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Introduction: Modal Logic

Modal logics are a central logical tool in computer science and AI:

I Applications e.g. to

I reactive systems

I knowledge representation

I multi-agent systems

I May be tailored to offer the right expressive means for a given domain

I Often have good computational properties (unlike, e.g., FOL/HOL)
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Introduction: Coalgebra

I Large variety of domain-specific logics of different syntax, semantics,
and complexity

I Coalgebra acts as a unifying semantic theory of modal logic and
supports

I generic complete deduction systems

I generic decidability results

I generic algorithms and complexity bounds

I generic implementations

I systematic logic design
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Modal Logic (Version 1)

Modal logic extends (classical) propositional logic with additional
operators, e.g.

φ ::=⊥ | p | ¬φ | φ1∧φ2 |2φ (p ∈ P)

with 2φ read e.g. ‘necessarily φ ’
(dually: 3φ :≡ ¬2¬φ ‘possibly φ ’)

Modal logic is a logic of relational structures:
I Models ((X ,R),V ), where

I (X ,R) is a Kripke frame, i.e. R ⊆ X ×X
I V is a valuation P→P(X ).

I Satisfaction is per state x ∈ X

x |= 2φ iff ∀y .xRy ⇒ y |= φ .

2 satisfies normality:

2> 2(a∧b)↔ (2a∧2b)
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Many Logics are Normal

I Temporal logics

I 2φ =: Gφ = ‘Generally/Forever φ ’

I Epistemic logics

I 2φ = ‘I know that φ ’

I Logics of Belief

I Standard Deontic Logic

I 2φ =: Oφ = ‘It is obligatory that φ ’

I Description logic

I Mother = Woman∧∃hasChild.>
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. . . and Many Are Not

I Graded modal logic: 2k φ = ‘with at most k exceptions φ ’
I Does have relational semantics, but better: multigraphs • n→•

I Probabilistic modal logic: Lpφ = ‘with probability ≥ p, φ ’
I Agent logics Eaφ = ‘agent a brings it about that φ ’

¬Ea>

I Deontic logics for dilemmas:

O¬leave∧O leave 6→O suicide

I Conditional logic: a⇒ b ‘if a, then normally b’

(monday⇒ bus) 6→ (monday∧strike⇒ bus)
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Modal Logic, Version 2

Neighbourhood semantics:
I Models (X ,R,V ) where

I (X ,R) neighbourhood frame, i.e.

R ⊆ X ×P(X )

I x |= 2φ iff xR[[φ ]] where [[φ ]] = {y ∈ X | y |= φ}.
This does cover nearly everything, but
I is unintuitive

I does not capture the intended semantics
I and in fact gives up nearly all semantic structure

I is often unsuitable for metatheory and efficient reasoning.
→ Look for a general framework that retains semantic structure
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A Reformulation of Kripke Semantics

I Frames are P-coalgebras

ξ : X → P︸︷︷︸
Functor

(X )

I x |= 2φ iff

ξ (x) ∈{A ∈ P(X ) | A⊆ [[φ ]]}=: [[2]]X︸ ︷︷ ︸
Predicate Lifting

([[φ ]])
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Modal Logic, Version 3:
Coalgebraic Modal Logic

I General modal similarity types (collections of modal operators)

I Abstract over the type of systems:
I Set functor (parametrised datatype) T : Set→ Set
I Systems = T -coalgebras

ξ : X → TX

I Abstract over the interpretation of modal operators L:
I Predicate liftings [[L]]X : P(X )→P(TX ), natural in X
I x |= Lφ iff

ξ (x) ∈ [[L]]X ([[φ ]])
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Nearly Everything is Coalgebraic

Logic Systems Syntax Functor

Normal
modal logics Kripke frames 2φ

powerset
P(X )

Probabilistic
modal logics Markov chains

Lpφ

∑aiP(φi)≥ b
distributions
D(X )

Graded
modal logics Multigraphs

≥nR.φ

∑ai#(φi)≥ b
multisets
B(X ) = X → N∞

Conditional
logics

Conditional
frames φ ⇒ ψ

selection functions
P(X )→P(X )

Classical
modal logics

Neighbourhood
frames 2φ

neighbourhoods
P(P(X ))

Coalition
logic Game frames [C]φ

Games
∃(Si).(∏Si → X )

(Schröder/Pattinson/Cirstea/Kurz/Venema et al. 2004–2008)
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Example: Alternating Temporal Logic (ATL)

(Alur et al. JACM 2002)
I Signature: [C] for C ⊆ N coalition

I [C]φ ‘C can force φ in the next step’

I Temporal operators such as 〈〈C〉〉Fφ ‘C can eventually force φ ’, e.g.
I 〈〈{a}〉〉F access

‘Agent a can access some resource autonomously’
I 〈〈{a,s}〉〉F access

‘Agent a can access some resource in collaboration with server s’

I Functor:
F (X ) = ∃S1, . . . ,SN .

(
∏i∈N Si

)
→ X

I Predicate liftings

[[[C]]]X (A) = {f ∈ F (X ) | ∃σC .∀σN−C . f (σC ,σN−C) ∈ A}
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One-Step Rules

One-step logic: V set of prop. var., Σ(V ) = {La | a ∈ V ,L ∈ Σ}.
Given τ : V →P(X ), interpret

I propositional formulas ϕ over V as [[ϕ]]τ ⊆ X

I propositional formulas ψ over Σ(V ) as [[ψ]]τ ⊆ TX by

[[La]]τ = [[L]]X τ(a)

One-step rules
ϕ

ψ
over V :

ϕ propositional over V
ψ clause over Σ(V )

ϕ/ψ one-step sound if [[ϕ]]τ = X =⇒ [[ψ]]τ = TX .
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The Cut Rule

A→ C C→ B
A→ B

— not so good for proof search.
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Lutz Schröder, Yde Venema: Flat Coalgebraic Fixed Point Logics 13 IFIP WG 1.3 Meeting, Etelsen, July 2010



The Cut Rule

A→ C C→ B
A→ B

— not so good for proof search.
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One-Step Cut-Free Completeness

A set R of one-step rules is one-step cut-free complete (OSCC) if for
every clause χ over Σ(V ),

[[χ]]τ = TX =⇒ ∃ϕ/ψ ∈R,σ : V → V .

