Towards theorem proving graph grammars

Leila Ribeiro

joint work with Simone Costa, Fernando Dotti, Fabiane Dillenburg, Alfio Martini

Universidade Federal do Rio Grande do Sul (UFRES), Brazil

IFIP WG . 3 - July 2010 - Etelsen

Motivation

* Theorem proving is a powerful technique for the analysis of computational systems
* It is possible to prove properties of reachable states for infinite state systems
* This approach is complementary to other existing analysis techniques for graph grammars, like model checking and analysis based on approximations

Personal motivation: I kept trying to convince colleagues that using formal methods is nice, they allow to prove many relevant properties, hopefully using some tool, but I myself never used theorem provers before...

But...

* Theorem provers are typically hard to use because
\Rightarrow the system under analysis must be faithfully encoded in a logical framework lin a rather low level way)
\Rightarrow many existing tools are hard to install and use
\Rightarrow proving properties needs a lot of user assistance
* Graphs (with types, attributes, ...) are complex structures, and the properties we wish to prove easily become cryptic logical formulae

IFIP WG . 3 - July 2010 - Etelsen

The idea...

* Encode GGs in such a way they become closer to the input languages of theorem provers
* Use exiting theorem provers to prove properties of graph grammars

IFIP WG . 3 - July 2010 - Etelsen

Typed Graphs

Typed Graph: tG

Type Graph: T

Category of typed graphs and partial graph morphisms : GraP(T) IFIP WG . 3 - July 2010 - Etelsen

(SPO) Rule

: partial injective graph homomorphism, no vertex deletion

IFIP WG . 3 - Joly 2010 - Etelsen

SPO Graph Grammar

> * Type Graph T
> * Initial (start) graph G typed over T
> * Set of rules typed over T

Semantics based on rule applications (POs in GraP(T))

Relational Graph Grammars

* Definition of graph grammars based on relations and restrictions on these relations
* Faithful encoding of SPO, considering injective rules that do not delete vertices and matches that are injective on edges
* Based on Courcelle's relational structures: domain+relations, transduction

Relational Graph

$V_{G G}:$ set of vertex ids
$E_{G G}$: set of edge ids

Graph T

vert $T \subseteq V_{G G}$
$e d g e T \subseteq E_{G G}$
source $T \in$ edge $T \rightarrow$ vert T
target $T \in$ edge $T \rightarrow$ vert T $t G_{-} V \in$ vert $G \rightarrow v e r t T$ $t G _E \in e d g e G \rightarrow e d g e T$ vert $G \subseteq V_{G G}$
$e d g e G \subseteq E_{G G}$
source $G \in \operatorname{edge} G \rightarrow$ vert G target $G \in$ edge $G \rightarrow$ vert G IFIP WG 3 - July 2010 - Etelsen

Relational Rule

$$
\alpha: L \longmapsto \mathbb{R}
$$

$\alpha_{V}: v e r t L \longrightarrow v e r t R$
$\alpha_{E}: e d g e L \nleftarrow e d g e R$
type compat.

Match is analogous, but total.
IFIP WG 3 - July 2010 - Etelsen

Rule Application

$$
\begin{aligned}
\text { vert } H & =\operatorname{vert} G \uplus\left(v e r t R-\alpha_{V}(v e r t L)\right) \\
\text { edge } H & =\left(e d g e G-m_{E}(e d g e L)\right) \uplus E_{R}
\end{aligned}
$$

+ source, target, typing functions...

Now, implementing....

