My 1st WADT

3rd International Workshop on
Theory and Application of Abstract Data Types Bremen, November 1984

Einbahnstraße

Many-sorted Universal Algebra: Some Technical Nuances

Andrzej Tarlecki

Institute of Informatics, University of Warsaw
and
Institute of Computer Science, Polish Academy of Sciences
Warsaw, Poland

Thanks to: Bartek Klin, Jiři Adámek, Tomasz Brengos. . .

Algebraic Specifications

Some basic concepts and facts:

- algebras
- equations
- equationally definable classes
- Birkhoff variety theorem
- equational calculus
- soundness \& completeness
- modularisation and compositionality
- amalgamation
- interpolation

Quickly through the basics

Algebraic signature:

$$
\Sigma=\left(S, \Omega=\left\langle\Omega_{w, s}\right\rangle_{w \in S^{*}, s \in S}\right)
$$

S-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

$\left.|A|=\left.\langle | A\right|_{s}\right\rangle_{s \in S}$ and $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightarrow|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$.
And then:

- Σ-subalgebra $A_{s u b} \subseteq A \ldots$
- Σ-homomorphism $h: A \rightarrow B \ldots$
- Σ-congruence $\equiv \subseteq|A| \times|A| \ldots$
- quotient algebra $A / \equiv \ldots$
- product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}, \prod_{i \in \mathcal{I}} A_{i} \ldots$
- terms $t \in\left|T_{\Sigma}(X)\right| \ldots$
- term algebra $T_{\Sigma}(X) \ldots$
- term evaluation: $t_{A}(v) \in|A|_{s}$ for $t \in\left|T_{\Sigma}(X)\right|_{s}, v: X \rightarrow|A| \ldots$

Equations

Equation:

$$
\forall X . t=t^{\prime}
$$

where: X is a finite set of variables, and $t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$ are terms of a common sort.
Satisfaction relation:

$$
A \models \forall X . t=t^{\prime}
$$

when for all $v: X \rightarrow|A|, t_{A}(v)=t_{A}^{\prime}(v)$.
Models of a set of equations:

$$
\operatorname{Mod}(\Phi)=\{A \in \mathbf{A l g}(\Sigma) \mid A \models \Phi\}
$$

Semantic entailment:

$$
\Phi \models \varphi
$$

φ is a semantic consequence of Σ-equations Φ if $A \models \varphi$ for all $A \in \operatorname{Mod}(\Phi)$.

Birkhoff's Variety Theorem

$\mathcal{V} \subseteq \operatorname{Alg}(\Sigma)$ is a variety if \mathcal{V} is closed under products, subalgebras and homomorphic images:

$$
\mathcal{V}=\mathcal{H S P}(\mathcal{V})
$$

Fact: A class $\mathcal{V} \subseteq \mathbf{A} \lg (\Sigma)$ of Σ-algebras is equationally definable (that is, $\mathcal{V}=\operatorname{Mod}(\Phi)$ for some set Φ of Σ-equations) if and only if \mathcal{V} is a variety.

$$
\mathcal{V}=\mathcal{H S P}(\mathcal{V}) \text { iff } \mathcal{V}=\operatorname{Mod}(E Q(\mathcal{V}))
$$

BTW: reachable initial/free models

Birkhoff's Variety Theorem

> Birkhoff's Variety Theorem essentially holds; the standard proof essentially carries over

BUT:

One of the following additional assumptions is needed:

- only algebras with no carriers empty are considered;
- the set of sorts in the signature is finite;
- there may be infinitely many variables named in equations.

Counterexample: Consider a signature with no operations and an infinite set of sorts. Let \mathcal{V} be the class of algebras with finitely many sorts with non-empty carriers, or with all carriers containing at most one element. $\mathcal{V}=\mathcal{H S P}(\mathcal{V})$ but \mathcal{V} is not equationally definable.

Exercise: Check that any of the assumptions above makes \mathcal{V} equationally definable.

(Finitary) Birkhoff's Variety Theorem

Fact: A class $\mathcal{V} \subseteq \operatorname{Alg}(\Sigma)$ of Σ-algebras is equationally definable (that is, $\mathcal{V}=\operatorname{Mod}(\Phi)$ for some set Φ of Σ-equations) if and only if \mathcal{V} is a variety and is closed under directed sums (unions of directed families of algebras).

Classical equational calculus

$$
\begin{gathered}
\overline{t=t} \quad \frac{t=t^{\prime}}{t^{\prime}=t} \quad \frac{t=t^{\prime} t^{\prime}=t^{\prime \prime}}{t=t^{\prime \prime}} \\
\frac{t_{1}=t_{1}^{\prime} \ldots \quad t_{n}=t_{n}^{\prime}}{f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right)} \quad \frac{t=t^{\prime}}{t(\theta)=t^{\prime}(\theta)} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{gathered}
$$

where naive equation $t=t^{\prime}$ stands for $\forall F V\left(t, t^{\prime}\right) \cdot t=t^{\prime}$.

Naive equational calculus is essentially sound and complete

BUT: Mind the variables!

$$
a=b \text { does not follow from } a=f(x) \text { and } f(x)=b \text {, unless. } \ldots
$$

- We need to assume that only algebras with no carriers empty are considered.

