ⊆ C is the initial configuration

As usual, for x ∈ C ∪ E, •x = {y ∈ C ∪ E | 〈y, x〉 ∈ F}
x• = {y ∈ C ∪ E | 〈x, y〉 ∈ F}
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Elementary Net Systems

An Elementary Net System (ENS) is N = 〈C,E, F, Sin〉 where:

1. C and E are disjoint sets of conditions and events

2. F ⊆ (C × E) ∪ (E × C) is the flow relation

3. Sin ⊆ C is the initial configuration

As usual, for x ∈ C ∪ E, •x = {y ∈ C ∪ E | 〈y, x〉 ∈ F}
x• = {y ∈ C ∪ E | 〈x, y〉 ∈ F}

An event e ∈ E is enabled at S if

•e ⊆ S ∧ (e• \ •e) ∩ S = ∅ (†)

In this case, e can fire : S [e〉 (S \ •e) ∪ e•
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A sample net

•c1 e1 •

c2

e2

c4

•c3

e2 is enabled at {c1, c2, c3}:

•e2 ⊆ {c1, c2, c3} ∧ (e2
• \ •e2) ∩ {c1, c2, c3} = ∅.

e1 is not enabled at {c1, c2, c3}:

(e1
• \ •e1) ∩ {c1, c2, c3} = {c2} 6= ∅.

This is called a contact situation .
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ENS asSTS, firing as direct derivation

An ENS is an STS over Set, where productions have empty
interface. The operational behaviour is the same.
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ENS asSTS, firing as direct derivation

An ENS is an STS over Set, where productions have empty
interface. The operational behaviour is the same.

Given N = 〈C,E, F, Sin〉, consider the STS over Set

S(N) = 〈C,E, πN , Sin〉, where

for all e ∈ E, πN (e) = ( •e ⊇ ∅ ⊆ e•)

Then, S[e〉S′ if and only if S ⇒e S′.
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ENS asSTS, firing as direct derivation

An ENS is an STS over Set, where productions have empty
interface. The operational behaviour is the same.

Given N = 〈C,E, F, Sin〉, consider the STS over Set

S(N) = 〈C,E, πN , Sin〉, where

for all e ∈ E, πN (e) = ( •e ⊇ ∅ ⊆ e•)

Then, S[e〉S′ if and only if S ⇒e S′.
(⇒) Let D

def
= S \ •e. Since πN (e) = 〈•e, ∅, e•〉, conditions (i) − (iv) reduce to (i)

S ∼= •e ∪ (S \ •e), (ii) S′ ∼= (S \ •e) ∪ e•, (iii) •e ∩ (S \ •e) = ∅, and (iv)

(S \ •e)∩ e• = ∅. Now, (i) and (iii) are tautologies, (ii) holds by the definition of firing, and
(iv) is equivalent to S ∩ (e• \ •e) = ∅, which is implied by (†).

(⇐) Let 〈Le, Ke, Re〉
def
= 〈•e, ∅, e•〉. The first conjunct of (†) is implied by condition (ii). The

second one is equivalent to S ∩ Re ⊆ Le, which is shown as follows:

S ∩ Re

(i)
∼= (Le ∪ D) ∩ Re

∼= (Le ∩ Re) ∪ (D ∩ Re)
(iv)
∼= (Le ∩ Re) ∪ Ke ⊆ Le.
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ENS asSTS, firing as direct derivation

An ENS is an STS over Set, where productions have empty
interface. The operational behaviour is the same.

Given N = 〈C,E, F, Sin〉, consider the STS over Set

S(N) = 〈C,E, πN , Sin〉, where

for all e ∈ E, πN (e) = ( •e ⊇ ∅ ⊆ e•)

Then, S[e〉S′ if and only if S ⇒e S′.

Interestingly: S ⇒e S′ implies absence of contact

(e• \ •e) ∩ S = ∅ ≡ (Re \ Le) ∩ S = ∅ ≡ S ∩Re ⊆ Le
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A methodologicalintermezzo...