* First attempt: Use Isabelle

* Second attempt: Event-B (Rodin platform)

IFIP WG 3 - July 2010 - Etelsen

Event-B

* Formalism based on B

* Event-B models are composed by

- CONTEXT : des Definition of type graph and rules facts that may de usea in tne muaes
- MACHINE: do Definition of start graph and (transitions) rule application

Type Graph in Event-B

CONTEXT ctx_gg

SETS

vertT (Type Graph T) Verteces
edgeT (Type Graph T) Edges

CONSTANTS

sourceT
targetT
Vertex1
Edge1

Vertex2
Edge2
AXIOMS
axm1: partition(vertT, $\{$ Vertex1 $\},\{$ Vertex2 $\}$)
axm2: partition (edgeT, $\{E d g e 1\},\{E d g e 2\})$
axm_src : source $T \in$ edge $T \rightarrow$ vert T
axm_srcD : partition(source $T,\{$ Edge1 \mapsto Vertex1 $\},\{$ Edge2 \mapsto Vertex 1$\}$)
axm_trg : target $T \in$ edge $T \rightarrow$ vert T
axm10: partition(targetT, $\{$ Edge1 \mapsto Vertex1 $\},\{$ Edge2 \mapsto Vertex2 $\}$)
END

IFIP WG . 3 - July 2010 - Etelsen

State Graph

MACHINE mch_gg

SEES ctx_gg

VARIABLES

vertG
edgeG
sourceG
targetG
tG_V Typing vertices, tG_V
tG_E Typing edges, tG_E

INVARIANTS

```
type_vertG : vert G \in\mathbb{P}(\mathbb{N})
type_edgeG : edge }G\in\mathbb{P}(\mathbb{N}
type_sourceG: source}G\inedgeG->vert 
type_targetG: target G edgeG }->\mathrm{ vert }
type_tG_V : tG_V vertG }->\mathrm{ vertT
type_tG_E: tG_E E edgeG }->edge
```


EVENTS

Initialisation
begin
act1: $\operatorname{vert} G:=\{1\}$
actE : edge $G:=\{1\}$
acts : source $G:=\{1 \mapsto 1\}$
actt $: \operatorname{target} G:=\{1 \mapsto 1\}$
act3: $t G_{-} V:=\{1 \mapsto$ Vertex 1$\}$
act4: tG_E:=\{1円Edge1\}
end
END

IFIP WG 3 - July 2010 - Etelsen

Rule

CONTEXT ctx_gg

SETS

vertL1
edgeL1
vertR1
edgeR1

CONSTANTS

v1_L1
e1_L1
v1_R1
v2_R1
e1_R1
tL1_V (LHS1) Typing vertices, tL1_V
tL1_E (LHS1) Typing edges, tL1_E
tR1_V (RHS1) Typing vertices, tR1_V
tR1_E (RHS1) Typing edges, tR1_E
alpha1V (Rule 1) Rule alpha1: mapping vertices
alpha1E (Rule 1) Rule alpha1: mapping edges

AXIOMS

```
axm15: partition(vertL1,{v1 L1})
axm16: partition(edgeL1,{e1 L1})
axm_srcL1 : sourceL1 \in edgeL1 }->\mathrm{ vertL1
axm_srcDL1: partition(sourceL1,{e1_L1\mapstov1_L1})
axm_tarL1 : targetL1 \in edgeL1 }->\mathrm{ vertL1
axmtarDL1 : partition(targetL1,{e1_L1\mapstov1_L1})
axmtL1V : tL1_V vertL1 }->\mathrm{ vertT
act9: partition(tL1_V,{v1_L1\mapsto Vertex1})
axmLL1E:tL1_E E edgeL1 }->\mathrm{ edgeT
act10: partition(tL1_E,{e1_L1\mapstoEdge1})
axm17: partition(vertR1,{v1_R1},{v2_R1})
axm18: partition(edgeR1,{e1_R1})
axm_srcR1: sourceR1 \in edgeR1 }->\mathrm{ vertR1
axm_srcDR1: partition(sourceR1,{e1_R1\mapstov1_R1})
axm_tarR1 : targetR1 \in edgeR1 }->\mathrm{ vertR1
axmrafDR1: partition(targetR1,{e1_R1\mapstov2_R1})
axmtR1: tR1_V \in vertR1 }->\mathrm{ vertT
act13: partition(tR1_V,{v1_R1\mapstoVertex1},{v2_R1\mapstoVertex2})
axmtR1E: tR1 E E edgeR1 }->\mathrm{ edgeT
act14: partition(tR1_E,{e1_R1\mapsto Edge2})
axmA1V : alpha1V \in vertL1 }->\mathrm{ vertR1
act15: partition(alpha1V,{v1_L1\mapstov1_R1})
axmA1E: alpha1E \in edgeL1 }->\mathrm{ edgeR1
act16: alpha1E = \varnothing
```