Equational calculus

$$
\begin{array}{rc}
\frac{\forall X . t=t^{\prime}}{\forall X . t=t} \quad \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t^{\prime}=t} & \frac{\forall X . t=t^{\prime \prime}}{\forall X . t_{1}=t_{1}^{\prime} \ldots \quad \forall X . t_{n}=t_{n}^{\prime}} \\
\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right) & \frac{\forall X . t=t^{\prime}}{\forall Y . t(\theta)=t^{\prime}(\theta)} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{array}
$$

Fact: The above calculus is sound and complete:

$$
\Phi \models \varphi \text { iff } \Phi \vdash \varphi
$$

Moving between signatures

Signature morphism:

$$
\sigma: \Sigma \rightarrow \Sigma^{\prime}
$$

maps sorts to sorts and operation names to operation names preserving their profiles.
Translating syntax and semantics:

- translation of equations: $\sigma\left(\forall X . t_{1}=t_{2}\right)$ yields $\forall X^{\prime} . \sigma\left(t_{1}\right)=\sigma\left(t_{2}\right)$
- σ-reduct: ${ }_{-}{ }_{\sigma}: \mathbf{A l g}\left(\Sigma^{\prime}\right) \rightarrow \mathbf{A l g}(\Sigma)$ where for $A^{\prime} \in \mathbf{A} \lg \left(\Sigma^{\prime}\right),\left.A^{\prime}\right|_{\sigma}$ interprets sorts and operation names in Σ as A^{\prime} interprets their image under σ.

Satisfaction condition:
Fact: For all signature morphisms $\sigma: \Sigma \rightarrow \Sigma^{\prime}, \Sigma^{\prime}$-algebras A^{\prime} and Σ-equations φ :

$$
\left.A^{\prime}\right|_{\sigma} \models_{\Sigma} \varphi \Longleftrightarrow A^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

Fact: Amalgamation property holds for all pushouts of signature morphisms: for all $A_{1} \in \mathbf{A l g}\left(\Sigma_{1}\right)$ and $A_{2} \in \mathbf{A l g}\left(\Sigma_{2}\right)$ with $\left.A_{1}\right|_{\sigma_{1}}=\left.A_{2}\right|_{\sigma_{2}}$, there is a unique $A^{\prime} \in \mathbf{A l g}\left(\Sigma^{\prime}\right)$ with $\left.A^{\prime}\right|_{\sigma_{1}^{\prime}}=A_{2}$ and $\left.A^{\prime}\right|_{\sigma_{2}^{\prime}}=A_{1}$.

UFF!!!

Interpolation

A logic has the interpolation property for a pushout of signature morphisms

if for all $\varphi_{1} \in \mathbf{S e n}\left(\Sigma_{1}\right)$ and $\varphi_{2} \in \mathbf{S e n}\left(\Sigma_{2}\right)$ such that $\sigma_{2}^{\prime}\left(\varphi_{1}\right) \models_{\Sigma^{\prime}} \sigma_{1}^{\prime}\left(\varphi_{2}\right)$ there is an interpolant $\theta \in \mathbf{S e n}(\Sigma)$ such that $\varphi_{1} \models_{\Sigma_{1}} \sigma_{1}(\theta)$ and $\sigma_{2}(\theta) \models_{\Sigma_{2}} \varphi_{2}$.

Fact: FOEQ has the interpolation property for all pushouts of pairs of morphisms, where at least one of the morphisms is injective on sorts.

Equational interpolation

Equational interpolation essentially holds when sets of interpolants are allowed

BUT:

Mind the nuances!

- Such equational interpolation holds when only algebras with no carriers empty are considered, and the signature morphisms are injective (on sorts).
- There may be no set of interpolants when algebras with some carriers empty are admitted, even if all signature morphisms are inclusions.
- In the general case we need to require surjectivity of reducts wrt signature morphisms involved (at least wrt σ_{1}).

Equational interpolation

Counterexample: $\Sigma=$ sorts s, s_{1}, s_{2} opns $a, b: s$
$\Sigma_{1}=$ enrich Σ by opn $c: s_{1}$
$\Sigma_{2}=$ enrich Σ by opn $f: s_{1} \rightarrow s_{2}$
Consider Σ_{1}-equation $\forall x: s_{2} . a=b$ and Σ_{2}-equation $a=b$.
Then $\forall x: s_{2} . a=b \models \Sigma_{1} \cup \Sigma_{2} a=b$.
BUT: there is no set Θ of Σ-equations such that $\forall x: s_{2} . a=b \models \Sigma_{1} \Theta$ and $\Theta \models{ }_{\Sigma_{2}} a=b$.

To show this, consider $A_{1} \in \operatorname{Alg}\left(\Sigma_{1}\right)$ with $\left|A_{1}\right|_{s_{2}}=\emptyset$ and $a_{A_{1}} \neq b_{A_{1}}$, a subalgebra of $A_{1} \mid \Sigma$ with the carrier of sort s_{1} empty, and its Σ_{2}-expansion $A_{2} \in \operatorname{Alg}\left(\Sigma_{2}\right)$. Given a set of equational interpolants Θ as above, all these algebras satisfy Θ, and hence $A_{2} \models_{\Sigma_{2}} a=b$ - contradiction.

Conclusions