Relation between Place/Transitions nets and Graph
Transformation Systems well understood, and exploited
in several ways:

concurrent semantics (processes, unfoldings, ...)
verification based on approximations (Petri graphs)
from zero-safe nets to transactional GTS
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A methodologicalintermezzo...

Relation between Place/Transitions nets and Graph
Transformation Systems well understood, and exploited
in several ways:

concurrent semantics (processes, unfoldings, ...)
verification based on approximations (Petri graphs)
from zero-safe nets to transactional GTS

Claim: GTS
P/T nets = STS

ENS

We start a new research thread: generalize results
about ENS to arbitrary STS

analysis of structural properties of systems
(contact-freeness, free choice, ...)
construction of contact-free system by
complementation (???)
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Back to foundations: a handy lemma

Given C, adhesive, and T ∈ C, the following are equivalent:

A

(1)

B

C D

(1) Square (1) in Sub(T ) is a pushout in C

(2) B ∩ C ∼= A and D ∼= B ∪ C

(3) B ∩ C ⊆ A and D ⊆ B ∪ C.

This allows one to switch between diagrammatical and
set-theoretical notation
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Direct derivations as double pushouts

Recall: G⇒q G′ if there exists a context D ∈ Sub(T ) such
that:

(i) L ∪D ∼= G; (iii) D ∪R ∼= G′;

(ii) L ∩D ∼= K; (iv) D ∩R ∼= K.

Then G⇒q G′ if and only if

G ∩R ⊆ L ∈ Sub(T ) (no contact ), and

there is a D such that (1) and (2) are pushouts in C.

L
m (1)

Kl r

k (2)

R
n

G Df g G′
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Relations among productions of an STS

The intersection of two productions has nine “disjoint
zones”.

Two productions are completely independent if their
intersection is preserved by both, i.e.,
(L1 ∪R1) ∩ (L2 ∪ R2) ⊆ K1 ∩K2

Each zone (but KK) de-
termines a certain kind
of dependency between
the productions. For ex-
ample, “non-emptiness”
of LL means that they
are in conflict.

L1 R1
K1 =

L1 ∩R1

L2

R2

K2 =

L2 ∩R2

LL KL RL

LK KK RK

LR KR RR
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Subobject difference as “regions”

U
V

U \ V

V \ U
U ∩ V

Note that U \ V and
U \ (U ∩ V ) denote the
same zone.

IFIP WG 1.3 - Sierra Nevada, January 14–18, 2008 – p. 20/32



Subobject difference as “regions”

U
V

U \ V

V \ U
U ∩ V

Note that U \ V and
U \ (U ∩ V ) denote the
same zone.

Given subobjects U , V , W
such that W ∩ U ⊆ V , and
Z such that Z ⊆ U ∪V ∪W ,
let

(U, V ) ≡ (U ∪ Z, V ∪W )

A region U \V is an equiva-
lence class [U, V ].
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Subobject difference as “regions”

U
V

U \ V

V \ U
U ∩ V

Note that U \ V and
U \ (U ∩ V ) denote the
same zone.

Given subobjects U , V , W
such that W ∩ U ⊆ V , and
Z such that Z ⊆ U ∪V ∪W ,
let

(U, V ) ≡ (U ∪ Z, V ∪W )

A region U \V is an equiva-
lence class [U, V ].

Region U \ V is empty if U ⊆ V .
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Subobject difference as “regions”

U
V

U \ V

V \ U
U ∩ V

Note that U \ V and
U \ (U ∩ V ) denote the
same zone.

Given subobjects U , V , W
such that W ∩ U ⊆ V , and
Z such that Z ⊆ U ∪V ∪W ,
let

(U, V ) ≡ (U ∪ Z, V ∪W )

A region U \V is an equiva-
lence class [U, V ].

Region U \ V is empty if U ⊆ V .