Rule (Behavior)

EVENTS

Event alpha1 $\widehat{=}$

> any $$
\begin{array}{l}m V \\ \\ m E \\ \\ \\ \text { new } V \\ \\ \text { newE }\end{array}
$$

where

```
grd1: mV \in vertL1 }->\mathrm{ vertG
grd2 : mE e edgeL1 }->\mathrm{ edgeG
    grd3: newV }\in\mathbb{N}\vert
    grd4: newE }\in\mathbb{N}\\mathrm{ \dgeG
    grd5: }\forallv\cdotv\invertL1=>tL1_V(v)=t\mp@subsup{G}{-}{}V(mV(v)
    grd6: }\foralle\cdote\inedgeL1=>tL1_E (e)=tG_E(mE(e)
    grd7: \foralle\cdote \in edgeL1 =>mV(sourceL1(e)) = source G(mE(e))^
        mV(targetL1 (e)) = targetG(mE (e))
```


m is a match

vertex type compatibility edge type compatibility source/target compatibility
then

```
act3: vert \(G:=\operatorname{vert} G \cup\{\) new \(V\}\)
acte : edge \(G:=\left(e d g e G \backslash\left\{m E\left(e 1 \_L 1\right)\right\}\right) \cup\{\) new \(E\}\)
acts : source \(G:=\left(\left\{m E\left(e 1 \_L 1\right)\right\} \notin\right.\) source \(\left.G\right) \cup\left\{\right.\) new \(E \mapsto\left(\right.\) source \(\left.\left.G\left(m E\left(e 1 \_L 1\right)\right)\right)\right\}\)
actt : target \(G:=\left(\left\{m E\left(e 1 \_L 1\right)\right\} \notin \operatorname{target} G\right) \cup\{\) new \(E \mapsto\) new \(V\}\)
acttV : tG-V :=tG-V \(\cup\) new \(V \mapsto\) Vertex2 \(\}\)
    act6 : tG_E \(:=\left(\left\{m E\left(e 1 \_L 1\right)\right\} \notin t G_{-} E\right) \cup\{n e w E \mapsto E d g e 2\}\)
```

end

Properties

* Properties are stated as invariants:

INVARIANTS

$$
\begin{aligned}
& \text { prop1 : finite }(\text { edge } G) \\
& \text { prop2 }: \operatorname{card}(\text { edge } G) \leq 2
\end{aligned}
$$

* In Event-B, proof obligations are generated to guarantee that all invariants are well-defined, are valid in any initial state and are preserved by all events

IFIP WG . 3 - Joly 2010 - Etelsen

Another Example: Token Ring

IFIP WG . 3 - July 2010 - Etelsen

Another Example: Token Ring

IFIP WG . 3 - July 2010 - Etelsen
O○○ Proving - TR_RingPropertyAllRulesTeseSimone/mch_trAll.bum - Rodin Platform - /Users/scosta/Documents/Doutorado/Rodin/GG_ICGMT

Final Remarks

凹 GGs can be faithfully encoded in Event-B

- Rodin offers a set of theorem provers that can be used to verify graph grammars
- However, we need
* libraries for commonly used operations:
* theories for graph structures;
* property patterns (tactics patters);
* integration of data types (attributed GTS), NACs, ...
* more "intelligent" theorem prover: Isabelle???

IFIP WG . 3 - July 2010 - Etelsen

Thank you!!!

IFIP WG . 3 - July 2010 - Etelsen