[[ϕσ ]]τ = X , ψσ contracted, ψσ ⊆ χ.

I R one-step cut-free complete ⇐⇒ R absorbs cut and contraction

I OSCC rule sets
I induce model constructions, in which states are demands,

i.e. conj. clauses of conclusions of dual tableau rules ψ̄/ϕ̄

I yield cut-free complete modal deduction systems→ proof search

(Schröder/Pattinson LICS 06, ACM TOCL 09; Pattinson/Schröder I&C)
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Examples: OSCC Rule Sets

K (2 with Kripke semantics):∧n
i=1 ai → b∧n

i=1 2ai →2b
(n ≥ 0)

Alternating-time logic:∨n
i=1¬aj∨n

i=1¬[Cj ]aj

∧n
i=1 aj → (b∨

∨m
j=1 cj)∧n

i=1[Cj ]aj → ([D]b∨
∨m

j=1[N]cj)

(m,n ≥ 0,Cj ⊆ D,
Ci ∩Cj = /0 for i 6= j)
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Generic Algorithms via OSCC Rule Sets

I PSPACE for next-step-logics

I PSPACE for coalgebraic hybrid logic

I EXPTIME for coalgebraic description logics (i.e. with TBoxes)

I Completeness and EXPTIME global caching for flat fixed point logics
via O-adjointness (Schröder/Venema 2010)

I Alternating µ-calculus (Alur et al. 2002)

I Graded µ-calculus (Kupferman et al. 2002)
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Flat Coalgebraic Fixed Point Logics

Flat fixed point operators

]γ (ϕ)≡ µx .γ(ϕ,x)

[γ (ϕ)≡ νx .γ(ϕ,x) (γ modal)

→ fragments of single-variable coalgebraic µ-calculus.

E.g.

I CTL: AFϕ = ]p∨2x ϕ

I [p∧22x not in CTL*
I ATL: 〈〈C〉〉Fφ = ]p∨[C]x ϕ

I Graded µ-calculus (Kupferman et al. 2002):

]p∨32x φ

‘the current state is the root of a binary tree whose leaves satisfy φ ’.
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The Kozen-Park Axioms

Briefly: ‘]γ (φ) is a least fixed point’, i.e.:

Unfolding:
]γϕ ↔ γ(ϕ, ]γϕ)

Fixed-point induction:
γ(ϕ,χ)→ χ

]γ (ϕ)→ χ

Are these complete?
I Do imply that ]γ (φ) is a least fixed point in the Lindenbaum algebra
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Strategy for the Completeness Proof

I Show constructivity of the Lindenbaum algebra:

]γ (ϕ) =
∨
i<ω

γ(ϕ) i(⊥)

via O-adjointness of γ(ϕ): for all ψ there is a finite set Gγ(φ)(ψ) s.t.

γ(ϕ,ρ)≤ ψ ⇐⇒ ρ ≤ χ for some χ ∈Gγ(φ)(ψ)

I Constructivity implies

]γϕ ∧ψ consistent =⇒ γ(ϕ)i(⊥)∧ψ consistent for some i < ω.

I Tableau construction with time-outs
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O-Adjointness via OSCC Rule Sets

I Unfolding & guardedness: w.l.o.g. the top level of every formula is
modal

I Rigidity lemma: w.l.o.g. proofs of modal clauses end in modal
one-step rules

Example: Adjointness of 2. Recall rule:∧n
i=1 ai → b∧n

i=1 2ai →2b
(n ≥ 0)

Calculate:

2ρ ≤ ψ = 2ψ1∨·· ·∨2ψn

⇐⇒ `2ρ →2ψ1∨·· ·∨2ψn

⇐⇒` ρ → ψi for some i

Thus put G2x (ψ) = {ψ1, . . . ,ψn}
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Conclusions

I Coalgebra provides a uniform framework for modal and hybrid logics

I Graded operators (knowledge representation, redundancy)
I Probabilistic operators (quantitative uncertainty, reactive systems)
I Conditional operators (nonmonotonic reasoning)
I Alternating-time logics, game logic, logics of agency

(multi-agent systems)

I One-step cut-free complete rule sets are an important tool

I Completeness (and EXPTIME global caching) for
flat coalgebraic fixed point logics

I Graded µ-calculus
I Alternating-time µ-calculus (e.g. ATL: Goranko/van Drimmelen TCS 2006)
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Future Work

I Alternation-free coalgebraic µ-calculus

I Emerson/Halpern style fragment method

I Manydimensional coalgebraic logics

I e.g. random Kripke models

µ ∈ D(X →P(X ))

→ Prob-ALC (Lutz/Schröder KR 2010)

I Vision: generic, efficient modular reasoning tools

I CoLoSS (http://www.informatik.uni-bremen.de/cofi/CoLoSS/)

Lutz Schröder, Yde Venema: Flat Coalgebraic Fixed Point Logics 22 IFIP WG 1.3 Meeting, Etelsen, July 2010