Useful fact: Given subobjects U1 ⊇ U2 ⊇ U3, region U1 \ U3

is empty if and only if both regions U1 \ U2 and U2 \ U3 are
empty.
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Regions of the intersection of productions

The basic regions of the
intersection are, with
X,Y ∈ {L,R}:

XY =
X1 ∩ Y2 \K1 ∪K2,

KX = K1 ∩X2 \K2,
and

XK = X1 ∩K2 \K1.

L1 R1
K1 =

L1 ∩R1

L2

R2

K2 =

L2 ∩R2

LL KL RL

LK KK RK

LR KR RR

Non-basic regions are for example
RL+RK = R1 ∩ L2 \K1, and
KL+RK = (K1 ∩ L2) ∪ (K2 ∩R1) \K1 ∩K2.
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The five basic relations

Name Symbol Inequation Diagram in C
Non-empty

region

Conflict q1 ' q2 L1 ∩ L2 * K1 ∪K2

K1 ∪K2

¬PO

L1 ∪K2

K1 ∪ L2 L1 ∪ L2

LL

Deactivation q1 <d q2 K1 ∩ L2 * K2

K2

¬PO

L2

K1 ∪K2 K1 ∪ L2

KL

Write
causality

q1 <wc q2 R1 ∩ L2 * K1 ∪K2

K1 ∪K2

¬PO

R1 ∪K2

K1 ∪ L2 R1 ∪ L2

RL

Read
causality

q1 <rc q2 R1 ∩K2 * K1

K1

¬PO

R1

K1 ∪K2 R1 ∪K2

RK

Backward
conflict

q1 . q2 R1 ∩ R2 * K1 ∪K2

K1 ∪K2

¬PO

R1 ∪K2

K1 ∪ R2 R1 ∪R2

RR
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Intuitive meaning of relations

Conflict: q1 ' q2 when there is an “item” consumed by both
q1 and q2

Deactivation: q1 <d q2 when there is an item preserved by q1

and consumed by q2; the firing of q2 deactivates

Write causality: q1 <wc q2 when there is an item produced by
q1 and consumed by q2

Read causality: q1 <rc q2 when there is an item produced by
q1 and preserved by q2

Backwards conflict: q1 . q2 when there is an item produced
by both q1 and q2
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Laws on relations

Given production q with π(q) = 〈L,K,R〉, let

qop ≡ 〈R,K,L〉

The following equivalences follow from the definitions:

1. q1 <d q2 ⇔ qop
2 <rc qop

1 ;

2. q1 . q2 ⇔ qop
2 ' qop

1 .

3. qop
1 <wc qop

2 ⇔ q2 <wc q1

4. q1 ' q2 ⇔ qop
1 <wc q2 ⇔ qop

2 <wc q1;

5. q1 . q2 ⇔ q1 <wc qop
2 ⇔ q2 <wc qop

1 ;

6. q1 <rc q2 ⇔ q1 <rc qop
2 ;

7. q1 <d q2 ⇔ qop
1 <d q2;
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Compound relations

Name Symbol Inequation Diagram
Non-empty

region

Causality q1 <c q2 R1 ∩ L2 * K1

K1

¬PO

R1

K1 ∪ L2 R1 ∪ L2

RL+RK

Disabling q1 �d q2 L1 ∩ L2 * K2

K2

¬PO

L2

L1 ∪K2 L1 ∪ L2

LL+KL

Co-causality q1 <c q2 L2 ∩ R1 * K2

K2

¬PO

L2

R1 ∪K2 R1 ∪ L2

KL+RL

Co-disabling q1 �
d q2 R1 ∩ R2 * K1

K1

¬PO

R1

K1 ∪R2 R1 ∪ R2

RK+RR
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Compound relations via basic ones

Causality: q1 <c q2 ⇔ q1 <rc q2 ∨ q1 <wc q2;

Disabling: q1 �d q2 ⇔ q1 <d q2 ∨ q2 ' q1;

Co-causality: q1 <c q2 ⇔ q1 <d q2 ∨ q2 <wc q1;

Co-disabling: q1 �
d q2 ⇔ q1 <wc q2 ∨ q1 . q2.
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Compound relations via basic ones

Causality: q1 <c q2 ⇔ q1 <rc q2 ∨ q1 <wc q2;

Disabling: q1 �d q2 ⇔ q1 <d q2 ∨ q2 ' q1;

Co-causality: q1 <c q2 ⇔ q1 <d q2 ∨ q2 <wc q1;

Co-disabling: q1 �
d q2 ⇔ q1 <wc q2 ∨ q1 . q2.

Sample proof for Causality :
In terms of regions, the statement means region RL+RK is
not empty iff either RL or RK is not empty, and thus region
RL+RK is empty iff RL and RK are empty. Now let
U1 = R1 ∩ L2, U2 = (K1 ∩L2)∪ (R1 ∩K2) and U3 = K1 ∩ L2. It
is straightforward to check that RL represents U1 \ U2, RK
represents U2 \ U3, and RL+RK represents U1 \ U3;
furthermore since U1 ⊇ U2 ⊇ U3, we can conclude.
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Independence in STSs

Two productions q1 and q2 are independent, denoted q1 ♦ q2,
if

(L1 ∪ R1) ∩ (L2 ∪R2) ⊆ (K1 ∩K2)

It is possible to show that q1 ♦ q2 if and only if they are
not related by any of the basic relations (reasoning in
terms of emptiness of regions)

Several characterization of independence (similar to
parallel and sequential independence)

Local Church-Rosser theorem for STSs
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From derivation trees to STSs

Obtaining an STS from a derivation tree. Generalization of
the construction of a process from a given derivation.

G1

G3G2

G4 G5

G6

q1,m1

q2,m2

q1,m5

q3,m4

q3,m3

〈T, P,π, G1〉

P = {q11, q22, q33, q34, q15}

T = colim























G1

D1

!!
l
′

1 !!!!

D2

""
l
′

2""""

## r
′

2

###
##

.

.

.
G3

D5

$$r
′′

1

$$!!
G6






















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More formally...

Given an adhesive grammar G over C we define the
strict monoidal category of derivation trees DerTree(G):

Objects: finite words of objects of C

Arrows: derivation forests

For a given object S ∈ C and a derivation tree rooted at
S, we build an STS having as type graph the colimit of
the diagram in C witnessing the derivation tree.

The construction extends to a functor

Prc : S/DerTree(G)→ STS
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Analysis of derivations

The dependencies among the steps in a derivation tree can
be faithfully analyzed in the generated STS.
Suppose that G is an adhesive grammar. Let α be a
derivation tree in G with root S (α ∈ S/DerTree(G)).

1. Let C1 ⇒
q1 C2 ⇒

q2 C3 be two steps in α, and let q′1 and
q′2 be the corresponding productions in Prc(α). Then:

they are sequential independent iff q′1 ♦ q′2 iff
(q′1 ≮rc q′2) ∧ (q′1 ≮wc q′2) ∧ (q′1 ≮d q′2).

2. Let C1 ⇒
q1 C2, C1 ⇒

q2 C3 be two steps in α, and let q′1
and q′2 be the corresponding productions in Prc(α).
Then:

they are parallel independent iff q′1 ♦ q′2 iff
¬(q′1 ' q′2) ∧ (q′1 ≮d q′2) ∧ (q′2 ≮d q′1).
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Conclusions

We introduced Subobject Transformation Systems as
DPO in the lattice of subobjects of an object of an
adhesive category.

STS provide a formal framework for the analysis of
relationships among production occurrences in the
derivation space of a DPO system

They provide an alternative syntax (set-theoretical,
using Venn diagrams) w.r.t. to the standard one based
on diagram chasing

They generalize Elementary Net Systems in the same
way Adhesive DPO Transformation Systems generalize
Place/Transition nets
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Future Work

Developing an algebra of regions, and exploring its
usefulness

Exploring in depth the relation with ENS systems,
generalizing their theory to arbitrary STSs

Generalizing constructions and results to infinite
derivation trees
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